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ABSTRACT: The plasma proteome has the potential to enable a holistic analysis of the health
state of an individual. However, plasma biomarker discovery is difficult due to its high dynamic
range and variability. Here, we present a novel automated analytical approach for deep plasma
profiling and applied it to a 180-sample cohort of human plasma from lung, breast, colorectal,
pancreatic, and prostate cancers. Using a controlled quantitative experiment, we demonstrate a
257% increase in protein identification and a 263% increase in significantly differentially
abundant proteins over neat plasma. In the cohort, we identified 2732 proteins. Using machine
learning, we discovered biomarker candidates such as STAT3 in colorectal cancer and
developed models that classify the diseased state. For pancreatic cancer, a separation by stage
was achieved. Importantly, biomarker candidates came predominantly from the low abundance
region, demonstrating the necessity to deeply profile because they would have been missed by
shallow profiling.

KEYWORDS: plasma proteomics, data-independent acquisition, SWATH, label-free quantification, stable isotope-based quantification,
library, single shot, high throughput, clinical proteomics, cancer, depletion

■ INTRODUCTION
Proteins control most biological processes in life. Alterations in
their expression level, localization, and proteoforms are often
correlated with disease onset and progression.1 In humans and
animals, blood flows through virtually all tissues. Therefore, it
has the potential to indicate the health state of any inner organ,
even those not accessible from the outside. Blood is readily
obtainable with minimal invasive sampling, and large biobanks
exist for retrospective analyses.2 Clinical analysis of blood is the
most widespread diagnostic procedure in medicine, and blood
biomarkers are used to diagnose diseases, categorize patients,
and support treatment decisions. While proteins (6−8%) are
by far the second major component of plasma after water (90−
92%), metabolic, lipidomic, transcriptomic, and genomic
readouts are also gaining traction as diagnostic tests in
plasma.3−6 Different omics readouts can be used in
conjunction to improve diagnostic power.7 Despite more
than 20,000 diseases reported to affect humans,8 it is only for a
small fraction of them that accurate, sensitive, and specific
diagnostic tests exist.
The limited success of blood protein biomarkers is primarily

due to analytical challenges that come with the proteomic
analysis of blood plasma. On the one hand, the large biological
variance between individuals and within individuals over time
makes the discovery of reliable biomarker signatures
difficult.9−12 Further, the steep dynamic range of human
plasma, with an estimated dynamic range of 12−13 orders of
magnitude,13 renders comprehensive proteome profiling

challenging to any analytical technique. In the lower
concentration range, thousands of proteins reside, mostly
tissue leakage proteins and signaling molecules that could serve
as biomarkers but are very challenging to measure, especially in
an unbiased manner.14,15

Mass spectrometry (MS)-based plasma analysis provides an
unbiased, quantitative, and therefore ideal technology for the
system-wide characterization of the proteome.16 Recently,
technological developments in sample preparation, chromatog-
raphy, and acquisition enabled automated, large-scale plasma
projects of hundreds of specimens that have resulted in
reproducible findings.15,17−20 These approaches share the
shallow depth of proteome coverage, reaching a maximum of
about 600 proteins identified and quantified in a sample. From
qualitative analysis, disproportionately more proteins were
found to be present in the lower abundance region of plasma
than in the higher concentration range.14 Novel MS-based
approaches have been developed to improve analytical depth
while retaining quantitative information. These include the
depletion of high-abundance proteins, the enrichment of low
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abundant proteins of interest, and prefractionation.21 Still, they
have yet to reach the throughput level needed to measure
larger cohorts of clinical samples. Automatization and
depletion, batch, and quality control have been tackeled18,22,23

but require further improvement for large-scale studies. In
summary, while current plasma proteome biomarker research
approaches mostly cover the first few hundred proteins by
concentration, rigorous experimental design and comprehen-
sive, large-scale quantitative studies will achieve generalizable
biomarker discovery.16

Screening for the most common cancer types cannot be
done in a routine and population-wide manner. To date, only a
few nonideal, validated biomarkers exist in clinical use.24 A
significant challenge is that generally, only a single analyte or
metric is measured despite the known heterogeneity of cancer.
Biomarkers that accurately enable early detection in asymptotic
subjects, reflect cancer aggressiveness at diagnosis, and
improve risk stratification are urgently needed.24 Despite the
medical need, plasma biomarker candidates for cancer are
rarely validated or transferred to the clinic. Recent examples
are as follows: Zhang et al. performed discovery proteomics in
the plasma of 10 patients with colorectal cancer, discovered 72
biomarker candidates, and then performed a successful follow-
up verification for prognostic markers with 419 patients using
an immunoassay.25,26 Enroth et al. found plasma protein
biomarker signatures for ovarian cancer27 but performed no
validation. He et al. showed that for hepatocellular carcinoma
and cholangiocarcinoma, biomarker candidates could be
identified from plasma; the validation of these candidates is
still pending.28 Zhou et al. identified biomarkers for early
gastric cancer from a small sample set, but validation is still
pending.29 For prostate cancer, a blood diagnostic test was
successfully developed based on the discovery of proteomics
and is now being used in the clinic.30 For the detection of early
ovarian cancer, the OVA1 test was developed and approved,
where the measurement of β-2 macroglobulin, apolipoprotein
1, serum transferrin, and prealbumin is combined with the
previously established marker CA125 to deliver better care.31,32

This case exemplifies that multimeasurement techniques are
expected to outperform single biomarker panels. Furthermore,
single protein biomarkers are rarely specific for a single disease,
e.g., α fetoprotein is diagnostic in liver cancer, but the
biomarker is not specific, as it is altered in other liver diseases
and ovarian and testis cancers.33 Rarely, there are highly
specific biomarkers such as β subunit HCG (β-HCG), which is
a serum marker for testicular carcinoma as β-HCG is never
detected in the circulation of healthy males.34 To make plasma
biomarker discovery more efficient and successful, the
comprehensive profiling and validation of large cohorts of
plasma proteomes need to be significantly improved with new
approaches.16 The expected outcome is new biomarkers that
will allow early cancer detection and prediction of the probable
response to therapy (in precision medicine).
We demonstrate a novel, automated analytical approach for

plasma profiling to a depth of 2732 proteins in the presented
cancer study and identifying deep into tissue leakage and
signaling molecular areas. We demonstrate the identification
and quantitative benefits of neat plasma profiling through a
controlled quantitative experiment. Further, we profiled deep
into the tissue leakage plasma samples coming from both
healthy patients and patients with one of the five most deadly
solid tumors in the United States.35 A biomarker analysis with
machine learning revealed candidates and models able to

classify healthy and diseased samples. The discovered
biomarker candidates predominantly came from low abun-
dance protein regions, clearly demonstrating the need to
measure deeply because they would have been missed by
shallow plasma profiling.

