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Surface-based deformable image registration to generate a four-dimensional (4D)

dose calculation in radiation treatment planning requires the selection of a set of

organ contours representing a basis set from which to generate anatomic defor-

mation. The purpose of the present work was to determine the optimal set of

organs needed to generate a basis set for deformation in treatment planning for

thoracic tumors, such that the required computations are minimized, but that

dose accuracy is high. Using retrospectively reviewed records and a deformable

model algorithm in a research version of a commercial radiation treatment plan-

ning system, we calculated 4D dose distributions based on treatment plans for

10 patients with thoracic tumors. Various combinations of organs (total lungs,

heart, spinal cord, external body surface) were used to generate the basis set

used in the calculations for deformations. The external surface contour did not

have a noticeable effect on the dose calculation. Total lung, heart, and spinal

cord together provided an adequate set of deformation organs to generate accurate

dose deformations. The magnitude of the calculated dose differences had no

obvious relationship to tumor parameters, including site, histologic type, dis-

ease stage, extent of motion, or degree of centralization.

PACS numbers: 87.55.D-, 87.55.dk, 87.55.kh

Key words: 4D treatment planning, deformable image registration, respiratory

motion

I. INTRODUCTION

The anatomic deformation caused by respiratory activity constitutes an obstacle to the accu-

racy of dose calculations for radiation therapy of tumors located in the thorax. By explicitly

imaging tumor movement, four-dimensional (4D) computed tomography (CT), which involves

the generation of sequential three-dimensional (3D) image data sets representing phases of the

patient’s respiratory cycle, has provided greater accuracy in the radiation treatment of thoracic

tumors.(1) However, techniques that would account for motion-induced deformation of tumor

and surrounding tissues have not been well studied or clarified. Accurate calculation of the

radiation dose distributions in a 4D CT data set requires a determination of the manner in

which the 3D CT image of a reference phase deforms to all other phases in the 4D data set.

One technique for determining the deformation of a 3D CT data set is to track the deforma-

tion of specified anatomic structures from phase to phase in the 4D data set.(2,3) In this approach,

a tetrahedral mesh representing the surface of an anatomic structure is generated from contours

a Corresponding author: George Starkschall, Department of Radiation Physics, Unit 94, The University of Texas

M.D. Anderson Cancer Center, Houston, TX, U.S.A.; phone: 713-563–2537; fax: 713-563–2479; email:

gstarksc@mdanderson.org



70 Soofi et al.: Determination of an optimal organ set to implement...   70

Journal of Applied Clinical Medical Physics, Vol. 9, No. 2, Spring 2008

drawn in the radiation treatment plan, and basis functions are used to interpolate deformations

from the surface components through the volume of the known structure. This technique was

recently incorporated into a research version of a commercial radiation treatment planning

system (Pinnacle3, v8.1t: Philips Medical Systems, Milpitas, CA).(4)

The current implementation of 4D dose calculation requires that the user identify a set of

organs that will undergo deformation. Points other than those explicitly identified in the mesh

are interpolated using an elastic body spline deformation model, which characterizes the defor-

mation of elastic bodies under the influence of elastically applied forces.(4) The treatment

planning system gives the user some flexibility in the selection of the organ surfaces that will

represent the deformation of the thoracic cavity. In making that selection, the user must strike

a balance between accuracy and efficiency. That is, the greater the number of organ surfaces

selected, the more accurate the dose calculation is likely to be; however, because the chosen

organs must be delineated onto the 3D data sets and mathematically deformed to simulate

phases of respiration (a time-consuming process), the minimum number of organ contours

necessary for dose accuracy should be used in the calculations. The full set of deforming ana-

tomic structures that can be used for this purpose consists of the lungs, heart, spinal cord, and

external body surface. However, it may be that a subset of these organ contours can be utilized

in dose calculations without unduly compromising dose accuracy. In the current study, we

examined that possibility and also looked for correlations between tumor characteristics (size,

histologic type and disease stage, degree of centralization within thoracic cavity, and extent of

motion) and sensitivity to the organ contours used to approximate the thoracic deformation.

II. MATERIALS AND METHODS

A. Patient selection
In this institutional review board–approved study, we retrospectively reviewed the records of

10 patients who had undergone radiation treatment for tumors in the lung (n = 8) or esophagus

(n = 2) and for whom 4D CT data sets had been acquired. Patient treatment plans were selected

sequentially from the patient database in the treatment planning system and covered the period

June and July 2006. Among the lung tumor patients, 1 received hypofractionated radiation

treatments; the remaining 7 lung tumor patients and both patients with esophageal cancers

received radiation using conventional fractionation schemes. Table 1 summarizes tumor site,

disease stage, and prescription dose for the 10 patients.

