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Abstract

Next-generation sequencing is increasing our understanding and knowledge of non-

coding RNAs (ncRNAs), elucidating their roles in molecular mechanisms and processes

such as cell growth and development. Within such a class, tRNA-derived ncRNAs have

been recently associated with gene expression regulation in cancer progression. In this

paper, we characterize, for the first time, tRNA-derived ncRNAs in NCI-60. Furthermore,

we assess their expression profile in The Cancer Genome Atlas (TCGA). Our compre-

hensive analysis allowed us to report 322 distinct tRNA-derived ncRNAs in NCI-60,

categorized in tRNA-derived fragments (11 tRF-5s, 55 tRF-3s), tRNA-derived small RNAs

(107 tsRNAs) and tRNA 5′ leader RNAs (149 sequences identified). In TCGA, we were

able to identify 232 distinct tRNA-derived ncRNAs categorized in 53 tRF-5s, 58 tRF-3s,

63 tsRNAs and 58 5′ leader RNAs. This latter group represents an additional evidence

of tRNA-derived ncRNAs originating from the 5′ leader region of precursor tRNA. We

developed a public database, tRFexplorer, which provides users with the expression

profile of each tRNA-derived ncRNAs in every cell line in NCI-60 as well as for each TCGA

tumor type. Moreover, the system allows us to perform differential expression analyses

of such fragments in TCGA, as well as correlation analyses of tRNA-derived ncRNAs

expression in TCGA and NCI-60 with gene and miRNA expression in TCGA samples, in

association with all omics and compound activities data available on CellMiner. Hence,

the tool provides an important opportunity to investigate their potential biological roles

in absence of any direct experimental evidence.

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
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Introduction

With the advent of next-generation sequencing tech-
nologies, the number of characterized ncRNA classes
in eukaryotic cells has dramatically increased (1–3).
Recently, tRNA-derived non-coding RNAs (ncRNAs), a
novel heterogeneous class of ncRNAs originating from
tRNA processing, have been characterized. Indeed, it has
been shown that tRNA-derived ncRNAs are not mere
byproducts of random tRNA cleavage, rather they may
actively play roles in several biological phenomena, such
as ribosome biogenesis, retrotransposition, virus infections,
apoptosis and cancer pathogenesis (4–13). Furthermore,
some classes of tRNA-derived ncRNAs have been shown
to bind AGO and PIWI proteins, potentially acting as
post- or pre-transcriptional regulators of gene expression
(9, 14).

Accumulating evidence also suggests the presence of
functional tRNA-derived ncRNAs in human biological flu-
ids, such as urine and serum from cancer patients (15–19).

tRNA biogenesis begins with the transcription of
tRNA genes by RNA polymerase III leading to ‘precursor
tRNA’ (pre-tRNA). Such molecules undergo a maturation
process inside the nucleus, where 5′ leader and 3′ trailer
sequences are cleaved by ribonuclease P (RNase P) and
ribonuclease Z (RNase Z), respectively (15, 20–25). In
the last few years, several kinds of tRNA-derived ncRNAs
have been discovered. However, a unique classification is
still missing. A common grouping of such molecules is
based on the location they originate from within the tRNA
gene. tRNA-derived ncRNAs can, therefore, be divided
into two main classes: (i) tsRNAs, which derive from pre-
tRNA and (ii) stress-induced tRNA fragments (tiRNAs),
together with tRFs, which derive from mature tRNA
(13).

tsRNA are produced inside the nucleus and result from
the cleavage of the pre-tRNAs 3′ trailer sequence by RNases
Z. They usually begin after the 3′-end of mature tRNAs and
are characterized by a polyuracil sequence at their 3′-ends
(13).

tiRNAs, which have a length of ∼28–36 nt, are produced
in the cytoplasm via specific cleavage of the anticodon loop
of mature tRNAs by Rny1p and angiogenin (ANG) in yeast
and mammalians cells, respectively (15, 26, 27). This class is
comprised of 5’-tiRNA and 3’-tiRNA, in reference to the 5′

or 3′ half of the mature tRNA they derive from, respectively
(15).

tRFs, ranging from 14 to 30 nt in length, are derived
from mature tRNA (15, 23, 28). Three types of tRFs have

been discovered to date: (i) tRF-5s; (ii) tRF-3s; and (iii)
i-tRFs (29, 30). tRF-5s are generated in the cytoplasm
by Dicer-mediated cleavage of the mature tRNA D-loop
(29, 31). tRF-3s are produced in the cytoplasm via cleav-
age of the T-loop in mature tRNAs operated by Dicer,
ANG and other members of the RNase A superfamily.
They are fragments originating from mature tRNA 3′-
ends, and include the final CCA sequence (28, 29, 32).
Finally, i-tRFs are enriched within the internal regions of
mature tRNAs, usually straddling the anticodon region
(29, 33). It is important to highlight that in literature
and in some databases, tsRNAs (which derive from 3′

trailer sequence of pre-tRNAs) are also termed tRF-1s
(30, 34, 35).