■ EXPERIMENTAL PROCEDURES

Ethics

The Cantonal Ethics Committee for Research on Human
Beings, Zürich, Switzerland, approved the study protocol to be
performed (proteomic analysis of plasma samples (2020-
02892)).

Cohort Selection and Study Design

Cohort selection and experimental design were driven by
sample availability in commercial repositories. For each cancer
type, 30 matching samples were selected and split into early
(nonmetastatic stages IA−IIC) and late (nonmetastatic stage
IIIA−C) groups. Prior to the analysis, normal individuals were
matched for age, sex, and whenever possible balanced across
ethnicities to both early and late groups for each cancer type.
Healthy samples are self-declared healthy. This resulted in
three equal control groups (n = 15) with overlapping
individuals, namely, breast cancer control, prostate cancer
control, and remaining cancer control. Matching was done
manually using the χ2 test or ANOVA with a p-value threshold
of 0.05 (R-package “tableone”).

Sample Preparation of the Pan-Cancer Cohort

One hundred and eighty human plasma samples were obtained
from Precision for Medicine and its subsidiaries (Norton
USA), Discovery Life Sciences (Huntsville), and ProteoGenex
(Los Angeles). Due to limited availability, samples were not
balanced across suppliers; collection procedures and handling
until storage at −80 °C are considered to be the same in the
case of all three providers (Supporting Information Table 1).
All samples were handled equally and thawed twice. During the
aliquoting, a small amount of each sample was pooled. This
quality control sample was subsequently used for the library
generation and to assess the quality and batch effects
throughout the sample preparation and acquisition. The
processing batches were block-randomized for disease status,
diseased state, gender, and ethnicity (only relevant for breast
cancer samples) and kept for the entire sample preparation.
Depletion was performed using the Agilent multi affinity

removal column human-14, 4.6 × 50 mm2 (Agilent
Technologies) set up on a Dionex Ultimate 3000 RS pump
(Thermo Fisher Scientific) and run according to the
manufacturer’s instructions. Briefly, the plasma was diluted
4:1 with buffer A for multiple affinity removal LC columns
(Agilent Technologies) and filtered through a 0.22 μm
hydrophilic PVDF membrane filter plate (Millipore) before
70 μL was injected onto the column. The gradient was 27.5
min long, with the collection occurring between 3.6 and 9.2
min, a flow rate of 1 mL/min during 11 and 26.5 min and
0.125 mL/min during the rest of the gradient, and buffer B for
multiple affinity removal LC columns (Agilent Technologies)
only in the time period of 13−17.5 min (100% buffer B). Well-
spaced within each processing batch, we depleted the quality
control sample three times and treated it as a separate sample
thereon (depletion control samples).
Following depletion, we digested the samples with protein

aggregation capture using a KingFisher Flex (Thermo Fisher
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Scientific).36 To assess digestion reproducibility, we mixed two
extra depletions of the quality control sample before splitting it
into digestion triplicate (digestion control samples). The
acidified peptide mixtures were loaded for clean-up into
MacroSpin C18 96-well plates (The Nest Group), desalted,
and eluted with 50% acetonitrile. Samples were dried in a
vacuum centrifuge and solubilized in 0.1% formic acid and 1%
acetonitrile with Biognosys’s iRT and PQ500 kits (Biognosys)
spiked following the manufacturer’s instruction. Prior to DIA
mass spectrometric analyses, the sample’s peptide concen-
trations were determined using a UV/vis spectrometer at 280
nm/430 nm (SPECTROstar Nano, BMG Labtech) and
centrifuged at 14,000g at 4 °C for 30 min.

Sample Preparation of the Controlled Quantitative
Experiment

The controlled quantitative experiment was generated from 20
healthy human EDTA K3 plasma samples obtained from Sera
Laboratories International Ltd. (West Sussex, U.K.). Saccha-
romyces cerevisiae (S. cerevisiae) was lysed in 100 mM HEPES
pH 7.4, 150 mM KCl, 1 mM MgCl2, by shear force passing
through a gauge 12 syringe 15 times on ice before filtering (0.2
μm). Escherichia coli (E. coli) was lysed with a cell cracker
before filtering (0.2 μm). After protein concentration
determination using a UV/vis spectrometer at 280 nm
(SPECTROstar Nano, BMG Labtech), each sample was
spiked with fixed ratios of E. coli and S. cerevisiae leading to
a synthetic 1:2- and 4:3-fold change, respectively. To 20 μL of
plasma (∼1200 μg proteins), 40 or 30 μg of S. cerevisiae and 12
or 24 μg of E. coli lysate were added for conditions A and B,
respectively. The resulting 40 samples were diluted 4:1 with
buffer A for multiple affinity removal LC columns (Agilent
Technologies), filtered through a 0.22 μm hydrophilic PVDF
membrane filter plate (Millipore). Seventy microliters was used
for depletion as described above followed by filter-aided
sample preparation (FASP)37 and 30 μL for the neat plasma
comparison. The diluted neat plasma sample was precipitated
by adding four excesses of cold acetone (v/v) and overnight
incubation at −20 °C. The pellet was subsequently washed
twice with cold 80% acetone in water (v/v). After air-drying
the pellet, the proteins were resuspended in 50 μL
denaturation buffer (8 M urea, 20 mM TCEP, 40 mM CAA,
0.1 M ABC), sonicated for 5 min (Bioruptor Plus, Diagenode,
5 cycles high, 30 s on, 30 s off), and incubated at 37 °C for 60
min. Upon dilution with 0.1 M ABC to a final urea
concentration of 1.4 M, the samples were digested overnight
with a 2 μg sequencing-grade trypsin (Promega) and trypsin
inactivated by adding TFA to a final concentration of 1% v/v.
Peptide clean-up was carried out as described above.

Library Generation

High pH reverse-phase (HPRP) fractionation was performed
using a Dionex UltiMate 3,000 RS pump (Thermo Fisher
Scientific) on an Acquity UPLC CSH C18 1.7 μm, 2.1 × 150
mm2 column (Waters) at 60 °C with a 0.3 mL/min flow rate.
Prior to loading, the pH of 300 μg of pooled depleted samples
was adjusted to pH 10 by adding ammonium hydroxide. The
used gradient was 1−40% solvent B in 30 min; solvents were
A: 20 mM ammonium formate in water, B: acetonitrile.
Fractions were taken every 30 s and sequentially pooled to 20
fraction pools. The fraction pools were then dried down and
resuspended in 0.1% formic acid and 1% acetonitrile with
Biognosys’s iRT kits spiked according to the manufacturer’s
instruction. Before data-dependent acquisition (DDA) mass

spectrometric analyses, peptide concentrations were deter-
mined, and the samples were centrifuged as described above.