TABLE 1. Patient number, tumor site, disease stage, and prescription dose

Patient Tumor histology and site Disease stage Prescription dose and
fractionation scheme

1 NSCLC left lung T3N2M1 60 Gy, 20 fractions
2 NSCLC RLL (post surgery) T2M2N0 50.4 Gy, 28 fractions
3 Adenocarcinoma distal esophagus T3N1M0 50.4 Gy, 28 fractions
4 NSCLC RUL T1N0M0 70 Gy, 35 fractions
5 NSCLC LUL T1N2M0 63 Gy, 35 fractions
6 NSCLC LUL T1N0M0 50 Gy, 4 fractions
7 Squamous cell carcinoma RLL T2N2M0 63 Gy, 35 fractions
8 Adenocarcinoma RUL T1N1M0, recurrent 63 Gy, 30 fractions
9 NSCLC RUL T1N2M1 60 Gy, 30 fractions

10 Squamous mid esophagus T3N1M0 50.4 Gy, 28 fractions

NSCLC = non-small-cell lung cancer; RLL = right lower lobe; RUL = right upper lobe; LUL = left upper lobe.
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B. Treatment plans
Patients were immobilized using a conventional vacuum-bag immobilization technique and

were scanned using a multislice helical CT scanner (Discovery ST: GE Healthcare Systems,

Waukesha, WI) operating in cine mode. The 4D CT image data sets, consisting of 3D CT data

sets for each of 10 equally-spaced phases of the respiratory cycle, were obtained using an

image-binning approach.(1) Respiration was monitored using an external marker resting on the

patient’s abdomen (RPM: Varian Medical Systems, Palo Alto, CA). The CT images were re-

constructed with a slice thickness of 2.5 mm.

We planned the treatments using the treatment planning system mentioned earlier, deter-

mining an explicit internal target volume (ITV) by mapping the motion of the clinical target

volume (CTV) on the 4D CT data set. Tumor targeting was based on information in the 4D CT

data set and was transferred to either a free-breathing CT data set or an average CT data set, on

which the treatment plan was developed. (An “average data set” is defined as a 3D CT data set

in which each voxel value is the average value among the 10 phases that make up the 4D CT

data set.)

In generating the planning target volume (PTV) for conventional fractionation plans, we

established an isotropic 1.0-cm margin around the ITV to account for setup uncertainty and

interfractional variability in respiration. Conventionally fractionated patients were typically

planned using inverse planning for intensity-modulated radiation delivery with 5 – 7 6-MV

photon beams. For image-guided hypofractionated treatments, the margin used to generate the

PTV was 0.3 cm around the ITV. Patient immobilization was achieved with an extended vacuum

bag, and image guidance was provided by daily in-room CT imaging immediately before irra-

diation. Planning was accomplished using fixed 6-MV photon beams. Anatomic structures that

were normally contoured included the spinal cord, the right and left lungs, total lung, esopha-

gus, and heart. Beam configurations were determined in a variety of ways, including conventional

3D conformal radiation therapy, intensity-modulated radiation therapy, and image-guided

hypofractionated radiation therapy.

The treatment plans—including all CT data sets (planning set plus 10 phases comprising the

4D data set), the contours of the PTV and normal anatomic structures, and the beam configura-

tions—were copied into a research directory, and the patients’ identities were masked before

further analysis was done.

C. 4D dose calculations
To mathematically represent the deformation of the thoracic cavity throughout the respiratory

cycle, we used the surface-based deformable image registration method.(2,3) Regions of inter-

est (ROIs), which may be organs or target volumes, were delineated on a single reference 3D

CT image data set either by the attending radiation oncologist or by the treatment planner. (In

the latter case, plans were subsequently reviewed by the radiation oncologist.) A deformable

model algorithm was then used to propagate the ROIs to the phases constituting the 4D CT

image data set.(5,6) The 4D dose distributions were calculated first by using the collapsed cone

convolution algorithm to perform a dose calculation on each of the 10 phases of the 4D CT data

set.(7) One data set, typically the 0% phase data set, was identified as the reference data set, and

each of the other data sets was deformed to the reference data set using the deformable image

registration technique(4) based on a specified set of ROIs and the elastic body spline deforma-

tion model. The dose matrix in each data set was then deformed to the reference data set based

on the foregoing deformations, and the doses were calculated and accumulated.

Initially, the ROIs used for the deformation included the total lung (L), heart (H), spinal

cord (C), and external body surface (E). This LHCE set of ROIs represented the highest attain-

able dose accuracy for the 4D dose calculation, because it included all anatomic structures that

are routinely delineated in the thoracic region for treatment planning. We then recalculated the

deformation using subsets of the control organ set by excluding selected contours from the
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deformation. The following sets of ROIs were used in the analysis: LHCE (control), LHC, LH,

LC, LE, and L. In all cases, the total lung was included because it represents the major contri-

bution to deformation.

D. Dose–volume histogram analysis
First, we used the LHCE set of ROIs to generate control dose–volume histograms (DVHs) for

each patient. Then, we used each of the subsets of ROIs to generate experimental DVHs based

on 4D dose calculations. Finally, we compared the experimental DVHs with the control DVHs.