Additionally, a recently investigated group of tRFs,
namely 5′ leader-exon tRFs, has been described in a study
associating them with the loss of spinal motor neurons in
CLP1-kinase dead mice (36). These fragments span from the
beginning of the 5′ end of pre-tRNAs to the 5′ end of mature
tRNAs and are produced inside the nucleus. However,
their biogenesis and function remain still unknown, and
consequently, this class has not currently been completely
characterized (36).

Our study aims at the identification of tRNA-derived
ncRNAs in the National Cancer Institute 60 (NCI-
60) cell lines and The Cancer Genome Atlas (TCGA)
samples. This has been done through the development
of a custom bioinformatics pipeline for the identification
of tsRNAs (also termed tRF-1), tRFs (tRF-5s and tRF-
3s) and 5′ leader RNAs in small non-coding RNA-seq
(sncRNA-seq data).

NCI-60 is a panel of 60 human cancer cell lines derived
from nine different cancer types (leukemia, colon, lung, cen-
tral nervous system, renal, melanoma, ovarian, breast and
prostate) (37–39), while TCGA is a collection of samples
covering 33 different tumor types with more than 11 000
cancer patients.

We collected all the profiling results in an intuitive, pub-
licly available database, tRFexplorer (https://trfexplorer.
cloud/). Our database allows users to search for tRNA-
derived ncRNAs, visualize their expression profiles in both
NCI-60 cell lines and TCGA patient cohorts, apply differen-
tial expression (DE) analysis on TCGA samples and corre-
late tRNA-derived ncRNA expression profiles with several
covariates, such as NCI-60 omics data, TCGA mRNA and
miRNA expressions, and TCGA patients survival data, in
order to better aid in the identification of mechanisms in
which such molecules might be involved in.

https://trfexplorer.cloud/
https://trfexplorer.cloud/
https://trfexplorer.cloud/
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Material and methods

tRNA-derived ncRNAs identification pipeline

The identification of tsRNAs, 5′ leader RNAs and tRFs in
sncRNA-seq datasets is a complex process, since such small
fragments may be mapped to multiple DNA regions. For
this purpose, we implemented a conservative pipeline to
get an accurate estimation of tsRNAs, 5′ leader RNAs and
tRF expression. First, we assembled a custom annotation
of the reference human genome (hg19) containing only
known tsRNAs and tRFs. We included all tRF-5s, tRF-
3s and tRF-1s from tRFdb (http://genome.bioch.virginia.
edu/trfdb/) (34), all tsRNA identified by (8) and the 20-nt
upstream region of tRNA human genes for the 5′ leader
RNAs. Human tRNA genes were taken from GtRNAdb
(http://gtrnadb.ucsc.edu/) (40). Subsequently, we examined
sncRNA-seq datasets of NCI-60 cell lines as provided by
the sequence read archive (SRA) (PRJNA390643) (39),
as well as sncRNA-seq datasets on TCGA. In Table 1,
we provide a list of NCI-60 cell lines and the SRA
datasets, while in Table 2, it lists the analyzed TCGA
cancer types with their relative numbers of tumor and
control samples. Raw FASTQ files were pre-processed
for adaptor removal and quality filtering by applying
Trim Galore (https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/) tuned for sncRNA-seq (Phred quality
score ≥20). Trim Galore is a wrapper for Cutadapt (41)
and FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), which is used as a consistent method
to apply quality filtering and adaptor trimming. Filtered
FASTQ files were then aligned to a reference human
genome (hg19) using TopHat version 2.1.0 (42) as well
as to our custom annotation file. Read quantification has
been performed with HTSeq version 0.10.0 (43). In this
phase, all ambiguously mapped reads were removed for
a more accurate and conservative analysis. Data analysis
was performed with R version 3.5.1. Raw counts were
normalized with two different normalization methods:
transcripts per million mapped reads (TPM) (44) and reads
per million mapped reads (RPM) (45).

RPM = number of reads mapped to a gene × 106

total number of mapped reads for a given library

TPM = number of reads mapped to a gene
gene length in bp

×
⎛
⎝ 1

∑ number of reads mapped to a gene
gene length in bp

⎞
⎠ × 106

All tsRNAs, 5′ leader RNAs and tRFs with average
log2 TPM less than 1 were removed. A summary of our full
pipeline is shown in Figure 1.