Mass Spectrometric Acquisition

For data-independent acquisition (DIA) LC-MS measure-
ments for the controlled quantitative experiment, 1 μg of
peptides per sample was injected onto an in-house-packed
reverse-phase column (PicoFrit emitter) with a 75 μm inner
diameter, 60 cm length, and 10 μm tip from New Objective,
packed with the Reprosil Saphir C18 1.5 μm phase (Dr.
Maisch, Ammerbuch, Germany) on a Thermo Fisher Scientific
EASY-nLC 1,200 nanoliquid chromatography system con-
nected to a Thermo Fisher Scientific Orbitrap Exploris 480
mass spectrometer equipped with a Nanospray Flex ion source.
The DIA method was adopted from Bruderer et al.38 and
consisted of one full-range MS1 scan and 29 DIA segments.
For DDA and DIA LC-FAIMS-MS/MS measurements, 4 μg

of each sample was separated using a self-packed analytical
PicoFrit column (75 μm × 50 cm length) (New Objective,
Woburn, MA) packed with ReproSil Saphir C18 1.5 μm (Dr.
Maisch GmbH, Ammerbuch, Germany) with a 2 h segmented
gradient using an EASY-nLC 1200 (Thermo Fisher Scientific).
LC solvents were A: water with 0.1% FA; B: 20% water in
acetonitrile with 0.1% FA. For the 2 h gradient, a nonlinear LC
gradient was 1−59% solvent B in 120 min followed by 59−
90% B in 10 s, 90% B for 8 min, 90 to 1% B in 10 s and 1% B
for 5 min at 60 °C, and a flow rate of 250 nL/min. The
samples were acquired on an Orbitrap Exploris 480 mass
spectrometer (Thermo Fisher Scientific) equipped with a
FAIMS Pro device (Thermo Fisher Scientific) using methods
based on ref 39. If not specified differently, the FAIMS-DIA
method contained three FAIMS CV (−35, −55, and −75 V)
parts, each with a survey scan of 120,000 resolution with 20 ms
max IT and an AGC of 3 × 106 and 35 DIA segments of
15,000 resolution with IT set to auto and AGC set to custom
1000%. The mass range was set to 350−1650m/z, the default
charge state was set to 3, the loop count was set to 1, and the
normalized collision energy was set to 30. For the acquisition
of the fractionated sample for the library, a DDA method was
applied. The DDA method consisted of three FAIMS CVs
(−35, −55, and −75 V): each contained a DDA experiment
with 60,000 resolution of MS1, 15,000 resolution of MS2, with
a fixed cycle time (1.3 s), IT set to AUTO, and AGC set to
custom 500%.40

Mass Spectrometric Data Analysis

Database Search for Library Generation. DIA and
DDA mass spectrometric data were analyzed using software
SpectroMine (version 3.0.2101115.47784, Biognosys) using
the default settings, including a 1% false discovery rate control
at PSM, peptide, and protein levels, allowing for two missed
cleavages and variable modifications (N-term acetylation and
methionine oxidation). The human UniProt.fasta database
(Homo sapiens, 2020-07-01, 20,368 entries) was used, and for
the library generation, the default settings were used except for
the use of a top 300 precursors per protein filter.

Quantitative Analysis of Data-Independent Acquis-
ition. Raw mass spectrometric data were first converted using
the HTRMS Converter (version 14.3.200701.47784, Bio-
gnosys) and then analyzed using software Spectronaut (version
15.0.210108, Biognosys) with the default settings, but Q-value
sparse filtering was enabled with a global imputing strategy and
a hybrid library comprising all DIA and DDA runs conducted
in this study.41 The imputing strategy defines how to estimate
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the missing values (identifications not fulfilling the FDR
threshold), and with the global imputing strategy, the missing
values are imputed based on random sampling from a
distribution of low abundant signals taken across the entire
experiment (lowest 10th percentile ±1 standard deviation).42

Default settings include peptide and protein level false
discovery rate control at 1% and cross-run normalization
using global normalization on the median. Including a high
number of quality control samples (depletion, digestion, and
injection controls) enabled the investigation of batch effects
and quantification of the introduced variability at each step. No
batch effect was identified by either principal component
analysis (PCA, “stats” R-package) or hierarchical clustering.

CQE DIA data were analyzed using the directDIA approach
of Spectronaut software (version 15.0.210108, Biognosys)
using the default settings, including a 1% false discovery rate
control at PSM, peptide, and protein levels, allowing for two
missed cleavages and variable modifications (N-term acetyla-
tion and methionine oxidation). The directDIA approach
within Spectronaut is an implementation with minor improve-
ments of the published DIA Umpire approach.43 The
combined human, E. coli, and S. cerevisiae.fasta databases
with the removal of the overlapping tryptic sequences (Homo
sapiens 2020-08-31, 96,996 entries; Saccharomyces cerevisiae
(strain ATCC 204508/S288c), 6078 entries; Escherichia coli
(strain K12), 4857 entries; Combined, 96,637 entries) were

Figure 1. Deep plasma profiling: automated analytical approach and benchmarking. (a) Sketch of the major steps of the analytical approach
developed for deep human plasma profiling for biomarker discovery, including the depletion of the 14 most abundant proteins and the approximate
time requirements. (b) Schema of the controlled quantitative experiment based on human plasma spiked with known amounts of Saccharomyces
cerevisiae (S. cerevisiae) (1:1.3) and Escherichia coli (E. coli). (1:.5). The controlled mixtures were either directly digested or processed using the
process described in panel (a). (c) Plot showing the measured distributions of the fold changes of the controlled quantitative experiment divided by
species. The dashed lines represent the theoretical fold change. (d) Comparison of the number of protein groups identified at different gradient
lengths for a depleted human plasma pool by either directDIA (blue) or with a sample-specific library (red).
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used, and for the library generation, the default settings were
used except for the Q-value sparse filtering enabled with a
global imputing strategy and cross-run normalization using
global normalization on the median based solely on the human
identifications.
When we use proteins, we refer to protein groups as

determined by the ID picker algorithm44 and implemented in
Spectronaut.
Data Analysis and Biomarker Selection. Initial

univariate candidate filtering was performed using the pairwise
Wilcoxon test applied per protein across disease status
(healthy, early, and late stages) with the Holmes−Bonferroni
correction (within-group). Proteins with a p-value below or
equal to 0.05 from the randomly selected 80% of observations
were used for further optimization using sparse partial least-
squares discriminant analysis (sPLSDA).45 A leave-one-out
algorithm was used for optimal component and protein
selection. sPLSDA training and testing were performed using
the R-package “mixOmics”.46 The remaining 20% of
observations were used for validation. The accuracy of
prediction for all three groups, healthy, early, late stages, and
healthy against early and late stages together, was calculated as
the ratio of the true positive and negative sum of all
observations (R-package “caret”). Unsupervised hierarchical
analysis was performed with Manhattan distance and Ward’s
clustering on centered and normalized data (xij-x̅j/sj, i-th
observation with j-th protein) using R-package “Complex-
Heatmap”. PCA analysis was performed using R-package
“stats”. Correlation analysis was performed using the Pearson
correlation with R-packages “stats” and “corrplot”. Correlation
significance was tested using a two-sided t-test at 0.05 α. All
analyses were performed using log2-transformed data. Gene
ontology enrichment was performed using GOrilla,47 and the
identifications of this study were selected as the background.
All basic calculations and data transformations were performed
in R with R-packages: “dplyr” and “ggplot2”.