We generated DVHs for the spinal cord, CTV, PTV, heart, right lung, left lung, and both lungs.

Several parameters were selected to analyze the DVHs, including the V20 value (fractional

volume of the ROI receiving at least 20 Gy) for the total lung ROI, the D5 value (dose received

by 5% of the ROI volume) for the spinal cord, the D95 value (dose received by 95% of the ROI

volume) for the PTV, and the V(prescription) value (fractional volume of the ROI receiving the

prescription dose) for the CTV.

Total lung V20 was selected because it appears to be closely related to the risk of radia-

tion pneumonitis.(8) Although the maximum dose to the spinal cord is used to predict the

risk of radiation myelitis,(9) we studied the cord D5 value instead because the maximum

dose to the cord may vary greatly for situations in which the DVH exhibits a long “tail.”

(The D5 value is likely to be more consistent among deformation organ sets.) We selected

D95 for the PTV because our clinical standard of practice is that 95% of the PTV receives

the prescription dose. Finally, we selected V(prescription) for the CTV because our clini-

cal standard of practice is that the entire CTV receives the prescription dose [that is, that

V(prescription) = 100%].

Deviations of the experimental DVHs from the control DVHs were visually characterized

by means of composite DVHs and were then quantified using the differences between the D95

values of each organ subset and the control (LHCE) organ set. We organized the results by

extent of deviation from control and then looked for trends that might be related to tumor size,

histologic type, or disease stage; approximate degree of centralization; and extent of respira-

tory motion, which was approximated by measuring the range of motion of the apex of the

right side of the diaphragm.

III. RESULTS

As a general rule, the DVHs for total lungs were similar, regardless of the organs used in the

deformation. Fig. 1(a) shows the DVHs for total lung for patient 5, who showed the largest

difference in DVHs calculated using various organ sets; Fig. 1(b) shows the DVHs for total

lung for patient 7, whose results were more typical of the entire group of 10 patients. Both

figures demonstrate that the DVHs for each ROI set were quite similar, with the exception of

the DVH based solely on deformation of the lung contours. Table 2 summarizes the V20 val-

ues, showing deformations based on each combination of ROIs. These data indicate that the

LHC deformation organ set yielded V20 values that most closely approximated those obtained

with the full LHCE set [root mean square (RMS) deviation: 1.25%; maximum deviation: 2.59%],

although the LH and LE deformation sets yielded comparable values. In general, deformation

based on L alone gave the poorest agreement with LHCE, although the LC sometimes yielded

even more divergent results.

Table 3 shows the data from Table 2 rearranged in descending order of absolute difference

between the LHC- and LHCE-generated total lung V20 values. Tumor site, disease stage, pre-

scription dose, and hypofractionation status are also indicated. Visual inspection of the data

detected no trends linking the differences in V20 values with tumor site, disease stage, or

fractionation scheme.
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FIG. 1. Cumulative dose–volume histograms (DVHs) for total lung. (a) The DVHs for patient 5 show large discrepancies
between the deformation organ sets. (b) The DVHs for patient 7 are more typical of the discrepancies seen between organ
sets for the entire group of patients. LHCE = four-dimensional (4D) dose calculation driven by deformations of lung,
heart, cord, external contour; LHC = 4D dose calculation driven by deformations of lung, heart, cord; LH = 4D dose
calculation driven by deformations of lung, heart; LE = 4D dose calculation driven by deformations of lung, external
contour; LC = 4D dose calculation driven by deformations of lung, cord; L = 4D dose calculation driven by deformations
of lung.

(a)

(b)
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Table 4 shows values of D5 and differences between D5 values calculated using each subset

of deformation organs and the control set. Again, calculations based on the LHC subset had the

smallest RMS deviation (235 cGy) and the smallest maximum deviation (500 cGy). Fig. 2(a)

shows the cord DVHs for patient 5, for whom the disagreement between calculations was

large, and Fig. 2(b) shows the cord DVHs for patient 7, whose results were more typical of the

entire patient group. The cord dose calculated for patient 5 using the LHC deformation organ

set would most likely be viewed as clinically acceptable, because a negligible amount of cord

is calculated to receive a dose greater than 45 Gy, but the cord doses calculated using the LH

and LE data sets likely would not be considered clinically acceptable because a non-negligible

amount of cord is calculated to receive a dose greater than 50 Gy.