Table 1. List of NCI-60 cell lines tested and the relative SRA

dataset

Cell line Type of cancer SRA dataset

T-47D BREAST SRR5689215
MCF-7 BREAST SRR5689213
MDA-MB-231 BREAST SRR5689212
BT-549 BREAST SRR5689211
HS-578T BREAST SRR5689210
SF-295 CNS SRR5689217
SF-268 CNS SRR5689216
SF-539 CNS SRR5689214
U251 CNS SRR5689209
SNB-75 CNS SRR5689208
SNB-19 CNS SRR5689175
HCT-116 COLON SRR5689179
HT-29 COLON SRR5689178
KM12 COLON SRR5689177
SW-620 COLON SRR5689176
COLO 205 COLON SRR5689174
HCT-15 COLON SRR5689173
HCC2998 COLON SRR5689172
MOLT-4 LEUKEMIA SRR5689193
K-562 LEUKEMIA SRR5689192
SR LEUKEMIA SRR5689191
RPMI 8226 LEUKEMIA SRR5689190
CCRF-CEM LEUKEMIA SRR5689183
HL-60(TB) LEUKEMIA SRR5689182
LOX-IMVI MELANOMA SRR5689197
MALME-3M MELANOMA SRR5689196
MDA-MB-435 MELANOMA SRR5689195
M14 MELANOMA SRR5689194
SK-MEL-5 MELANOMA SRR5689189
SK-MEL-28 MELANOMA SRR5689188
UACC-62 MELANOMA SRR5689167
UACC-257 MELANOMA SRR5689164
SK-MEL-2 MELANOMA SRR5689165
NCI-H522 NSCLC SRR5689201
NCI-H460 NSCLC SRR5689200
HOP 62 NSCLC SRR5689171
NCI-H23 NSCLC SRR5689170
EKVX NSCLC SRR5689169
HOP 92 NSCLC SRR5689168
A549 NSCLC SRR5689166
NCI-H322M NSCLC SRR5689163
NCI-H226 NSCLC SRR5689162
OVCAR-5 OVARIAN SRR5689207
OVCAR-4 OVARIAN SRR5689206
OVCAR-8 OVARIAN SRR5689205
OVCAR-3 OVARIAN SRR5689204
NCI/ADR-RES OVARIAN SRR5689203
IGR-OV1 OVARIAN SRR5689202
SK-OV-3 OVARIAN SRR5689198
DU-145 PROSTATE SRR5689199
PC-3 PROSTATE SRR5689187
A498 RENAL SRR5689186
CAKI-1 RENAL SRR5689185

continued

http://genome.bioch.virginia.edu/trfdb/
http://genome.bioch.virginia.edu/trfdb/
http://gtrnadb.ucsc.edu/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 1. Continued

Cell line Type of cancer SRA dataset

786-0 RENAL SRR5689184
SN12C RENAL SRR5689181
TK-10 RENAL SRR5689180
UO-31 RENAL SRR5689161
ACHN RENAL SRR5689160
RXF393 RENAL SRR5689159

Implementation of tRFexplorer

All identified tsRNAs, 5′ leader RNAs and tRFs with their
expression profiles have been integrated in a novel database
named tRFexplorer. tRFexplorer enables users to visualize
the expression profile of each tRNA-derived ncRNA in both
NCI-60 cell lines and TCGA samples (33 cancer types).
Furthermore, it uses the R package limma (46) to perform
DE analysis on TCGA data. Interactive visualization of
its results has been implemented through the R package
Glimma (47). Our database allows users to conduct cor-
relation analysis of tRNA-derived ncRNAs expression in
NCI-60 with all data available on CellMiner (48, 49).
Correlation analysis with genes and miRNA expression
profiles, as well as patient survival, of TCGA samples has
also been implemented.

tRFexplorer was developed by employing PHP and R
for its backend, and Javascript and React for the main user
interface. All omics data and compound activities used for

the correlation analysis were obtained from CellMiner (48,
49). In Table 3, we list all CellMiner datasets.

Genomic viewer for tRNA-derived ncRNAs visualiza-
tion is based on JBrowse (50). JBrowse is a fast and inter-
active genomic viewer built entirely with new HTML5
technology. We customized our browser by allowing users
to search for both tRNAs or tRNA-derived ncRNAs using
both genomic coordinates or identifiers.