■ RESULTS

Optimization and Validation of the Analytical Approach

While methods to analyze the plasma proteome in-depth exist,
they are usually either targeted and therefore biased, as for the
case of antibody- or aptamer-based technologies, or are based
on the principle of fractionation and are therefore difficult to
scale. We aimed to develop an analytical method that provided
deep coverage and quantitative accuracy while minimizing
sample handling, bias, and batch effects. For this scope, we
developed and optimized an automated plasma depletion
pipeline composed of three major steps: sequential depletion,
parallel digestion, and LC-MS acquisition (Figure 1A).
First, we automated the depletion of the 14 most abundant

proteins using a sequential approach supporting a 96-well
format.48 Briefly, after randomization and filtration of the
samples into a 96-well plate, an automated chromatographic
system sequentially and automatically processed the plate,
thereby depleting the 14 most abundant human proteins in
plasma via the use of specific antibodies.
To quantify the analytical gain of the approach and to assess

whether depletion maintains quantitative precision and
accuracy, we performed a controlled quantitative experiment
(CQE). The CQE sample set was generated from 20 healthy
human plasma samples spiked with either 1:400 E. coli and
1:90 S. cerevisiae for condition A or 1:200 E. coli and 1:120 S.

cerevisiae for condition B (Figure 1B). After processing the 40
samples with or without the automated depletion pipeline, they
were analyzed on a mass spectrometer using data-independent
analysis (DIA). Since the major challenge linked to
quantification in plasma is the large dynamic range, removing
the 14 most abundant proteins should lead to an increase in
the number of proteins identified compared to the neat plasma.
Indeed, while the processing of the neat plasma samples led to
an average identification of 572 proteins (3920 peptides)
across all samples, depletion significantly increased the
coverage by 257% to 1471 proteins (10,230 peptides) (n =
40, p-value = 1e − 98; Supporting Information Figure 1A).
Importantly, depletion retained the quantitative accuracy close
to the expected ratios between conditions B and A of 0.415 for
E. coli and −1 for S. cerevisiae: E. coli median ratios −1.20 and
−1.18 and S. cerevisiae 0.38 and 0.32 for the neat and depleted
sets, respectively (Figure 1C). We observed a reduction in the
intensity of the depleted proteins along with the closely related
proteins (e.g., other immunoglobulins or apolipoproteins)
while observing an overall increase in intensity in the rest of
the plasma proteome (Supporting Information Figure 1B).
Furthermore, intensities of human proteins are correlated
between the two data sets (Pearson correlation 0.58, n = 247),
and if only nondepleted proteins are considered, this
correlation becomes much stronger (0.85, n = 198). Finally,
we performed an unpaired t-test between conditions B and A
and could identify 171 and 621 candidates (FDR, q-value ≥
0.01) for the neat and depleted sets, respectively (Supporting
Information Figure 1C). Given the experiment’s controlled
nature, we could identify the true hits as those proteins
mapping to either E. coli or S. cerevisiae and showing the
expected directionality. Overall, the depletion led to a 362%
increase in true hits, 170 and 615 for neat and depleted (actual
FDR < 1% for both), respectively. In summary, the automated
depletion more than tripled the number of proteins identified
and the number of true hits while maintaining quantitative
accuracy and reducing the manual workload to only the
filtering of the samples (about half a day per 96 samples;
Figure 1A).
In the second step following depletion, the sample plate was

prepared for digestion on an automated platform using a
protein aggregation capture approach.36 Subsequently, the
samples were cleaned using C18 plates, and peptide
concentration was measured. In case a library was generated,
a fraction of all samples can be pooled and an ultra-high-
pressure liquid chromatography-controlled high pH reverse-
phase (HPRP) fractionation was performed.38

The third step comprises the LC-MS measurement of the
samples. Even after depletion of the most abundant proteins,
the major challenge hindering quantification is the large
dynamic range in plasma. Hence, we developed and optimized
the LC-MS acquisition for deep proteome coverage using
FAIMS-based ion mobility on the orbitrap platform combined
with high-performance chromatography. We developed
FAIMS-DIA methods that maximize the protein and peptide
identification by comparing values and counts of FAIMS
compensation voltages with different scan resolutions. This
resulted in a set of optimized methods for gradients from 1 to 4
h. Benchmarking with the depleted plasma resulted in 1300
protein identifications in 1 h gradients to 2103 protein
identifications in 4 h (Figure 1D). For reference, in the human
cell line HeLa, 10,026 proteins were identified in 4 h
(Supporting Information Figure 1D).
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Figure 2. Deep plasma discovery proteomics of five solid cancer types. (a) Description of cohort comprising five solid cancers: breast (infiltrating
ductal carcinoma), colon (adenocarcinoma), pancreas (adenocarcinoma), prostate (adenocarcinoma), and lung (non-small-cell lung cancer,
squamous cell) cancers. Fifteen subjects for early and late stages were selected for each cancer type, along with 15 matching healthy individuals (a
total of 30, given the need to balance ethnicity and sex for prostate and breast cancers). (b) Z-score of all quantified proteins (n = 2732) across all
measured samples (n = 180). Stage calling is overlaid. Both the proteins and the samples were hierarchically clustered. Selected, significantly
enriched gene ontology pathways are reported on the right with the p-value in parentheses. (c) The protein rank vs protein average intensity (n =
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Altogether, we demonstrated that the presented automated
plasma depletion pipeline has the potential to enable the
unbiased, reproducible, and precise quantification of more than
2000 proteins on average per sample across very large cohorts.

