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Abstract: The current models for colorectal cancer (CRC) are essentially linear in nature 

with a sequential progression from adenoma through to carcinoma. However, these views 

of CRC development do not explain the full body of published knowledge and tend to 

discount environmental influences. This paper proposes that CRC is a cellular response to 

prolonged exposure to cytotoxic agents (e.g., free ammonia) as key events within a 

sustained high-risk colonic luminal environment. This environment is low in substrate for 

the colonocytes (short chain fatty acids, SCFA) and consequently of higher pH with higher 

levels of free ammonia and decreased mucosal oxygen supply as a result of lower visceral 

blood flow. All of these lead to greater and prolonged exposure of the colonic epithelium to 

a cytotoxic agent with diminished aerobic energy availability. Normal colonocytes faced 

with this unfavourable environment can transform into CRC cells for survival through 

epigenetic reprogramming to express genes which increase mobility to allow migration and 

proliferation. Recent data with high protein diets confirm that genetic damage can be 

increased, consistent with greater CRC risk. However, this damage can be reversed by 

increasing SCFA supply by feeding fermentable fibre as resistant starch or arabinoxylan. 

High protein, low carbohydrate diets have been shown to alter the colonic environment 
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with lower butyrate levels and apparently greater mucosal exposure to ammonia, consistent 

with our hypothesis. Evidence is drawn from in vivo and in vitro genomic and biochemical 

studies to frame experiments to test this proposition. 

Keywords: ammonia; colorectal cancer; dietary protein; resistant starch; short chain  

fatty acid 

 

1. Introduction 

Colorectal cancer (CRC) is a common internal malignancy in affluent countries and is appearing 

rapidly in developing countries with greater prosperity. It is the fourth most common cause of  

cancer-related deaths worldwide [1]. In Australia, it is the most frequent cause of cancer morbidity and 

mortality with over 14,000 diagnosed cases (13% of all cancers) and over 4000 fatalities in 2007 [2]. 

Similarly, more than 59,000 people die every year from CRC in the United States [1]. Epidemiological 

data show that there is a major geographical variation in the incidence of CRC, with populations in 

Africa and Asia showing lower risk [1]. This suggests that environmental factors are influential in 

carcinogenesis, a proposition supported by rapid temporal increases in CRC morbidity and mortality in 

countries such as Japan [3]. Nutrition has been identified as a potentially significant risk factor [4]. 

Specifically, diets that are low in fibre and unrefined grains, and high in energy (fat) and protein, are 

associated with increased risk of CRC [5]. This dietary pattern is established in developed countries, 

and becomes apparent in countries traditionally at low risk as they become more affluent. For example, 

in Singapore the age-standardised rates for CRC from 2003 to 2007 showed a 125% increase over the 

rates from 1968 to 1972 for males, and a 112% increase for females, with a notably sharp increase in 

the 40–45 year age group [6].  

Population data also suggest that only a small fraction (possibly as low as 5%) of CRC cases are 

due to heritable factors [7]. Individuals who have two or more close relatives with CRC make up about 

20% of all CRC patients, but only 5%–10% of cases actually develop from inherited genetic abnormalities. 

The greater number of cases (by far) is sporadic in origin where both genetic and environmental 

factors are important [8,9]. This implies that at least 80% of CRC are inducible and could be prevented 

with changes in diet and lifestyle. Therefore, it is important to understand the underlying mechanisms 

of the onset and development of sporadic CRC to formulate a rational dietary strategy to implement 

risk reduction.  

There are abundant prospective cohort data linking dietary and lifestyle factors to CRC risk [10]. 

Exercise, whole grain dietary fibre consumption and aspirin [11–13] confer protection while cigarette 

use and greater consumption of red and processed meat increase risk [14,15]. Recent experimental data 

support the importance of environmental factors both in colorectal tumorigenesis and its possible 

prevention. Genetic damage is a pre-requisite for oncogenesis and it has been shown that diet alone 

increases colonic DNA damage in model animal species. Single and double strand DNA breaks were 

increased with dietary levels of protein such as casein, soy and red meat [16–18]. More recently, 

colonocyte telomere shortening was observed in rats fed a high protein diet, supporting a role for diet 

in early stages of carcinogenesis [19]. In these studies, the deleterious changes were reversed by the 
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feeding of dietary fibre as resistant starch (RS) or arabinoxylan. Other rodent studies support the idea 

that dietary components (including fibre and n-3 polyunsaturated fatty acids) are protective [20,21], 

and that this protection may occur via moderation of inflammatory responses. However, the exact 

mechanism(s) of colorectal carcinogenesis remain ill-defined and the current models appear to be 

incomplete. In this paper, known models of colorectal carcinogenesis are reviewed in the context of 

documented risk factors, and how modification of these risk factors might act to promote or  

diminish oncogenesis.  