Results

tRNA-derived ncRNAs identified

In our study, we employed NCI-60 (39) and TCGA
sncRNA-seq datasets to identify tsRNAs, 5′ leader RNAs
and tRFs, assessing their expression profile. In these
datasets, we were able to identify 322 expressed tRNA-
derived ncRNAs in NCI-60 (11 tRF-5s, 55 tRF-3s, 107
tsRNAs and 149 5′ leader RNAs) and 232 expressed tRNA-
derived ncRNAs (53 tRF-5s, 58 tRF-3s, 63 tsRNAs and
58 5′ leader RNAs) in TCGA. A number of tsRNAs, 5′

leader RNAs and tRFs identified across NCI-60 cell lines
and TCGA samples present noticeable expression levels.
Moreover, all small RNA sequences mapped within four
specific regions: 5′ end (tRF-5) and 3′ end (tRF-3) of mature
tRNA, and 3′ trailer (tsRNA or tRF-1) and 5′ leader (5′

leader RNAs) regions of primary tRNA genes. If these small
RNA sequences were the result of a random degradation
process, their ends would be equally distributed along
the lengths of tRNA genes with a comparable frequency

Figure 1. A summary of the tRNA-derived ncRNAs identification pipeline from RAW FASTQ files to normalized counts matrix.
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Table 2. List of analyzed TCGA cancer types with their relative numbers of tumor and control samples

Tumor type Tumor name Tumor samples Control samples

ACC Adrenocortical carcinoma 79
BLCA Bladder urothelial carcinoma 408 19
BRCA Breast invasive carcinoma 1101 113
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 306 3
CHOL Cholangiocarcinoma 36 9
COAD Colon adenocarcinoma 459 41
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma 48
ESCA Esophageal carcinoma 185 11
GBM Glioblastoma multiforme 167
HNSC Head and neck squamous cell carcinoma 522 44
KICH Kidney chromophobe 66 25
KIRC Kidney renal clear cell carcinoma 534 72
KIRP Kidney renal papillary cell carcinoma 291 32
LAML Acute myeloid leukemia 173
LGG Brain lower grade glioma 533
LIHC Liver hepatocellular carcinoma 374 50
LUAD Lung adenocarcinoma 517 59
LUSC Lung squamous cell carcinoma 501 51
MESO Mesothelioma 87
OV Ovarian serous cystadenocarcinoma 309
PAAD Pancreatic adenocarcinoma 179 4
PCPG Pheochromocytoma and paraganglioma 184 3
PRAD Prostate adenocarcinoma 498 52
READ Rectum adenocarcinoma 166 10
SARC Sarcoma 263 2
SKCM Skin cutaneous melanoma 472 1
STAD Stomach adenocarcinoma 414 35
TGCT Testicular germ cell tumors 139
THCA Thyroid carcinoma 513 59
THYM Thymoma 120 2
UCEC Uterine corpus endometrial carcinoma 546 23
UCS Uterine carcinosarcoma 57
UVM Uveal melanoma 80

10 327 720

(34, 35). In addition, we can observe that each TCGA
cancer type (whose control samples are available) displays
a different pattern of dysregulated tRNA-derived ncRNAs.
Taken together, these results may suggest that these small
RNAs are not fragments derived from the random cleavage
of precursor and mature tRNAs, rather they are actively
expressed and produced by specific ribonucleases and may
be dysregulated in several human cancers. Indeed, recent
evidences have shown dysregulated tRNA-derived ncRNAs
in Chronic lymphocytic leukemia (CLL), colon, breast,
ovary, lung and prostate cancers (8, 9, 11, 12, 51, 52).

tRFexplorer database

All identified sncRNAs have been integrated in a novel
database named tRFexplorer. tRFexplorer is an easy-to-use,

web-based database (https://trfexplorer.cloud/) containing
tRNA-derived ncRNAs expression profiles for NCI-60
cell lines and TCGA samples, together with all omics and
compound activities data available on CellMiner (Table 3).
Leveraging CellMiner data, tRFexplorer enables users
to perform correlation analysis inferring knowledge on
the biological function of such molecules. Furthermore,
a module allowing DE analysis for all tRNA-derived
ncRNAs in TCGA samples has been released. A detailed
explanation of tRFexplorer functions is provided in the
following sections.

Browse. In the ‘Browse’ section, users can search
for tsRNAs, 5′ leader RNAs and tRFs by ‘location’ or
‘expression’. Browsing by location enables users to search
and visualize all tRNA-derived ncRNAs in the reference
human genome (Figure 2). Specifically, through the custom

https://trfexplorer.cloud/
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Table 3. A list of CellMiner datasets with their description

CellMiner dataset Description

DNA CNV-Roche NibleGen 385 K aCGH 385 K element tiling array based on NCBI Build 35 of the human genome (HG17) and
re-mapped to NCBI Build 35 (HG19); 50-mer tiling with a median probe spacing
of 6000 bp.