Plasma Proteome Depth Achieved

To test our pipeline, we set out to analyze a diverse cohort of
human plasma samples coming from the five most deadly solid
cancer types in the United States:35 pancreatic, colorectal,
breast, prostate, and non-small-cell lung cancers. For each
cancer type, 15 early-stage (I−IIC) and 15 late-stage (IIIA−
IIIC) nonmetastatic patients, as well as 15 matching normal
control samples, were selected based on the available baseline
data (including gender, age, and where applicable smoking
status; Figure 2A and Supporting Information Table 2).
Altogether, we processed 180 samples (and an additional 24
quality control samples) over the course of 1 week and
approximately a month of measurement time. With this
scalable approach, we could identify and quantify 2732
proteins (2463 proteins with two or more peptide sequences
and on average with 9.2 peptides per protein) across 226
measurements (180 samples and 46 quality control samples,
about 900 proteins/h measurement; Figure 2B), of which 1804
are found in at least 50% of the runs (Supporting Information
Figure 2A). On average, we identified 1806 proteins per run.
Importantly, missing values were stemming mostly from
biological variation as in injection triplicates 88.7% of the
2209 protein groups detected are complete observations.
Additionally, 77% of the 2402 protein groups from 15 injection
replicates were complete, representing only 6% (119) less
protein groups with full profiles than in injection triplicates.
Across cancers (and the healthy cohort), the identifications
varied between 2524 in prostate cancer and 2682 in lung
cancer, showing that only a minimal part (<10%) of the
identification is disease-specific and around 1000 protein
groups are consistently quantified despite variable biology
(Supporting Information Figure 2B). Furthermore, it can be
assumed that peptides and proteins that do not fulfill the FDR
criteria are below the limit of detection since DIA measures all
ions and does not have the stochastic nature of DDA. With the
identified proteins, we could cover the 8-order-of-magnitude
dynamic range reported for plasma in the Human Protein Atlas
(3222 proteins detected in human plasma by mass
spectrometry, of which we could quantify 70%; Supporting
Information Figure 2C). Within this range, we extensively
covered the tissue leakage proteome, interleukins, and signaling
proteins such as EGF, KLK3 (PSA), AKT1, CD86, MET,
ERBB2, and CD33 (Figure 2C). As expected, among the 500
highest intensity proteins, meaning that proteins would likely
be identified if no depletion would have been applied, 196
(39%) are classified as secreted proteins. On the lower end, we
identified tissue-specific proteins coming from the diseased
organs (n = 42, 81% of which are not part of the 500 most
abundant proteins), cytokines (n = 29, 85%), and nucleoplasm

(n = 637, 90%) proteins exemplifying different functional
plasma concentration ranges (Figure 2C). We identified 190
targets for FDA-approved drugs, of which 125 (66%) fall in the
lower intensity range.49 The different biological role of low and
high abundant plasma proteins shows that we could recover
the known biology of the plasma proteome.
Furthermore, based on quality control samples, we could

characterize variance introduced on each level: injection
(median coefficient of variation (CV = 16%), digestion (CV
= 19%), depletion (CV = 25%), and column (CV = 26%)), all
of which are much lower than the healthy interindividual
variability (CV = 56%; Figure 2D and Supporting Information
Figure 2D). As a further quality control, we focused on known
protein levels’ interpatient variability (measured by CV;
Supporting Information Figure 2E). On one hand, coagulation
and complement cascade proteins (KEGG complement and
coagulation cascades) were significantly enriched among the
proteins with the least interpatient variability (median CV =
32% and p-value = 2.8e − 12), such as complement factor I
(CF1, CV = 23%) and complement component C6 (CV =
27%), demonstrating tight regulation.18 On the other hand,
keratins (likely contaminants, Go biological process keratiniza-
tion) were significantly enriched among the proteins with the
most interpatient variability (CV = 339% and p-value = 4.46e
− 8), with HLA molecules (CV = 90%) also showing high
variability across patients.50 Additionally, lipoprotein A (LPA)
showcases a large interpatient variability (CV = 113%), likely
due to the known genetic variants affecting its secretion into
plasma.51,52 Overall, the quantitative data set generated
recapitulates known biological features of intrapatient hetero-
geneity while providing a deep unbiased view of the plasma
proteome.

Considerable Heterogeneity across Cancer Types

The cohort was designed to enable five independent within-
cancer analyses, each comprising a healthy-, early-, and late-
stage group (each n = 15; Supporting Information Table 2 and
Figure 2A). Overall, we included 30 control samples, but only
a subset of 15 per cancer were matched (see methods). Hence,
a combined analysis of all samples together was not the
primary goal of this study. Aware of these limitations, we
explored the entire data set for markers that would agnostically
predict the cancer stage. The analysis pipeline applied to the
whole data set, and the cancer-specific analyses were the same
and aimed at providing actionable insights about specific
disease development. Given a large amount of data (2732
proteins combined), we performed a two-step approach
(Figure 3A). First, we filtered for differentially abundant
proteins between healthy-, early- and late-stage cancers using
univariate analysis. In the case of the pan-cancer model, we
found 468 proteins dysregulated (Figure 3B, Supporting
Information Figure 3A, and Supporting Information Table
3). Second, using the selected proteins, we trained a model
based on sparse partial least-squares discriminant analysis

Figure 2. continued

180). Proteins were categorized according to Human Protein Atlas, and the average rank was calculated (dotted, vertical lines). The green box
depicts the proteome region that is typically below the sensitivity of the neat plasma profiling by mass spectrometry. (d) The coefficient of variation
(CV) of the quality control measurements across the processing steps was plotted. The LC-MS variance was controlled by reinjection of the same
digested sample (injection). Digestion and depletion were done repeatedly of the same sample (digest, depletion) and the batch stemming from
sample preparation 96-well plates (batch). Thick lines indicate medians, boxes indicate 25 and 75% quartiles, and whiskers extend between the
median and ±(1.58 × interquartile range).
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Figure 3. Machine learning-based candidate biomarker discovery. (a) Schematic detailing the steps of the postprocessing, including univariate
testing for filtering, machine learning (sPLSDA) on 80% of the data, and classification performance accuracy on the 20% hold-out validation data.
(b) Overview of the number of biomarker candidates selected by univariate analysis (gray) and machine learning (blue) for healthy, early, and late
stages across all cancers and individual cancers. (c) Average protein intensity plotted vs protein abundance rank. The machine learning-selected
biomarker candidates for the pan-cancer model are colored blue (the average is plotted as a blue line), and important contributors are highlighted.
The green box depicts the proteome region that is typically below the sensitivity of neat plasma profiling by mass spectrometry. (d) Z-score of all

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.2c00122
J. Proteome Res. 2022, 21, 1718−1735