We hypothesise a modified model of CRC development where oncogenesis is a random event 

reflecting a cellular response to a sustained risk environment. We suggest that this occurs as a result of 

continuous low grade exposure to carcinogens, paying particular attention to free ammonia. We 

suggest also that the focus on dietary fibre may have been misdirected. Resistant starch (RS), rather 

than non-starch polysaccharides (NSP), may be a key protector of CRC. This hypothesis acts as a 

potential route in CRC prevention at the individual and population level. We provide support of the 

hypothesis from the published literature. 

2. Current Models of Colorectal Cancer 

The current models for CRC are essentially linear in nature with a sequential progression from 

aberrant crypt foci and micro-adenomas, to adenomas and frank malignancy, via hyper-proliferation of 

the upper crypt cells [22,23]. The first step in the development of tumours from normal epithelium is 

usually taken to be the onset of dysplasia and single dysplastic crypts are thought to be the first 

histological manifestations of tumours. This has been described as the “adenoma to carcinoma 

hypothesis” and is often referred to as the conventional pathway to colorectal cancer. Vogelstein et al. 

provided a molecular basis for the adenoma to carcinoma sequence by describing the complex  

multi-step process in which cells accumulate genetic changes (especially gene deletions and 

activations) that control cell growth and differentiation [24]. With time, these accumulated errors 

coalesce, resulting in the neoplastic phenotype. The serrated pathway is also gaining acceptance as an 

alternate molecular pathway to CRC. In contrast to the lesions of the conventional pathway which 

harbour mutations in the APC gene, adenomas and tumours of the serrated pathway are characterised 

by mutation in the BRAF gene [25,26]. These factors have been synthesised in a model where the 

accumulation of changes (rather than their chronological order) determines histopathological and 

clinical characteristics of the colorectal tumour [27].  

These views of CRC development may be true but do not explain the full body of published 

knowledge and tend to discount some influences. Specifically, CRC is virtually unknown in some 

societies eating “traditional” plant based diets, but appears quite rapidly when such populations 

become more affluent (and change their dietary habits). Indeed, much of the interest in the potential of 

diet to prevent chronic disease can be traced to early observational studies with native populations in 

whom those diseases were so rare as to be remarkable [28]. These low risk diets are generally low in 

total and saturated fat, high in complex carbohydrates (starch and NSP, major components of dietary 

fibre), and low in animal products.  

Specific dietary components have been linked to altered risk. For example, population studies have 

linked consumption of red and/or processed meat to greater risk [29,30]. Higher intakes of fat are also 
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associated with greater risk [31,32]. Dietary fibre is one of the factors where the expectations of a 

strong protective effect were greatest, based to some degree on the observational studies by  

Burkitt et al. who compared diet and risk in native black African populations [33]. However, the 

reality has proved to be more complex than anticipated. Fibre is an established faecal bulking and 

laxative agent in proportion to intake, and an inverse relationship has been demonstrated between stool 

mass and cancer risk [10]. Part of this protection is thought to be due to dilution of carcinogens leading  

to less exposure to the colonocytes [34]. Faecal outputs by populations at low risk are generally high. 

However, while some prospective studies have identified an important protective role for  

fibre [10,35,36], other studies have failed to show any substantial effect [37]. There is also the paradox 

of high and rising CRC rates in Australia, despite population-wide intakes of (largely cereal) fibre [38]. 

These discrepancies can be resolved if one considers the food components which actually contribute to 

total dietary fibre intakes and which could protect against CRC through altering the colonic environment.  