DNA CNV-combined aCGH Probe intensities combined from four platforms: agilent human genome CGH
Microarray 44A, Nimblegen HG19 CGH 385 K WG Tiling v2.0, Affymetrix
GeneChip human mapping 500 k array set and Illumina Human1Mv1_C Beadchip

DNA single nucleotide polymorphism (SNP)
per gene-Affy 500 K

This platform is used for whole-genome association studies. It is comprised of two
arrays which enable genotyping of more than 500 000 SNPs.

DNA SNP per gene-Illumina 1 M SNP BeadChip array based on Illumina’s infinium assay with probes for 1 072 820 SNPs
DNA methylation-Illumina 450 K Approximately 450 000 probes querying the methylation status of CpG sites within

and outside of genes.
RNA Affy HG-U133_AB Human genome U133. 44 000 probeset 2-chip set. Gene expression.
RNA Affy HG-U133 Plus 2.0 Aproximately 47 000 transcripts
RNA Affy HuEx 1.0 1 432 155 probesets for all human gene exons
RNA agilent human mRNAs 44 000 probes for approximately 41 000 genes, with four arrays spotted on each slide.
RNA expression combined z-scores Gene expressions
RNA agilent human miRNAs 15 000 probes for 723 human and 76 human viral miRNA’s. Each slide contains eight

arrays.
RNA microRNA OSU V3 Chip Custom microarray developed at Microarray Shared Resource Comprehensive Cancer

Center, OSU microarray facility. It contains 11 k probes (two technical replicates)
for murin and human microRNAs together with hypothetical microRNAs and
control probes.

RNA ABC transporters array 47 specific oligonucleotide probes were designed for each of the ABC transporters
using DNAStar Primer Select. Expression levels were measured by real-time
quantitative RT-PCR using the LightCycler RNA Amplification SYBR Green kit
and a LightCycler machine.

RNA OSU transporter array Spotted 70-mer microarray
Protein lysate array Reverse-phase lysate arrays (RPLA) for 162 antibodies for 94 genes. Each array

included 64 lysates (60 cancer cells and 4 replicate control pools) in 10 serial
2-fold dilutions.

Compound activities Negative log10 (GI50) values of sulforhodamine B assay for ∼ 50 K compounds,
including more than 20 000 that passed quality control, 158 Food and Drug
Administration approved and 79 clinical trial drugs. Higher values equate to
higher sensitivity of cell lines.

genome browser, it is possible to interactively search tRNA-
derived ncRNAs either by genomic coordinates or by
identifier.

Browsing by expression section enables users to filter
data using at least one of the following options: (i) the type
of fragment (tRF-3, tRF-5, tsRNA and 5′ leader RNAs);
(ii) the amino acid carried by the pre-tRNA; (iii) the anti-
codon sequence; (iv) the dataset in which the fragment is
expressed (TCGA tumor types or NCI-60 cell lines); and
(v) the tissue subtype (normal, tumor, metastatic, recurrent,
etc). It is also possible to set a minimum RPM thresh-
old for tRNA-derived ncRNAs. The search procedure will
scan our database looking for all tRNA-derived ncRNAs
matching users criteria, and the results will be reported in a
table.

Once results become available, users may view a page
with detailed information by selecting any single result.

Such page will show plots for assessing RPM expression
levels in both NCI-60 (Figure 3) and TCGA (Figure 4).
A genomic viewer will show genomic locations for each
tRNA-derived fragment.

Correlation analysis. In the ‘Correlation Analysis’ sec-
tion, users can perform correlation analyses of all identified
tsRNAs, 5′ leader RNAs and tRFs in NCI-60, with the
omics and compound activities data available on CellMiner
(48) (Table 3). Correlation analysis can also be performed
with mRNA/miRNA expression profiles, as well as patient
survival data, of TCGA samples. Specifically, the user selects
the correlation measure (Pearson or Spearman) and which
dataset to consider. A list of correlated and anticorrelated
tRNA-derived ncRNAs will be shown. The results can then
be filtered by: (i) ncRNA name; (ii) genes, miRNAs, com-
pound names; (iii) the genomic coordinates, when available;
and (iv) the minimum correlation value. By clicking on
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Figure 2. The genomic location of ts-106 visualized in our interactive genome viewer.

Figure 3. Example of bar plot which shows tRFdb-3022a expression across NCI-60 cell line.

each result, an interactive scatter plot with the data of the
selected molecules will appear (Figure 5).