TABLE 3. Patients sorted in descending order by absolute value of the difference between total lung V20 obtained by
using lung, heart, cord (LHC) for deformation and total lung V20 obtained by using lung, heart, cord, external contour
(LHCE) for lung deformation

Patient Total lung Tumor site Disease stage Prescription dose and Hypofx?
V20 difference fractionation scheme

(%)

10 2.59 Squamous mid-esophagus T3N1M0 50.4 Gy, 28 fractions No
5 1.82 NSCLC LUL T1N2M0 63 Gy, 35 fractions No
9 1.47 NSCLC RUL T1N2M1 60 Gy, 30 fractions No
3 1.19 Adenocarcinoma, T3N1M0 50.4 Gy, 28 fractions No

distal esophagus
8 1.14 Adenocarcinoma RUL T1N1M0 recurrent 63 Gy, 30 fractions No
2 0.69 NSCLC RLL (post surgery) T2M2N0 50.4 Gy, 28 fractions No
7 0.52 Squamous-cell carcinoma RLL T2N2M0 63 Gy, 35 fractions No
6 –0.29 NSCLC LUL T1N0M0 50 Gy, 4 fractions Yes
1 0.08 NSCLC left lung T3N2M1 60 Gy, 20 fractions No
4 –0.03 NSCLC RUL T1N0M0 70 Gy, 35 fractions No

V20 = fractional volume of anatomic structure receiving at least 20 Gy; Hypofx = hypofractionated; NSCLC = non-
small-cell lung cancer; LUL = left upper lobe; RUL = right upper lobe; RLL = right lower lobe.

TABLE 2. Values of V20 for total lung, and differences between control and experimental values for each of the 10 study
patients, using varying combinations of regions of interest to drive the deformations in the four-dimensional dose
calculations

Patient       V20 values (%) V20 differences (%)
LHCE LHC LH LE LC L LHC–LHCE LH–LHCE LE–LHCE LC–LHCE L–LHCE

1 26.26 26.34 26.37 26.46 26.58 26.62 0.08 0.11 0.20 0.32 0.36
2 21.52 22.21 22.93 22.74 23.72 27.09 0.69 1.41 1.22 2.20 5.57
3 19.93 21.11 21.06 19.12 20.70 17.98 1.19 1.13 –0.80 0.77 –1.94
4 28.91 28.88 28.86 28.90 28.85 28.77 –0.03 –0.05 –0.01 –0.07 –0.14
5 41.40 43.22 43.04 43.05 41.40 12.47 1.82 1.64 1.64 –0.01 –28.94
6 2.92 2.64 2.38 2.02 1.11 0.51 –0.29 –0.55 –0.91 –1.82 –2.42
7 32.99 33.50 34.00 33.53 34.56 36.98 0.52 1.01 0.54 1.57 3.99
8 38.10 39.24 39.72 41.28 44.73 41.96 1.14 1.63 3.18 6.63 3.86
9 36.51 37.98 37.86 36.60 38.91 38.65 1.47 1.35 0.08 2.40 2.14

10 27.89 30.48 31.35 29.95 31.89 31.76 2.59 3.46 2.06 4.00 3.87

RMS deviation 1.25 1.54 1.43 2.78 9.64
Maximum deviation 2.59 3.46 3.18 6.63 28.94

V20 = fractional volume of anatomic structure receiving at least 20 Gy; LHCE = 4D dose calculation driven by
deformations of lung, heart, cord, external contour; LHC = 4D dose calculation driven by deformations of lung, heart,
cord; LH = 4D dose calculation driven by deformations of lung, heart; LE = 4D dose calculation driven by deforma-
tions of lung, external contour; LC = 4D dose calculation driven by deformations of lung, cord; L = 4D dose calculation
driven by deformations of lung; RMS = root mean square.
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Table 5 shows the data in Table 4 rearranged in descending order of the absolute difference

between the LHC- and LHCE-generated cord D5 value, together with tumor site, disease stage,

prescription dose, and hypofractionation status. Although the absolute D5 differences for esopha-

gus treatments are clustered, the sample is too small for that clustering to be considered any

sort of a trend. The difference in D5 values for the hypofractionated treatment was 0, but that

result may simply have been the result of the spinal cord receiving very little dose in the

hypofractionated treatment.

Table 6 compares values of D95 for the PTV, together with the differences in D95 between

the control calculations and those derived using each subset of deformation organs. Once again,

the LHC subset exhibited the smallest RMS deviation (232 cGy) and the smallest maximum

deviation (500 cGy). For many patients, the differences in the dose calculated using only the

lungs as the deformation organ set and the dose calculated using the full LHCE organ set were

so great that the L subset dose distribution would be viewed as clinically unacceptable.

Finally, Table 7 shows the values of V(prescription) for the CTV and the differences in

V(prescription) between calculations performed using each subset of deformation organs

and those performed using the LHCE set of organs. In some cases, the volume receiving the

actual prescription dose was somewhat smaller than originally intended, and thus the vol-

ume receiving the lower dose is recorded here. Again, the LHC subset exhibited the smallest

RMS deviation (4.59%) and the smallest maximum deviation (11.88%). In several cases, use

of the total lung as the only ROI for deformation resulted in severe underdosing of the CTV.