3. Diet and the Normal Colonic Environment  

The adult human large bowel is home to a large and complex bacterial eco-system comprising of  

13 genera, and each individual has several hundred species of these genera, with a particular 

combination of predominant species that is distinct from that of other individuals [39]. Advances in 

molecular technologies have assisted greatly in understanding the complex structure and dynamics of 

the bacterial population [40–42]. It is well-established that anaerobic organisms predominate and that 

they metabolise undigested nutrients escaping from the small intestine, plus endogenous small and 

large intestinal secretions. Thus, the colonic environment reflects the interaction between these 

nutrients with the microbiota and their metabolic end products.  

Digestion of the major nutrients in the human small intestine is incomplete, especially that of 

complex carbohydrates [43]. Humans possess only one intrinsic polysaccharidase, α-amylase, which 

can hydrolyse only one polysaccharide (starch). Dietary fibre consists principally of NSP which resists 

small intestinal enzymatic hydrolysis completely such that they pass into the large bowel quantitatively. 

There is also strong evidence that the ileal digestibility of starch is less than 100% and a fraction, 

depending on the nature of the food and an individual’s characteristics, pass into the large bowel [44]. 

This fraction is termed RS. The importance of NSP to colonic function is recognised. However, it is 

becoming apparent that RS may be as (or even more) important.  

Examination of a traditional African (low risk) diet shows that their dietary fibre consumption is 

actually lower than that of some high risk westernised diets. However, their diet contains more starch, 

largely as whole grain maize [45]. Whole grain starchy foods are generally higher in RS than refined 

ones through the physical barrier presented by the bran. However, cooking practices of the Africans 

seem to be more important as it favours the generation of RS through retrogradation [46]. Foods are 

cooked by heating in water, which leads to gelatinisation and greater digestibility in the small intestine. 

However, it is the African practice to store cooked porridge for some time, allowing the starch chains 

to reassociate (retrograde). This leads to the formation of starch that is not digested in the small 

intestine and that enters the large bowel, i.e., RS.  
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3.1. Fermentation of NSP and RS 

Both NSP and RS are subject to fermentation by the human large bowel microbiota which obtains 

energy for maintenance and growth. However, while a variable fraction of NSP is fermented, that of 

RS seems to be largely complete in most individuals. In adults, short chain fatty acids (SCFA), principally 

acetate, propionate and butyrate, are the major metabolic end-products of this fermentation [47]. They 

are the main anions in normal large bowel digesta and are critically important for colonic function 

through a range of actions including lowering of pH (which induces apoptosis of cancerous cells and 

protects against overgrowth by pathogenic micro-organisms), stimulation of fluid and electrolyte 

absorption, and enhancement of colonic blood flow through relaxation of resistance vessels in the 

vasculature. SCFA are absorbed with less than 10% of total production appearing in faeces [48]. Of the 

major SCFA, acetate appears to have no specific properties above being a metabolic intermediate. In 

contrast, propionate and (more particularly) butyrate are thought to play a pivotal role in promoting 

normal colonic function and preventing serious disease [49].  

A nutritional study with staled maize porridge (as consumed by native Africans) showed that it 

favoured large bowel bacterial butyrate production compared with fresh porridge [45]. This, plus a 

higher basal total SCFA and butyrate excretion, provides an explanation for the improved large bowel 

health in this population despite a lower fibre intake [46]. The Africans may have consumed a lot of 

NSP, but as intakes of the fibre components decreased in modern Africans diets, those of RS appear to 

have been maintained. While native African cooking practice is unchanged, this does not appear to be 

so for African Americans who are at a very high risk of CRC and also consume relatively little NSP 

and RS [50].  

Interest in the particular attributes of butyrate is based on an extensive body of literature from  

in vitro and in vivo animal and human studies. Animal studies have shown that butyrate  

infusion relaxes resistance blood vessels in the large bowel mesentery [51]. This would have the effect 

of increasing tissue perfusion with blood and, hence, oxygenation. Butyrate also has a  

concentration-dependent, biphasic action on the large bowel musculature. At low concentrations (as 

low as 3 mM), butyrate infusion into the large bowel lumen relaxes the muscles. At higher 

concentrations, contraction is stimulated [52]. Propionate has similar effects, albeit at much high 

concentrations. It has been shown that butyrate is a preferred metabolic substrate for colonocytes, 

especially those isolated from the distal region. Butyrate is oxidised in preference to other substrates 

and suppresses the utilisation of glucose, glutamine and other fuels in isolated colonocytes [53]. 