DE analysis. In the ‘DE analysis’ section, users can
perform DE analysis to discover which tsRNAs, 5′ leader
RNAs and tRFs are dysregulated in TCGA tumor types.
To start the analysis, users select the cancer type and one
of the available covariates (gender, race, vital status, sam-
ple type or classification). It is also possible to set the
maximum P-value and minimum log-fold-change (logFC)
for the analysis. After selecting all the parameters, users
must select at least one contrast to perform for the DE
analysis, in association with the selected covariate. Once

the analysis is launched, a list of differentially expressed
tRNA-derived ncRNAs with their logFC and FDR adjusted
P-value will be shown together with an interactive volcano
plot to better visualize their DE (Figure 6). By clicking on a
specific point in the plot or row in the table, a swarm plot
of the expression values will also be shown (Figure 6).

Comparison between tRFexplorer

and MINTbase V.2.0

We compared data and features of tRFexplorer with
MINTbase V2.0 (53), another established database of
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Figure 4. Example of box plot which shows tRFdb-3022a expression across TCGA cancer types.

Figure 5. Example of a scatter plot which shows the correlation between the expression profile of ts-62 in NCI-60 and the expression of NOTCH4.
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Figure 6. Vulcano plot which shows the differentially expressed tRNA-derived ncRNAs in TCGA Lung Squamous Cell Carcinoma (LUSC) when

compared with control samples, and a swarm plot which specifically shows the difference in the expression profile of one (tRFdb-5015a) of the

differentially expressed tRNA-derived ncRNAs.

tRNA-derived ncRNAs in TCGA. MINTbase V2.0 has a
user-friendly graphical user interface and it combines data
from 768 different human datasets and 11.198 TCGA small
RNA-Seq datasets. MINTbase V2.0, however, is focused
only on tRFs, i-tRF and tiRNAs (or tRNA halves). Indeed,
only tRNA-derived ncRNAs formed from mature tRNAs
are taken into account. tsRNAs and 5′ leader RNAs, coming
from pre-tRNAs, are not available in MINTbase V.2.0. On
the other hand, tRFexplorer does not store tiRNAs and
i-tRF. Table 4 reports the tRNA-derived ncRNAs classes
stored in tRFexplorer and MINTbase V.2.0, respectively.

Concerning tRNA-derived ncRNAs identification meth-
ods, we aim to stress an important difference between tRF-
explorer and MINTbase. The tRFs available in MINTbase
V2.0 have been identified with MINTmap (54) prediction
algorithm. Instead, tRFexplorer uses well-known mapping
and counting tools (see Materials and Methods 2.1) to
identify the RNA reads mapping on our custom annotated
human genome. Specifically, we used the genomic coordi-
nates obtained from tRFdb (34) for the identification of
tRF-5s and tRF-3s and the genomic coordinates published
on (8) for the identification of the experimental validated
tsRNAs. Finally, for the 5′ leader RNAs identification, we

counted the RNA reads mapped on the 20-nt upstream
regions of all human tRNA genes. We used this strategy
since tRFdb nomenclature is the most widely used for tRFs
in literature while we used the genomic coordinates present
on (8) for tsRNAs since they were identified by in vitro
experiments and not with in-silico prediction.

Moreover, one of the aims of our work was to report
only high confident tRFs and 5′ leader RNAs and in
vitro validated tsRNAs. Specifically, we reported 399
tRNA-derived ncRNAs on tRFexplorer (some of them
are expressed both on NCI-60 and TCGA datasets, while
others are specifically expressed either on NCI-60 or TCGA
datasets). On the contrary, a very large number of unique
sequences reported on MINTbase V.2.0 (28.824) were
identified through the prediction algorithm MINTmap.
We noticed that many tRFs, i-tRFs and tiRNAs reported
in MINTbase V.2.0 are expressed with 1 RPM in a single
dataset (1 out of 12.023). Specifically, 6.248 out of 28.824
unique sequences present on MINTbase V.2.0 are expressed
in only one dataset (1 out of 12.023), while 15.717 out of
28.824 unique sequences are expressed in only 10 out of
12.023 datasets. It is also well established that tRF-5s and
tRF-3s have well-defined length and they can be further



Page 10 of 13 Database, Vol. 2019, Article ID baz115

Table 4. tRNA-derived ncRNAs classes stored in tRFexplorer

and MINTbase V2.0

tRFexplorer MINTbase
V.2.0

5′ Leader RNAs x
tsRNAs x
tRF (tRF-5s and tRF-3s) x x
tiRNAs (tiRNA-5s and tiRNA-3s) x
i-tRF x

stratified in tRF-5a (14–16 nts), tRF-5b (22–24 nts), tRF-
5c (28–30 nts), tRF-3a (about 18 nts) and tRF-3b (about
22 nts) subclasses accordingly to their size (13, 15, 30, 32).
Moreover, tRF-5s and tRF-3s are produced by ribonuclease
cleavage in the D-loop and T-loop region, respectively (13,
15, 30, 32). In MINTbase V2.0, we noticed that 252 out of
2304 tRF-5s and 1439 out of 4028 tRF-3s are longer than
31 and 25 nt, respectively, while 248 out of 2304 tRF-5s
and 284 out of 4028 tRF-3s have sequences that do not end
at their cleavage site in the D-loop or T-loop, respectively,
but they overlap the anticodon region.