Figs. 3(a) and 3(b), for patients 5 and 7 respectively, vividly illustrate that result. The data

sets for patient 5, which exhibited the largest disagreement between other organs, also had a

large (but not the largest) disagreement for the CTV; the degree of the disagreements be-

tween the data sets for patient 7 were more typical of those for the whole group. For patient

5, the only organ subset that gave a DVH for the CTV comparable to that calculated using

the LHCE organ set was the LHC set; DVHs calculated using the other sets suggested that

the doses were clinically unacceptable. For patient 7, DVHs calculated using the LHC and

LE organ sets were comparable to those from the LHCE calculations, and DVHs derived

using LC and LH indicated doses that likely would be considered clinically acceptable; how-

ever, DVHs calculated using L alone were clinically unacceptable.

TABLE 4. Values of D5 for spinal cord and differences in D5 values relative to control for each of the 10 study patients,
using varying combinations of regions of interest to drive the deformations in the four-dimensional (4D) dose calculations

Patient      D5 values (cGy) D5 differences (cGy)
LHCE LHC LH LE LC L LHC–LHCE LH–LHCE LE–LHCE LC–LHCE L–LHCE

1 3550 3550 3550 3550 3550 3550 0 0 0 0 0
2 3750 3700 4000 3800 3600 2750 –50 250 50 –150 –1000
3 3900 3750 3550 3800 3150 3250 –150 –350 –100 –750 –650
4 1650 1700 1900 1800 1650 1850 50 250 150 0 200
5 3500 3000 4550 4750 2300 1700 –500 1050 1250 –1200 –1800
6 400 400 450 450 350 400 0 50 50 –50 0
7 4050 4050 4200 4100 4000 4250 0 150 50 –50 200
8 4500 4500 4650 4700 4200 4300 0 150 200 –300 –200
9 4100 4600 4300 4050 4650 4200 500 200 –50 550 100

10 4650 4800 5150 5100 4650 4300 150 500 450 0 –350

RMS deviation 235 411 430 492 701
Maximum deviation 500 1050 1250 1200 1800

D5 = maximum dose received by at least 5% of spinal cord; LHCE = 4D dose calculation driven by deformations of
lung, heart, cord, external contour; LHC = 4D dose calculation driven by deformations of lung, heart, cord; LH = 4D
dose calculation driven by deformations of lung, heart; LE = 4D dose calculation driven by deformations of lung,
external contour; LC = 4D dose calculation driven by deformations of lung, cord; L = 4D dose calculation driven by
deformations of lung; RMS = root mean square.



76 Soofi et al.: Determination of an optimal organ set to implement...   76

Journal of Applied Clinical Medical Physics, Vol. 9, No. 2, Spring 2008

(a)

(b)

FIG. 2. Cumulative dose–volume histograms (DVHs) for spinal cord. (a) The DVHs for patient 5 show large discrepancies
between the deformation organ sets. (b) The DVHs for patient 7 are more typical of the discrepancies seen between organ
sets for the entire group of patients. LHCE = four-dimensional (4D) dose calculation driven by deformations of lung,
heart, cord, external contour; LHC = 4D dose calculation driven by deformations of lung, heart, cord; LH = 4D dose
calculation driven by deformations of lung, heart; LE = 4D dose calculation driven by deformations of lung, external
contour; LC = 4D dose calculation driven by deformations of lung, cord; L = 4D dose calculation driven by deformations
of lung.
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TABLE 5. Patients sorted in descending order by absolute value of the difference between cord D5 obtained by using
lung, heart, cord (LHC) for deformation and total lung D5 value obtained by using lung, heart, cord, external contour
(LHCE) for lung deformation

Patient Cord D5 Tumor site Disease stage Prescription dose and Hypofx?
difference fractionation scheme

(cGy)

5 –500 NSCLC LUL T1N2M0 63 Gy, 35 fractions No
9 500 NSCLC RUL T1N2M1 60 Gy, 30 fractions No
3 –150 Adenocarcinoma, T3N1M0 50.4 Gy, 28 fractions No

distal esophagus
10 150 Squamous mid-esophagus T3N1M0 50.4 Gy, 28 fractions No
2 –50 NSCLC RLL (post surgery) T2M2N0 50.4 Gy, 28 fractions No
4 50 NSCLC RUL T1N0M0 70 Gy, 35 fractions No
8 0 Adenocarcinoma RUL T1N1M0 recurrent 63 Gy, 30 fractions No
7 0 Squamous cell carcinoma RLL T2N2M0 63 Gy, 35 fractions No
6 0 NSCLC LUL T1N0M0 50 Gy, 4 fractions Yes
1 0 NSCLC left lung T3N2M1 60 Gy, 20 fractions No

D5 = maximum dose received by at least 5% of spinal cord; Hypofx = hypofractionated; NSCLC = non-small-cell
lung cancer; LUL = left upper lobe; RUL = right upper lobe; RLL = right lower lobe.