Increased oxidative activity, and hence greater cation absorption, is thought to account for the greater 

uptake of Na+ and K+ which is thought to account for the greater water salvage observed when large 

bowel SCFA are increased through the feeding of RS. This effect has been demonstrated quite clearly 

in humans with cholera toxin-induced diarrhoea, with a substantial shortening of time to recovery and 

diminution of fluid loss. It was thought formerly that cation recovery was limited to Na+ and K+ but 

there is increasing evidence that colonic salvage of Ca2+ and Mg2+ is also increased [51,54].  

Butyrate has a pKa of 4.82 and therefore is present predominantly in the ionised form in the human 

colonic environment. For instance, at pH 7 there is only 0.16% unprotonated butyrate compared to 2% 

at pH 6.5. Nonetheless, due to its small molecular size, it can enter colonocytes via both active 

transport and passive diffusion (to a lesser extent at higher pH) pathways. In situations with high 
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SCFA, luminally-derived butyrate is the preferred metabolic fuel for colonocytes via β-oxidation to 

produce energy for proliferation of the normal colonic mucosa [48,55,56]. Fibre serves as a bulking 

agent and shortens transit time, hence reducing the exposure of the colonic epithelium to carcinogens. 

However, there is also an anatomical dimension to large bowel physiology and disease risk. 

Fermentation predominates in the caecum and proximal colon due to the greater availability of 

substrate and this is the region where SCFA levels are highest and disease risk is lowest. With passage 

of the faecal stream, SCFA levels fall (due to uptake of SCFA and depletion of substrate) and pH 

values rise. The distal colon is the site of greatest risk of CRC and Cats et al. [55] have drawn attention 

to this fact, suggesting that lack of SCFA predisposes the distal colon to this malignancy.  

3.2. Protein Fermentation and Ammonia Production 

Bacterial degradation of colonic nitrogenous substrates, such as deamination of dietary protein 

residues, intestinal secretions from shed epithelial cells, and bacterial hydrolysis of urea in the hindgut 

produces ammonia [57–59]. Other potentially toxic compounds such as phenols, cresols and hydrogen 

sulfide are produced from protein fermentation. Experimental studies have linked the cytotoxicity of 

faecal water to cancer risk through these and other metabolites [60]. However, it is free ammonia that 

is the focus of this paper. It is the form of nitrogen in the body that is most toxic and most readily 

absorbed by cells, and the role of ammonia in gastric mucosal damage induced by Helicobacter pylori 

(H. pylori) is well recognised [61–63]. Total ammonia (i.e., NH3 + NH4
+) concentrations in human 

faeces and in the digesta of model animal species consuming western-type diets are in the order of  

3–10 mM [64,65]. Free ammonia diffuses readily and can be absorbed from the large bowel lumen into 

colonocytes, but it is well established that NH4
+ is not absorbed. The pKa value of ammonia is 9.24, so 

that in a normal or low risk colonic environment (pH < 7), a very large proportion is present as NH4
+. 

This would leave only a small fraction as free ammonia to be absorbed by non-ionic diffusion, a 

process that is greatly enhanced by a gradient from higher to lower pH [55,60,66]. 

Diets that are high in fermentable fibre, in particular RS, and low in fat and protein lead to an 

environment in the colon which is considered low risk for the development of CRC [10]. Experimental 

studies in humans and animals have shown that this gives a colonic environment which is relatively 

high in SCFA and of low pH, leading to a low level of free ammonia and other basic cytotoxins. The 

mucosa itself is well perfused, giving high oxygenation, while the availability of SCFA spares glucose 

utilisation. There is strong evidence that O2 supply is critical for hepatic metabolism, especially 

glucose homoeostasis, and there is evidence also that the entero-pancreatic axis may be involved in 

CRC risk with high insulin and insulin-like growth factors being implicated [67]. Animal and human 

studies suggest that fermentable carbohydrates improve blood glucose control so that it is possible that 

insulin may also be low in this scenario. Populations with a low risk of colonic cancer have been 

shown to have lower faecal pH than in higher risk groups [66]. Figure 1 illustrates this situation and 

our proposed risk environment. 
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Figure 1. Low risk versus high risk colonic environment. A low risk colonic environment 

is characterised by well perfused mucosa and relatively high luminal concentration of 

SCFA, low levels of ammonia, and has low pH. In this low risk environment, mucosal cells 

utilise butyrate as the primary energy source and have low requirement for glucose. 