Indeed, the total number of tRNAs-derived ncRNAs in
MINTbase V2.0 looks quite high if we consider that in the
human genome, there are only about 400 tRNA genes and
that many 5′ and 3′ end regions of mature tRNAs are shared
across different tRNAs, and therefore, a single tRFs, with
the same sequence, can be produced by different tRNAs.
For this reason, to avoid overestimation, we decided to keep
very low the number of identified tRNA-derived ncRNAs.

Finally, we conducted a comparison between the fea-
tures of tRFexplorer vs those available in MINTbase V.2.0.
tRFexplorer implements several specific functions such as:
explore the genomic location of tRNA-derived ncRNAs
through an interactive genomic browser; perform DE anal-
ysis in all TCGA samples; and finally correlation analysis
with different TCGA (mRNAs and miRNAs expression)
and CellMiner (omics data and compounds activities) data.
Moreover, different high-quality plots are available on tRF-
explorer to better understand the results. A detailed com-
parison of the features is shown in Table 5.

Discussion

Our study aims at identifying tsRNAs, 5′ leader RNAs
and tRFs in NCI-60 and TCGA small RNA-seq datasets,
together with an intuitive web interface for data querying
and browsing. For this purpose, we implemented a custom
bioinformatics pipeline for the detection and quantification
of these ncRNAs from small RNA-Seq data. Due to TCGA’s
large sample base, we took into consideration NCI-60 in
light of its extensive use for the testing of novel compounds

and the identification of drug-response biomarkers (55–60).
We analyzed recent versions of the NCI-60 (39) and TCGA
small RNA-seq datasets to identify and establish expression
profiles for tsRNAs, 5′ leader RNAs and tRFs. In these
datasets, we were able to detect 322 expressed tRNA-
derived ncRNAs in NCI-60 (11 tRF-5s, 55 tRF-3s, 107
tsRNAs and 149 5′ leader RNAs) and 232 expressed tRNA-
derived ncRNAs in TCGA samples (53 tRF-5s, 58 tRF-3s,
63 tsRNAs and 58 5′ leader RNAs). Our reference tsRNA
and tRF annotation were obtained from (8) and tRFdb (34),
respectively. 5′ leader RNAs were obtained from the 20-nt
upstream region of tRNA genes and named by using the
tRNA identifier from which they derived.

It is noteworthy that the high expression levels of some
tsRNAs, 5′ leader RNAs and tRFs in both NCI-60 and
TCGA, and their DEs across TCGA cancer types indicate
that these molecules are not fragments derived from the
random cleavage of precursor and mature tRNAs, suggest-
ing that such molecules may be actively expressed and pro-
duced by specific ribonucleases. Indeed, if tsRNAs, 5′ leader
RNAs and tRFs were the results of a random degrada-
tion process, their ends would be equally distributed along
the lengths of tRNA genes with a comparable frequency
(34, 35). In our case, small RNA sequences mapped on
four specific regions: 5′ end (tRF-5) and 3′ end (tRF-3)
of mature tRNA, and 3′ trailer (tsRNA or tRF-1) and 5′

leader (5′ leader RNAs) regions of primary tRNA genes.
Pre-tRNA molecules undergo a maturation process inside
the nucleus, where 5′ leader and 3′ trailer sequences are
cleaved by RNAse P and RNAse Z, respectively (15). It
is established that tsRNAs are derived from the 3′ trailer
region of pre-tRNAs (9). Conversely, the identification of
small RNA sequencing reads mapping within the pre-tRNA
5′ leader genomic region represents an additional evidence
of this yet poorly investigated class of tsRNAs (24, 25, 61).
Although some authors already reported tRNA fragments
mapping between 5′ leader region and mature tRNA (36,
62), our 5′ sequences are entirely located inside the pre-
tRNA leader region. Furthermore, such sequences extend
up to the RNAse P cleavage site, without going beyond
such site. The high expression of 5′ leader RNAs and their
specific ends in correspondence of RNAse P cutting site
supports the hypothesis that these molecules could have a
biological function, although an in vitro validation is still
missing.