TABLE 6. Values of D95 for the planning target volume and differences in D95 values relative to control for each of the
10 study patients, using varying combinations of regions of interest to drive the deformations in the four-dimensional
(4D) dose calculations

Patient     D95 values (cGy) D95 differences (cGy)
LHCE LHC LH LE LC L LHC–LHCE LH–LHCE LE–LHCE LC–LHCE L–LHCE

1 5500 5500 5500 5550 5550 5550 0 0 50 50 50
2 4750 4850 4450 4550 4500 2950 100 –300 –200 –250 –1800
3 4650 4600 4050 4350 3450 900 –50 –600 –300 –1200 –3750
4 7100 7050 6950 6950 6600 6550 –50 –150 –150 –500 –550
5 5100 4850 3750 2600 1450 500 –250 –1350 –2500 –3650 –4600
6 3900 3400 2950 2400 1450 1100 –500 –950 –1500 –2450 –2800
7 5950 5850 5650 5800 5500 4650 –100 –300 –150 –450 –1300
8 5650 5450 5200 5000 4750 3350 –200 –450 –650 –900 –2300
9 4500 4500 4500 4350 4050 4150 0 0 –150 –450 –350

10 4550 4150 2650 2800 2200 500 –400 –1900 –1750 –2350 –4050

RMS deviation 232 843 1104 1668 2648
Maximum deviation 500 1900 2500 3650 4600

D95 = maximum dose received by at least 5% of planning target volume; LHCE = 4D dose calculation driven by
deformations of lung, heart, cord, external contour; LHC = 4D dose calculation driven by deformations of lung, heart,
cord; LH = 4D dose calculation driven by deformations of lung, heart; LE = 4D dose calculation driven by deforma-
tions of lung, external contour; LC = 4D dose calculation driven by deformations of lung, cord; L = 4D dose calculation
driven by deformations of lung; RMS = root mean square.



78 Soofi et al.: Determination of an optimal organ set to implement...   78

Journal of Applied Clinical Medical Physics, Vol. 9, No. 2, Spring 2008

TABLE 7. Values of V(prescription) for the planning target volume and differences in V(prescription) values relative to
control for each of the 10 study patients,a using varying combinations of regions of interest to drive the deformations
in the four-dimensional (4D) dose calculations

Patient Prescription         V(prescription) values (%)     V(prescription) differences (%)
dose (Gy) LHCE LHC LH LE LC L LHC– LH– LE– LC– L–

LHCE LHCE LHCE LHCE LHCE

1 54.0b 99.89 99.86 99.86 99.97 99.96 99.96 0.00 –0.03 –0.03 0.08 0.07
2 50.4 99.11 99.71 99.15 99.81 99.99 48.31 0.60 0.04 0.70 0.88 –50.80
3 45.0c 99.00 98.99 96.14 99.11 94.04 65.67 –0.01 –2.86 0.11 –4.96 –33.33
4 70.0 100.00 100.00 99.67 99.84 89.33 74.35 0.00 –0.33 –0.16 –10.67 –25.65
5 63.0 99.36 97.13 69.93 67.83 41.75 0.00 –2.23 –29.43 –31.53 –57.61 –99.36
6 40.0d 99.63 93.51 80.33 60.79 13.36 0.00 –6.12 –19.30 –38.84 –86.27 –99.63
7 63.0 97.86 96.54 91.53 96.26 88.77 54.13 –1.32 –6.33 –1.60 –9.09 –43.73
8 63.0 77.10 73.32 65.51 61.34 45.36 12.23 –3.79 –11.60 –15.76 –31.74 –64.87
9 60.0 79.32 77.91 74.69 75.76 51.85 41.31 –1.41 –4.63 –3.57 –27.47 –38.02

10 50.4 96.72 89.97 69.03 75.55 67.28 18.12 –6.75 –27.69 –21.16 –29.43 –78.60

RMS deviation 3.26 14.87 17.93 36.89 61.56
Maximum deviation 6.75 29.43 38.84 86.27 99.63

a In 3 cases in which the plan actually delivered a lower dose to the clinical target volume (CTV), the actual dose
delivered to the CTV is identified as the prescription dose.

b The prescription dose of 60.0 Gy was to be delivered to the gross tumor volume. The prescription to the CTV was
54.0 Gy.

c Although the prescription dose was 50.4 Gy, the plan actually delivered 45.0 Gy to the CTV.
d Although the prescription dose was 50.0 Gy, the plan actually delivered 40.0 Gy to the CTV.
V(prescription) = fractional volume of planning target volume receiving at least prescription dose; LHCE = 4D dose
calculation driven by deformations of lung, heart, cord, external contour; LHC = 4D dose calculation driven by defor-
mations of lung, heart, cord; LH = 4D dose calculation driven by deformations of lung, heart; LE = 4D dose calculation
driven by deformations of lung, external contour; LC = 4D dose calculation driven by deformations of lung, cord; L =
4D dose calculation driven by deformations of lung; RMS = root mean square.
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(a)

(b)

FIG. 3. Cumulative dose–volume histograms (DVHs) for the clinical target volume. (a) The DVHs for patient 5 show large
discrepancies between the deformation organ sets. (b) The DVHs for patient 7 are more typical of the discrepancies
between organ sets for the entire group of patients. LHCE = four-dimensional (4D) dose calculation driven by deforma-
tions of lung, heart, cord, external contour; LHC = 4D dose calculation driven by deformations of lung, heart, cord; LH =
4D dose calculation driven by deformations of lung, heart; LE = 4D dose calculation driven by deformations of lung,
external contour; LC = 4D dose calculation driven by deformations of lung, cord; L = 4D dose calculation driven by
deformations of lung.