Conversely, a high risk environment is higher in pH and ammonia and low in SCFA. 

Mucosal cells adapt to these conditions, and acquire epigenetic and genetic changes to 

survive, predisposing to tumorigenesis. 

 

4. Colonic Environment for Risk of Colorectal Cancer and Related Problems  

4.1. The High Risk Environment 

One characteristic of the gastrointestinal mucosa is that it undergoes rapid replication and  

turnover, requiring a readily available supply of nutrients for tissue synthesis. Hence, these rapidly 

regenerating tissues should be very responsive to dietary alteration, especially under marginal substrate 

availability [68]. 

We hypothesise a CRC model supporting the view whereby diets which are low in fibre and high in 

digestible energy and also proteins lead to a colonic environment considered at high risk of developing 

CRC. This environment (Figure 2) is low in SCFA and subsequently higher in pH, has higher 

concentrations of ammonia and decreased oxygen supply as a result of lower colonic mucosal blood 

flow, all leading to a greater exposure of the colonic epithelium to carcinogens. We propose that CRC 

is actually a response by the cell population seeking to manage local environmental conditions, and 

constant exposure to low but significant levels of free ammonia is a key event. Such adaptation occurs 

in the stomach for H. pylori where it synthesises a urease enzyme to create an alkaline environment 

protecting the organism from the bactericidal effect of acid [61].  

Models of tumorigenesis suggest that mutations acquired by tumour cells are not a direct impact  

of external DNA damaging agents but are generated by the cell itself as a result of a mutation  

response [22,69]. This response has the characteristics of initiation of error-prone cell cycle 

progression and an increased rate of mutation [70]. As the cells adapt and evolve to survive in altered 

environments induced by dietary factors, via the “Darwinian” survival of the fittest, these cells become 

susceptible to genetic mutations and evolve into cells not subject to normal controls. We have adopted 

this idea and propose that as colonocytes progress from normal through to malignant, in response to 
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the environment, they adapt to the new environment so efficiently that they eventually become unable 

to survive in the previous or “normal” environment. Thus, when CRC cells are exposed to high 

concentrations of butyrate and other SCFA, they are not able to survive and thus undergo apoptosis or 

programmed cell death [71–74]. Epigenetically reprogrammed and transformed CRC cells faced with 

altered environments such as shortage of oxygen and nutrients, in this case butyrate as the energy 

source, can easily express genes to increase mobility to allow migration and proliferation into  

new environments.  

Figure 2. Cellular environment of low risk versus high risk of CRC. 

 

4.2. Influence of Diet and in vivo Studies 

There are experimental data in vivo to support the model which we have proposed, some of long 

standing. When 2.5–5 g three times daily of dietary supplementation with fermentable fibre are taken 

for 30 days, cirrhotic patients were associated with significantly reduced circulating levels of ammonia 

and faecal pH, and significantly increased circulating levels of SCFA [75]. Ammonia favours the 

growth of cancerous cells over healthy cells in vitro [57]. Lin et al. [56] showed that the life span of 

colonocytes, due to mucosal cell damage and altered DNA synthesis, are shortened by ammonia 

concentrations (35 mM was used in the studies) found under normal dietary conditions. Ammonia is 

thought to be involved in the colonic carcinogenic response, where the same group showed that the 

highest ammonia concentrations and luminal pH were found in the region of colon where cell 

proliferation and the incidence of polyps and cancer are highest [56,76]. High ammonia has been 

shown to increase inflammatory lesions in rats, which are established precursors in animal models and 

humans to the development of CRC. It has also been shown to increase cell proliferation making 

neoplastic transformation more efficient. The enhanced proliferation may increase errors in DNA 

copying and unmask latent DNA changes caused by earlier mutations [57]. 