All identified tsRNAs, 5′ leader RNAs and tRFs have
been stored in tRFexplorer, a novel database accessible
through an easy-to-use web interface. tRFexplorer allows us
to visualize the expression profile of each tsRNAs, 5′ leader
RNAs and tRFs for all NCI-60 cell lines and TCGA tumor
types. Furthermore, it enables DE analysis for all tumor
types present in TCGA and correlation analysis with all
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Table 5. Features comparison of tRFexplorer and MINTbase V2.0

tRFexplorer MINTbase V.2.0

Datasets TCGA, NCI-60 TCGA, human datasets
Total number datasets 12.187 + 59 = 12.246 12.023
tRNA-derived ncRNAs identification methods Mapping and counting on custom annotated

human genome
Prediction based on MINTmap

tRNA-derived ncRNAs filtering expression criteria Mean Log2 TPM > 1 across all samples RPM ≥ 1 in a single sample
Unique sequences 399 28.824
tRFs sub-classification according to their size Available Not available
Normalization methods TPM, RPM RPM
Interactive genomic browser Available Not available
DE analysis Available Not available
Correlation analysis Available Not available
Plot for data visualization Bar plot, box plot, scatter plot, volcano plot,

swarm plot
Bar plot, box plot

Other data for tRNA-derived ncRNAs correlation
analysis

TCGA mRNAs and miRNAs expression,
CellMiner datasets

No other data available

omics and compounds activity data reported on CellMiner.
The interface is comprised of three main sections: ‘Browse’;
‘DE Analysis’; and ‘Correlation Analysis’. The ‘Browse’ sec-
tion is used to search tsRNAs, 5′ leader RNAs and tRFs by
location and expression. For each sncRNA, its expression
is displayed in both NCI-60 cell lines and TCGA tumor
types. Moreover, an interactive genomic viewer allows users
to search and visualize all the identified tRNA-derived
ncRNAs in the reference human genome. Through the DE
analysis panel, users can discover which tRNA-derived ncR-
NAs are dysregulated in each TCGA tumor type. By select-
ing the cancer type to analyze and one of their variables
(gender, race, vital status, sample type or classification),
together with the P-value threshold and minimum logFC,
a list of differentially expressed tRNA-derived ncRNAs
with their logFC and FDR adjusted P-value will be shown.
Volcano plots and swarm plots are also shown in order to
better elucidate their DE. Finally, through the ‘Correlation
Analysis’ panel, the user can perform correlation analyses
of all identified tRNA-derived ncRNAs in NCI-60 with the
omics and compound activities data available on CellMiner
(48) (Table 3). In addition, correlation analysis with genes,
miRNA expression and patients’ survival data of TCGA
samples are also possible. The correlation tool will yield
only the molecules that have an absolute correlation coeffi-
cient greater than 0.5. The user also has the option to select
two different correlation measures (Pearson and Spearman).

The correlation analysis aids in the investigation of
the biological function of tRNA-derived ncRNAs, as there
is currently poor evidence in such regard. For this pur-
pose, their correlation or anticorrelation with protein levels,
mRNA and miRNA expressions, could provide a first clue
regarding a potential biological pathway in which these
ncRNAs may be involved.

Moreover, tRNA-derived ncRNAs showing high correla-
tions or anticorrelations with the activity profiles (chemore-
sistance and chemosensitivity) of a specific antitumor com-
pound could be selected for further studies as drug response
biomarkers. Indeed, in a recent study, it has been shown
that some tRFs are dysregulated in cell lines of breast cancer
resistant to Trastuzumab against sensitive cell lines (63).

Finally, we compared data and features of tRFexplorer
with MINTbase V2.0 (53), a database of tRNA-derived
ncRNAs in TCGA. From the comparison, we can estab-
lish that, to avoid overestimation and artifacts within the
databases, tRFexplorer stores less tRNA-derived ncRNAs
with respect to MINTbase. On the other hand, tRFexplorer
presents a more flexible interface allowing rich functional
data analysis.

Conclusion

This study introduces a novel database called tRFexplorer
equipped with a Web App enabling the exploration of
tRNA-derived ncRNAs expression profiles (tsRNAs, 5′

leader pre-tRNAs derived small RNAs, and tRFs) on the
NCI-60 panel and TCGA samples. By exploiting DE anal-
ysis, tRFexplorer allows users to study the specific pattern
of dysregulated tRNA-derived ncRNAs of each TCGA
cancer type. Finally, a correlation analysis tool provided
by our software may be employed as an instrument to
investigate the putative biological roles of these molecules
in the absence of direct experimental validation of their
functions while allowing users to consider further in vitro
and in vivo investigations on the most promising molecules.

Availability

tRFexplorer is available at https://trfexplorer.cloud/.

https://trfexplorer.cloud/
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