Table 8 shows the data from Table 7 rearranged in descending order of absolute difference

between the LHC- and LHCE-generated V(prescription) values for the CTV. Tumor site, dis-

ease stage, prescription dose, and hypofractionation status are also indicated. Visual inspection

of this table suggested no trend linking the differences in V(prescription) values with tumor

site, disease stage, or fractionation status.
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TABLE 8. Patients sorted in descending order by absolute value of the difference between V(prescription) for the
clinical target volume (CTV) obtained by using lung, heart, cord (LHC) for deformation and V(prescription) for the
CTV obtained by using lung, heart, cord, external contour (LHCE) for lung deformation

Patient CTV Tumor site Disease stage Prescription dose and Hypofx?
V(prescription) fractionation scheme

difference

10 –6.75% Squamous mid-esophagus T3N1M0 50.4 Gy, 28 fractions No
6 –6.12% NSCLC LUL T1N0M0 50 Gy, 4 fractions Yes
8 –3.79% Adenocarcinoma RUL T1N1M0 recurrent 63 Gy, 30 fractions No
5 –2.23% NSCLC LUL T1N2M0 63 Gy, 35 fractions No
9 –1.41% NSCLC RUL T1N2M1 60 Gy, 30 fractions No
7 –1.32% Squamous cell carcinoma RLL T2N2M0 63 Gy, 35 fractions No
2 0.60% NSCLC RLL (post surgery) T2M2N0 50.4 Gy, 28 fractions No
3 –0.01% Adenocarcinoma, T3N1M0 50.4 Gy, 28 fractions No

distal esophagus
1 0.00% NSCLC left lung T3N2M1 60 Gy, 20 fractions No
4 0.00% NSCLC RUL T1N0M0 70 Gy, 35 fractions No

V(prescription) = fractional volume of planning target volume receiving at least prescription dose; NSCLC = non-
small-cell lung cancer; LUL = left upper lobe; RUL = right upper lobe; RLL = right lower lobe.

IV. DISCUSSION

To calculate 4D dose distributions, a Cartesian dose calculation matrix is generated on each

phase in the 4D CT data set, the dose distribution on each of the dose matrices is calculated,

and then each dose matrix is deformed to the reference phase, accumulating the dose on the

reference matrix for that phase. The difficult part is the deformation of each phase, because the

matrices that define the deformation ideally indicate how each tissue volume element moves

between phases during respiration.

Current approaches to deformable registration fall into two classes: image-based deforma-

tions and model-based deformations.

Image-based deformations, as exemplified by algorithms such as the “demons” algorithm(10)

and optical flow methods,(11) generate deformations based on the values of the voxels in the CT

image data sets. Although user intervention may not be needed to effect those deformations,

one-to-one correspondence between CT voxels and tissue volume elements is not guaranteed.

In an extreme case, in which deformation of a homogeneous medium occurs, image-based

deformable registration methods may not be able to detect the magnitude or even the presence

of a deformation.

Model-based deformations, such as that described by Kaus et al.(4) and implemented in

the commercial radiation treatment planning system used here, require pre-processing in the

form of segmentation of each data set to generate the contours of corresponding ROIs. Addi-

tional information in the form of basis functions and biomechanical information(12) may

have to be introduced to interpolate deformations into the interior of segmented anatomic

structures. In addition, some judgment is needed to select a set of organ contours sufficient

to accurately reflect the totality of deformations that the interior of a patient undergoes dur-

ing the respiratory cycle.

On the basis of our findings, we conclude that accurate doses can be calculated in 4D CT

planning of radiation treatments using primarily internal organ contours for image deformation,

rather than the full set of contours typically used, including those for external body surface. As

seen in the present work, selecting simply the total lungs as the deformation organ does not

adequately characterize the deformation needed to accurately calculate the 4D dose distribution.

It appears that organs such as the heart and spinal cord, medial structures that do not deform as
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extensively as the lungs, are needed to calculate dose accurately. However, including more or-

gans than is necessary slows down the deformation process in two ways. First, organ contours

have to be generated on each phase of the 4D data set. That task is accomplished by copying the

mesh model of the organ from the reference CT data set to each of the other phases, and then by

deforming the model to fit the specific images on the phases. Second, the deformations of all

organs have to be incorporated into the deformation calculations. Consequently, a good compro-

mise needs to be found to limit the number of organs included in the deformations.