Toden et al. [18] reported that rats fed with higher levels of dietary animal protein (as casein or red 

meat) and dietary plant protein (as soy) manifested increased colonocyte DNA damage. Feeding the 

rats with RS attenuated the damage, and increased the large bowel SCFA pool hence lowering faecal 

pH, which reflected caecum pH [18]. Further data from rats and pigs confirmed that fermentable fibre 

opposed colonocyte genetic damage induced by Western-type diets [16,17]. Le Leu et al. also 
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demonstrated that rats fed with RS were protected against intestinal tumorigenesis and RS decreased 

the tumour-promoting effects of indigestible protein (in particular digestion-resistant potato protein) on 

intestinal tumorigenesis in these rats [17]. Others have shown that both dietary whey and soy proteins 

altered the global gene expression profiles of colonocytes in rats with azoxymethane-induced colon 

tumours [77]. In rats fed with high amylose maize starch (HAMS) it was found that the dietary 

resistant protein source had a substantial influence on the fermentation products of HAMS. They 

suggested that these resistant proteins (rice, potato, soy and casein proteins) may alter the relative 

proportion of the caecal microbiota through the supply of nitrogen to the caecum and thus causing the 

differences in fermentation profiles of high amylose starch [78]. 

Duncan et al. [79] reported a large, statistically significant drop in faecal ammonia and SCFA 

(including butyrate) when healthy, obese volunteers consumed a high protein, low carbohydrate diet 

(30% protein, 4% carbohydrate, 66% fat as calories) as compared to an energy maintenance diet (13% 

protein, 52% carbohydrate, 35% fat). The lowering of SCFA is predictable but it would have expected 

that faecal ammonia would rise through diminished microbial utilisation. This study supports strongly 

our proposed model where the high risk colonic environment would facilitate free ammonia mobilisation 

into the cell and hence a decrease in excreted ammonia. The high risk colonic environment in this 

study would be high ammonia, low SCFA and high pH due to high protein, low carbohydrate and high 

fat diet. This, as explained previously, in a situation with high luminal ammonia, ammonia will be able 

to cross the mucosa barrier and only be absorbed by the colonocytes at alkaline pH. The molecules 

then diffuse into the cytoplasm following the high to low concentration gradient. This leads to a more 

alkaline environment in the cytoplasm as more and more ammonia is present. In order to neutralise the 

environment, mitochondria will pump out proton molecules and ionise ammonia molecules into 

ammonium ions.  

Lewin et al. [80] showed that there was a consistent and statistically significant increase in faecal 

N-nitrosocompounds (NOC) with a red meat diet in 21 volunteers. This study has shown that faecal 

NOC from red meat is able to form alkylating DNA adducts (specifically O6carboxymethylguanine 

adducts). If these and other related adducts are formed but not repaired, and cause mutation in key 

oncogenes and/or tumour suppressor genes, these events may explain the association of red meat with 

CRC [80,81]. 

4.3. In vitro Data to Support a “High Risk” Environment 

A number of alterations to normal protein expression have been demonstrated in CRC cells both  

in vitro and in vivo when adapted to the “high risk” environment [82,83]. Additionally, CRC cells have 

been shown to have a down-regulation of the primary butyrate transporter, monocarboxylate transporter-1 

(MCT-1). In conjunction with this, up-regulation of the high affinity glucose transporter, GLUT-1, and 

down-regulation of GLUT-2 (low affinity) would enable the cells to take up and utilise glucose 

efficiently and ensure their growth and survival in the absence of their conventional energy source, 

butyrate [84]. These data correlate with the hypothesis that there is a switch from butyrate to glucose 

as a preferential fuel source [53,84]. Recently, Donohoe et al. linked the effects of butyrate metabolism 

and the Warburg effect to epigenetic changes in colonocytes and hypothesized that this change in 

metabolic profile drives tumorigenesis in a “high risk” environment [85]. This has implications for 
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colonic stem cells that undergo proliferation and differentiation. In a “high risk” environment, these 

cells have the potential to accumulate genetic and epigenetic changes that may contribute to 

tumorigenesis, especially if these result in somatic mutations of oncogenes or silencing of key tumour 

suppressor genes. In vitro studies have also shown that in the presence of butyrate, colon carcinoma 

cells (e.g., HT-29 cells) acquire a differentiated phenotype through replacement of glucose for butyrate 

as the main carbon source with alterations in the transporter expression [84,86]. This clearly shows that 

a colon cancer cell has the ability to reverse its cellular transport system under the appropriate 

conditions. This opens the prospect of early diagnosis and prevention of CRC as epigenetic alterations 

may be reversible and correction of the cellular environment at this stage with proper treatment or by 

changing lifestyle factors [65,69]. 