1725

https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00122?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00122?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00122?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.2c00122?fig=fig3&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00122?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(sPLSDA) on 80% of the data set. This modeling step further
reduced the number of proteins to 94 (Figure 3B). The model
partially differentiated healthy from disease but not late to early
stage (Supporting Information Figure 3B and Supporting
Information Table 4). Interestingly, the majority of the
differentiating proteins would have been below the detection
level in a neat plasma preparation (65%; Figure 3C).
Furthermore, the unsupervised clustering of the differentiating
proteins generated enriched patterns (Figure 3D). For
example, proteins enriched for immunoglobulin production
and complement activation tend to be higher in healthy
samples (Figure 3E). A subset of cancer samples have a strong
upregulation of proteins linked to metabolic processes and
cellular oxidant detoxification (Figure 3D,E). Immunoglobulin
kappa variable 6−21 (KV621) was among the proteins higher
in healthy samples, was the third most important discriminant

protein in the model (0.56 importance), and showed a more
pronounced bimodal distribution in healthy individuals and a
decrease in diseased individuals (Figure 3F and Supporting
Information Figure 3C). In addition, the model identified the
known inflammation marker complement C5 (CO5, impor-
tance 153) increased in the early and late stages and spondin-1
(SPON1, importance 0.58) increased in the late stage (Figure
3F and Supporting Information Figure 3C), as the first and
second most important contributors, respectively. Finally, the
predictive power of the model was validated using the
remaining 20% of the samples. The predictive power was
low at 55.6% (Supporting Information Figure 3D), likely due
to the cohort imbalance, the sample heterogeneity, and the
small sample set, as each cancer type is known to have a
particular protein signature.54 Nonetheless, unsupervised
clustering using the final protein panel (enrichment p-value

Figure 3. continued

machine learning-selected candidate biomarkers for the pan-cancer model (n = 94) across all measured samples (n = 180). Stage calling is overlaid.
Both the proteins and the samples were hierarchically clustered. Selected, significantly enriched gene ontology pathways are reported on the right
with the p-value in parentheses. Proteins highlighted in blue and gray are reported in panels (e) and (f), respectively. (e) Boxplot visualization of
the average z-transformed protein intensity for all proteins (n = 288) in the cluster highlighted in blue in panel (d) divided by stage (n = 180).
Thick lines indicate medians, boxes indicate 25 and 75% quartiles, and whiskers extend between the median and ±(1.58 × interquartile range). (f)
Boxplot visualization (as in panel (e)) of the log-transformed protein quantities of the three most differentiating proteins based on the machine
learning model (SPON1, KV621, and CO5). Each data point represents a sample (n = 180).

Figure 4. Classification accuracy of the five cancer types. (a) Overview of the data analysis per cancer and combined (pan-cancer) as a normalized
score. Percentage reduction upon univariate filtering and sPLSDA on 80% of the data set along with percentage accuracy as measured on the 20%
hold-out samples as a three-way (healthy-, early-, and late-stage) and two-way (cancer and healthy) classification and p-value of enrichment based
on the heatmap clustering (Manhattan distance, Ward clustering). (b) Z-score of the seven candidate proteins consistently selected across all
cancers (by univariate analysis, n = 180). Stage calling is overlaid. Both the proteins and the samples were hierarchically clustered. (c) Boxplot
visualization of log-transformed GTR1 quantities across the stage and cancer type. The healthy samples were matched to the respective cancer
samples. Thick lines indicate medians, boxes indicate 25 and 75% quartiles, whiskers extend between the median and ±(1.58 × interquartile range),
and each data point represents a sample (n = 180). The dashed blue line connects the median values across stages.
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= 1.4e − 9) allowed for a more efficient separation of samples
between healthy and diseased states compared to the entire
proteome (p-value = 0.09; Figures 2B and 3D). Altogether, the
global data analysis underlined the importance and necessity of
precision medicine and a much larger sample set would be
needed to find a potential “one-fits-all” solution.

Overall Changes within and across Cancer Types

Next, we applied the same analysis strategy using the matched
healthy controls to each of the five solid tumor types. In the
first step, we identified on average 325 significantly altered
proteins between healthy, late, and early stages (Figures 3B
and 4A and Supporting Information Table 3). With 436

significantly altered proteins (83% reduction in features),
prostate cancer had the highest number of differentially
abundant proteins, while breast cancer had the fewest with
229 (92% reduction). Interestingly, only a few proteins were
shared among cancers (Supporting Information Figure 4A).
Pancreatic and prostate had the most with 190 overlapping
proteins, while breast and pancreas had the least at 37
(Supporting Information Figure 4A). Seven candidate proteins
were consistently selected as differentially abundant across all
cancers: the complement activation protein C4b-binding
protein β chain (C4BPB), the immunoglobulin component
immunoglobulin heavy variable 4-4 (HV404), the T-cell
apoptosis inducer galectin-1 (LEG1), the degrader of the

Figure 5. Colorectal cancer biomarker candidates predict diseased status. (a) Z-score of all machine learning-selected candidate biomarkers for the
colorectal cancer model (n = 90) across the matched colorectal sample set (n = 45). Stage calling is overlaid. Both the proteins and the samples
were hierarchically clustered. Selected, significantly enriched gene ontology pathways are reported on the right with the p-value in parentheses.
Proteins highlighted in gray are reported in panel (b). (b) Boxplot visualization of log-transformed CD47, STAT3, and TAGL quantities divided by
the stage for the colorectal cancer set. Thick lines indicate medians, boxes indicate 25 and 75% quartiles, whiskers extend between the median and
±(1.58 × interquartile range), and each data point represents a sample (n = 45). (c) Overview of the classification accuracy of the machine learning
models for the colorectal cancer validation set (n = 9). Correct classifications are represented in the highlighted boxes.
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inflammation-promoting bradykinin peptide Xaa-Pro amino-
peptidase 1 (XPP1), the solute carrier family 2 facilitated
glucose transporter member 1 (GTR1), the glycan metabolism
β-mannosidase enzyme (MANBA), and the suggested growth
inducer of epithelial tumors tenascin-X (TENX; Figure 4B and
Supporting Information Figure 4A,B). These candidates have
rather decreasing (HV404, XPP1, MANBA, TENX) or
increasing (LEG1, C4BPB) trends in a cancer agnostic
manner, with the exception of GTR1, which strongly increases
in the late-stage breast cancer while decreasing in the other
types (Figure 4C). Interestingly, this small set of proteins
separated healthy- from the cancer-stage samples quite well (p-

value = 1.9e − 8; Figure 4B). Fitting an sPLSDA model with
80% of the data overall decreased the number of candidates to
less than 5% of the total measured proteins. It led to an average
of 129 candidates, making biological interpretation and follow-
up more feasible (Figures 3B and 4A and Supporting
Information Table 4). The relative decrease in the input data
was highly cancer-dependent, from an almost 76% reduction in
pancreatic cancer to only a 15% reduction in lung cancer. The
number of overlapping proteins across models was minimal,
likely due to the reductionist approach of sPLSDA and cancer-
type-specific mechanisms, with no proteins being selected for
all models (Supporting Information Figure 4C). Still, TAGL