In the present work, we found little difference between DVHs generated using the original

organ set (LHCE) and those generated using the experimental subset LHC, suggesting that the

external body surface contour does not necessarily play a large role in characterizing data set

deformations. Calculations based on deformations using other organ subsets tended to exhibit

substantial variation, with the DVH generated using the lung contour alone generally being the

least accurate.

Tables 3, 5, and 8 reveal no obvious trend linking the differences in the DVHs generated

using the LHC organ subset and the full LHCE set with the tumor site or disease stage. Patient

6, who received hypofractionated radiation treatment, had a larger-than-typical discrepancy

between CTV dose calculations; however, that patient had less discrepancy in dose calcula-

tions for other ROIs. For most other patients, there appeared to be correlation between DVH

consistencies among ROIs.

Reducing the number of organs used for a deformation does not always result in a less

accurate calculation. For instance, the doses calculated for Patient 1 appeared to depend solely

on the deformation of the lungs. The reason for this complete insensitivity of dose to deforma-

tion of the heart, spinal cord, and external contours is unclear.

We further found in a partial study that inclusion of the GTV as a deforming organ does not

appear to affect the dose calculation.

The substantial increase in the accuracy of predicted radiation doses to thoracic tumors afforded

by 4D dose calculations may result in more effective treatment planning. As noted here, a major

limiting factor in the practicality of the 4D approach, the volume of data calculations required, may

be reduced if further studies can determine precisely which tumor parameters affect the sensitivity

of the dose calculation to the organ subset. If tumor characteristics can be correlated with the organ

subsets required for an accurate dose calculation, then it may be possible, through the visualization

of CT scans alone, to individually tailor the organ sets used in each treatment plan to generate a dose

calculation with an ideal balance between accuracy and efficiency.

Finally, it should be noted that the present study has demonstrated that the LHC subset of

organs gives the same dose distributions as the complete LHCE set of organs, but does not make

any statements regarding the absolute accuracy of 4D dose calculations. Comparison with mea-

surements would verify the accuracy of 4D dose calculations, and such work is in progress.

V. CONCLUSIONS

The present work has demonstrated that, for 4D dose calculations in the thorax using a surface-

based deformable image registration approach based on deforming contours of specific organs,

a minimum set of total lung, heart, and spinal cord is necessary to give results comparable to

calculations using all organs.

ACKNOWLEDGMENTS

The present work was supported in part by a Sponsored Research Agreement from Philips

Medical Systems. The authors also acknowledge the assistance of Dr. Veni Ezhil and Michael

Kantor.



82 Soofi et al.: Determination of an optimal organ set to implement...   82

Journal of Applied Clinical Medical Physics, Vol. 9, No. 2, Spring 2008

REFERENCES

1. Pan T, Lee TY, Rietzel E, Chen GT. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice
CT. Med Phys. 2004;31(2):333–340.

2. Brock KK, McShan DL, Ten Haken RK, Hollister SJ, Dawson LA, Balter JM. Inclusion of organ deformation in
dose calculations. Med Phys. 2003;30(3):290–295.

3. Kaus M, Pekar V, McNutt T, Bzdusek K. An efficient algorithm for image-based dose deformation and accumu-
lation [abstract]. Med Phys. 2005;32(6):1900.

4. Kaus MR, Brock KK, Pekar V, Dawson LA, Nichol AM, Jaffray DA. Assessment of a model-based deformable
image registration approach for radiation therapy planning. Int J Radiat Oncol Biol Phys. 2007;68(2):572–580.

5. Pekar V, McNutt TR, Kaus MR. Automated model-based organ delineation for radiotherapy planning in prostatic
region. Int J Radiat Oncol Biol Phys. 2004;60(3):973–980.

6. Ragan D, Starkschall G, McNutt T, Kaus M, Guerrero T, Stevens CW. Semiautomated four-dimensional com-
puted tomography segmentation using deformable models. Med Phys. 2005;32(7):2254–2261.

7. Ahnesjö A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media.
Med Phys. 1989;16(4):577–592.

8. Graham MV, Purdy JA, Emami B, et al. Clinical dose–volume histogram analysis for pneumonitis after 3D
treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45(2):323–329.

9. Kong FM, Pan C, Eisbruch A, Ten Haken RK. Physical models and simpler dosimetric descriptors of radiation
late toxicity. Semin Radiat Oncol. 2007;17(2):108–120.

10. Wang H, Dong L, O’Daniel J, et al. Validation of an accelerated ‘demons’ algorithm for deformable image
registration in radiation therapy. Phys Med Biol. 2005;50(12):2887–2905.

11. Huang TC, Zhang G, Guerrero T, Starkschall G, Lin KP, Forster K. Semi-automated CT segmentation using optic
flow and Fourier interpolation techniques. Comput Methods Programs Biomed. 2006;84(2–3):124–134.

12. Brock KK, Dawson LA, Sharpe MB, Moseley DJ, Jaffray DA. Feasibility of a novel deformable image registra-
tion technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int J Radiat
Oncol Biol Phys. 2006;64(4):1245–1254.