De Silanes et al. [87] established a butyrate-resistant human adenocarcinoma cell line  

(BCS-TC2.BR2, growing continuously in 2 mM butyrate) from non-tumorigenic BCS-TC2 cells. The 

BCS-TC2.BR2 cells were resistant to stress-induced apoptosis and revealed a phenotype where their 

survival rates after glucose deprivation and heat shock were higher than those of the parental cells. The 

same group also reported that attaining such a resistant phenotype was accompanied with  

the acquisition of tumorigenic capacity where they inoculated BCS-TC2.BR2 cells into nude mice and 

these mice developed tumours [87]. This clearly demonstrates the ability of cells to adapt to the new 

environment for survival and this has been further supported by identification of mechanisms  

that potentially mediate the development of butyrate-resistance [88–91]. The data suggest that 

environmental pH, and subsequently, the overall environmental condition influences the growth and 

survival of cells. Cells need to undergo adaptation to the new environment to ensure survival in the 

sustained stress environment. As the colonocytes adapted to the “high risk” environment, the cells 

become more specific and therefore sensitive to changes in the intestinal environment. Butyrate 

resistance may also help to explain the recent findings from the CAPP2 study where a supplement of 

RS failed to alter polyp recurrence in patients with the Lynch syndrome [92]. It must be noted that the 

supplement was quite small and no faecal SCFA data were reported, but it is possible that butyrate 

may be ineffective in cancers where genetic predisposition is the dominant factor.  

5. Conclusions  

The conventional models of CRC suggest a linear adenoma to carcinoma sequence. However, the 

emerging evidence suggests an alternative scenario which is a response to sustained exposure to a 

hostile environment. This environment is the result of dietary intakes which do not favour healthy 

homeostasis of normal colonocytes. This hypothesis clearly explains the “butyrate paradox” 

phenomenon which has been observed for many years. In normal healthy large intestine, butyrate is a 

preferred energy source. However, in the shortage of butyrate, attributed partly by “Western diet”, 

glucose is substituted as the energy source for survival of these colonocytes. As they evolve to adapt to 

the new conditions, genetic manipulations are initiated with subsequent loss of function of critical 

genes and eventual loss of ability to undergo programmed cell death. These cells may therefore be 

considered as “normal” so that if the initial or healthy environment has been re-introduced, for 

example, by the presence of higher concentrations of butyrate, they will not be able to adapt rapidly 
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due to their altered genetic make-up. Hence, they will undergo butyrate-induced apoptosis, as seen in 

many in vitro and animal studies. 

Undigested dietary carbohydrates, especially RS, induce a low risk colonic environment by acting 

as a source of SCFA (which lowers luminal pH, increases abundance of butyrate-producing bacteria, 

serves as an energy source, increases blood flow and relaxes muscle in the large bowel) and bulking 

agents (which shorten intestinal transit time and hence reduce luminal exposure to carcinogens, in 

particular free ammonia). Diet alone (as dietary protein) has been shown to induce genetic damage in 

the large bowel [18], most probably due to sustained exposure to free ammonia. Bajka et al. found that 

ammonia levels in the caecal digesta were increased by RS in rats fed with high protein diet and the 

levels correlated negatively with digesta pH [93]. They suggested diminished exposure of colonocytes 

to this cytotoxic agent. Recent data provide evidence that RS reverses protein-induced colonocyte 

DNA damage in animal models, by altering the colonic environment [17,18,77,93]. Although the 

dietary fibre intake in native African populations has fallen due to urbanisation, their RS intake 

remains unchanged. Paradoxically, the incidence of CRC in these populations remains low despite 

reduced dietary fibre in their daily diets [94]. Human subjects on high protein, low carbohydrate diets are 

the best candidate to test our proposed CRC model. This model provides a means to prevent CRC in 

populations at risk. 

Our proposed model may help to explain the inconsistencies with the role of dietary fibre in CRC 

prevention. It must be emphasised that this model is aimed at providing a basis for the prevention of 

sporadic CRC. The recent study in patients with the Lynch syndrome [92] underscores the possibility 

that our hypotheses does not apply to genetic predisposition to CRC. One way to test this proposal is to 

obtain the RS contents in various published human trials, and those data can be re-analysed to establish 

the correlation between RS and CRC risk.  
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