Figure 6. Pancreatic cancer biomarker candidates predict diseased stage. (a) Z-score of all machine learning-selected candidate biomarkers for the
pancreatic cancer model (n = 106) across the matched pancreatic cancer sample set (n = 45). Stage calling is overlaid. Both the proteins and the
samples were hierarchically clustered. Selected, significantly enriched gene ontology pathways are reported on the right with the p-value in
parentheses. Proteins highlighted in gray are reported in panel (c) and the Supporting Information Figure 6. (b) Representation of the first two
dimensions from the PCA analysis based on candidates identified in the sPLSDA model for pancreatic cancer. Small points represent samples, and
large points represent the average across the stage. While the first dimension separates healthy from diseased samples and explains 18% of the
variance in the data, the second dimension separates early- and late-stage samples and represents 13% of the variability. The corresponding ellipses
represent sample concentration around the mean. (c) Boxplot visualization of log-transformed CD9, DIAC, and TNXB quantities divided by the
stage for the pancreatic cancer set. Thick lines indicate medians, boxes indicate 25 and 75% quartiles, whiskers extend between the median and ±
(1.58 × interquartile range), and each data point represents a sample (n = 45). (d) Overview of the classification accuracy of the machine learning
models for the pancreatic cancer validation set (n = 9). Correct classifications are represented in the highlighted boxes.
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and MANBA were selected in all but breast cancer models, and
GTR1 and LEG10 in all but the pan-cancer and breast cancer
models (Figure 4C and Supporting Information Figure 4B).
In summary, the model classification performance measured

on the 20% validation set ranged between 33.3% in lung and
prostate cancers and 77.8% in colorectal cancer when all three
groups were considered and between 86.1% for the pan-cancer
model and 100% for lung and colorectal cancers when healthy
and overall disease status were considered (Figure 4A and
Supporting Information Table 2). While for the early/late-
stage differentiation two of the six models were close to
random performance, the disease status was easier to predict,
especially if the cancer type is known, as the pan-cancer model
performed the worst with an 86% accuracy. Interestingly, high
model performance was not always associated with high
separation efficiency using PCA or distance analysis and vice
versa (Figure 4A). This is especially apparent in the case of
pancreatic and colorectal cancers. While colorectal performs
the best on the validation set, especially in the differentiation of
healthy/disease, pancreatic cancer leads to the best separation
by hierarchical clustering on all three groups (p-value = 3.1e −
16). In a nutshell, in contrast to the “one-fits-all” approach, the
cancer-specific models performed better. In some cases, the
classification accuracy of the derived models was good,
demonstrating the benefit of deep profiling of the plasma
proteome.

Diseased State Separation in Colorectal Cancer

In colorectal cancer (CRC), we identified 307 proteins
significantly altered between healthy, early, and late stages
(Supporting Information Figure 5A). The sPLSDA model
further reduced these candidate proteins to 90, and both
hierarchical clustering and PCA analysis led to the efficient
separation of healthy subjects from patients regardless of
tumor staging (p-value = 2.1e − 8; Figure 5A and Supporting
Information Figure 5B). Multiple biological GO enrichments
in the candidates could be dissected, for example, response to
leptin and regulation of proteolysis increased in cancer
(including STAT3 and transgelin (TAGL)). In contrast, the
negative regulation of cell−cell adhesion, leukocyte homeo-
stasis, and response to hydrogen peroxide decreased (including
CD47; Figure 5A,B). TAGL (importance = 1.00), STAT3
(importance = 0.65), and CD47 (importance = 0.57) were the
three most predictive proteins from the sPLSDA model and
showed interesting patterns (Figure 5B and Supporting
Information Figure 5C). While CD47 and STAT3 showed
strong heterogeneity in late-stage colorectal cancer, TAGL was
highly expressed in the early- and late-stage colorectal cancers
(Figure 5B). The selected 90 proteins were distributed across
the entire intensity range of measured proteins, with more than
80% of the selected proteins (including the three most
important) being beyond the 500 protein mark representing
the usual range of proteins detected in neat plasma
(Supporting Information Figure 5D). Furthermore, at 78%,
the model had the best overall classification accuracy among all
tested malignancies on the validation set (Figure 5C). As no
misclassification for healthy subjects was observed, the panel of
identified candidate proteins could be helpful for early CRC
diagnosis. In summary, despite the small sample set, deep
profiling of the human plasma enabled the partial classification
of diseased patients based on a panel of 90 proteins that span a
large dynamic range while providing an unbiased glimpse into
the biological processes at the base of colorectal cancer.

Stage Separation in Pancreatic Cancer

In the pancreatic cancer set, 436 proteins were significantly
altered between healthy, early, and late stages (Supporting
Information Figure 6A). The sPLSDA modeling selected 106
proteins, which efficiently separated the three classes in both
hierarchical clustering and PCA analyses (p-value = 3.1e − 16;
Figure 6A,B). The separation was driven primarily by CD9
(importance = 0.37), TENX (importance = 0.32), and di-N-
acetylchitobiase (DIAC, importance = 0.28), with both TENX
and DIAC showing a downregulation with disease progression
and CD9 showing a stronger upregulation in early- than late-
stage pancreatic cancer (Figure 6C and Supporting Informa-
tion Figure 6B). CD9 levels correlated most strongly with
endocytosis-related protein dynamin-1 (DYN1), heat shock
protein β-1 (HSPB1), platelet glycoprotein 4 (CD36), and a
profibrotic matricellular protein CCN family member 2
(CCN2). The unsupervised clustering of the candidate
proteins resulted in interesting patterns (Figure 6A). In the
early-stage pancreatic cancer, proteins involved in the
regulation of peptide secretion, cell communication, and
chemokine production are overall downregulated including
LEG10, which is essential for the suppressive function of
CD25 positive regulatory T-cells55,56 (Supporting Information
Figure 6C), while proteins involved in the negative regulation
of apoptotic process and receptor internalization (including
proto-oncogene tyrosine-protein kinase Src (SRC) and CD9;
Figure 6C and Supporting Information Figure 6C) are
upregulated. In late-stage pancreatic cancer, cellular oxidant
detoxification and oxygen transport, including hemoglobin
subunit γ-1 (HBG1), are upregulated (Supporting Information
Figure 6C). Of the 125 biomarker candidates selected, 65%
were in the low abundance range (Supporting Information
Figure 6D). In the validation set, the model had an accuracy of
66.7%, with two out of nine observations incorrectly assigned
to the healthy group instead of early-stage cancer (Figure 6D).
On the whole, deep profiling of human plasma enabled the
clustering of diseased patients based on the disease stage and
feature reduction makes biological patterns related to disease
progression emerge.

■ DISCUSSION

We have developed an automated, robust, and parallelizable
workflow for deep, large-scale plasma proteome profiling by
depletion and sample preparation and by generating deep
coverage ion mobility DIA methods. First, we demonstrated
substantial improvements upon depletion for identification and
quantification using a controlled quantitative plasma experi-
ment. Furthermore, through multistage quality control, we
assessed the variance introduced at each step of processing. In
summary, the novel plasma discovery workflow enables the
deep profiling of 10 samples per day per analytical platform to
a depth of approximately 2700 proteins per study for 2 h
gradients, reaching deep into tissue leakage and signaling
molecules while maintaining quantitative accuracy. To evaluate
the potential of deeper proteome coverage of the analytical
pipeline, we measured a subset of the cancer plasma study with
3.5 h gradient FAIMS-DIA acquisitions. This resulted in a
substantial increase in protein identifications to 3372
cumulatively (Supporting Information Figure 7).
Next, we applied the novel plasma discovery workflow to a

cohort containing samples coming from five solid tumors. Data
analysis, including machine learning, revealed biomarker
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candidates and resulted in predictive models. The biomarkers
mainly contain proteins from low abundance regions that
would have likely been missed by neat plasma profiling, as
previously speculated by Geyer et al.9 Given the limited sample
size and sample selection limitations (e.g., the healthy samples
are self-declared healthy), the presented biomarker candidates
require additional validation in an independent cohort.
While the separation of healthy from cancer plasma samples

was quite accurate for the cancer-specific models (average
accuracy 93%), early- to late-stage differentiation was much
more challenging, showing weaker separation (average
accuracy 56%). The pan-cancer model performed worse than
the cancer-specific models, indicating that “one-fits-all”
biomarkers are generally harder to discover. This is likely
because of the considerable heterogeneity across cancer types
and could be solved by a larger cohort, more advanced
stratification strategy and would likely lead to a larger
biomarker panel.
Seven candidate proteins were consistently differentially

abundant across all cancers, of which one followed a cancer-
type-specific behavior. Notably, the previously reported pan-
cancer biomarker candidate TENX was reproduced, showing a
reduction in the disease progression irrespective of the cancer
type.57 Overall, our approach showed that deep exploration of
the proteome of cancer plasma samples can be realized for
biomarker discovery. Larger cohorts and a longitudinal study
design, where the same subjects are monitored ideally before
disease onset, would likely lead to more robust biomarkers.
When focusing on colorectal cancer, 307 proteins were

altered between healthy, early, and late stages. These include
three with a documented role in colorectal cancer develop-
ment: STAT3,58 TAGL,59 and CD47.60 In addition, gene
ontology enrichments based on identified candidates showed a
response to leptin and the regulation of proteolysis increased in
cancer. At the same time, there was a negative regulation of
cell−cell adhesion, leukocyte homeostasis, and response to
hydrogen peroxide. Based on the machine learning-assisted
biomarker discovery approach, a prediction model based on 90
proteins had the highest predictive classification power with a
78% accuracy on the hold-out set.
In pancreatic cancer, 436 proteins were altered between

healthy, early, and late stages. Of these, seven (GTR1, APOA4,
IBP2, CD9, CAB45, OLFM4, BGH3) have previously been
suggested as possible pancreatic cancer biomarkers.61−65

Machine learning-based modeling selected 106 proteins,
which led to an efficient separation using distance measures
of healthy-, early-, and late-stage samples. The selected
proteins showed an average overall prediction accuracy of
67%, with two observations incorrectly assigned to the healthy
group instead of early-stage cancer. This separation was
primarily driven by the three cancer-related proteins CD9,66

TENX,57 and DIAC.62,67 Further proving the quality of the
candidates, the separation was also driven by the recently
proposed therapeutic target CNN268 and the prognostic
marker GTR1.69 A study by Jayaraman et al. demonstrated
that the exposure of pancreatic cancer cells to zinc leads to
increased protein ubiquitination and enhanced cell death,
implicating zinc as a potential therapy in treating pancreatic
cancer.70 We found the sequestration of zinc ions as an
enriched biological process in pancreatic cancer, specifically
downregulated in cancer samples (especially early stage).
Clinical analysis of blood is the most widespread diagnostic

procedure in medicine, and blood biomarkers are used to

diagnose diseases, categorize patients, and support treatment
decisions. The presented approach is well suited for deep,
epidemiological biomarker studies in plasma as it reaches deep
into the tissue leakage area, where information on the health
state of distal tissues can be discovered. Furthermore,
biomarker sets derived from the machine learning biomarker
discovery analysis are not optimally suited for a direct
transition into a “classical” clinical biomarker, as new
multiplexed approaches for clinical assays would be required.
Such challenges could potentially be facilitated by DIA or
multiple PRM-based assays, which are fully compatible with
the presented workflow and could ultimately result in
streamlined discovery-to-target-driven personalized medicine
utilizing only one technology platform.71,72

Hence, we envision that the profiling of large cohorts at high
proteome depth will strongly support the development of
novel biomarkers previously not accessible to large-scale
discovery approaches and will lead to the development of
biomarker panels that will finally deliver on the promise of
noninvasive, preventive cancer screening.
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Tsunoda, T.; Umer, H. M.; Uusküla-Reimand, L.; Verbeke, L. P. C.;
Wadelius, C.; Wadi, L.; Warrell, J.; Wu, G.; Yu, J.; Zhang, J.; Zhang,
X.; Zhang, Y.; Zhao, Z.; Zou, L.; Lawrence, M. S.; Raphael, B. J.;
Bailey, P. J.; Craft, D.; Goldman, M. J.; Aburatani, H.; Binder, H.;
Dinh, H. Q.; Heath, S. C.; Hoffmann, S.; Imbusch, C. D.; Kretzmer,
H.; Laird, P. W.; Martin-Subero, J. I.; Nagae, G.; Shen, H.; Wang, Q.;
Weichenhan, D.; Zhou, W.; Berman, B. P.; Brors, B.; Plass, C.;
Akdemir, K. C.; Bowtell, D. D. L.; Burns, K. H.; Busanovich, J.; Chan,
K.; Dueso-Barroso, A.; Edwards, P. A.; Etemadmoghadam, D.; Haber,
J. E.; Jones, D. T. W.; Ju, Y. S.; Kazanov, M. D.; Koh, Y.; Kumar, K.;
Lee, E. A.; Lee, J. J. K.; Lynch, A. G.; Macintyre, G.; Markowetz, F.;
Navarro, F. C. P.; Pearson, J. V.; Rippe, K.; Scully, R.; Villasante, I.;
Waddell, N.; Yang, L.; Yao, X.; Yoon, S. S.; Zhang, C. Z.; Bergstrom,
E. N.; Boot, A.; Covington, K.; Fujimoto, A.; Huang, M. N.; Islam, S.
M. A.; McPherson, J. R.; Morganella, S.; Mustonen, V.; Ng, A. W. T.;
Prokopec, S. D.; Vázquez-García, I.; Wu, Y.; Yousif, F.; Yu, W.; Rozen,
S. G.; Rudneva, V. A.; Shringarpure, S. S.; Turner, D. J.; Xia, T.;
Atwal, G.; Chang, D. K.; Cooke, S. L.; Faltas, B. M.; Haider, S.;
Kaiser, V. B.; Karlic,́ R.; Kato, M.; Kübler, K.; Margolin, A.; Martin, S.;
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