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Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model
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Memory has a great impact on the evolution of every process related to human societies. Among them, the
evolution of an epidemic is directly related to the individuals’ experiences. Indeed, any real epidemic process is
clearly sustained by a non-Markovian dynamics: memory effects play an essential role in the spreading of diseases.
Including memory effects in the susceptible-infected-recovered (SIR) epidemic model seems very appropriate for
such an investigation. Thus, the memory prone SIR model dynamics is investigated using fractional derivatives.
The decay of long-range memory, taken as a power-law function, is directly controlled by the order of the
fractional derivatives in the corresponding nonlinear fractional differential evolution equations. Here we assume
“fully mixed” approximation and show that the epidemic threshold is shifted to higher values than those for
the memoryless system, depending on this memory “length” decay exponent. We also consider the SIR model
on structured networks and study the effect of topology on threshold points in a non-Markovian dynamics.
Furthermore, the lack of access to the precise information about the initial conditions or the past events plays
a very relevant role in the correct estimation or prediction of the epidemic evolution. Such a “constraint” is
analyzed and discussed.

DOI: 10.1103/PhysRevE.95.022409

I. INTRODUCTION

The study of epidemiology, concerning the dynamical
evolution of diseases within a population, has attracted much
interest during recent years [1]. Mathematical models of
infectious diseases have been developed in order to integrate
realistic aspects of disease spreading [2–5]. A simple and
commonly studied model, introduced by Kermack and McK-
endrick, is the susceptible-infected-recovered (SIR) model [6].
In this model, populations can be in each of three states:
susceptible, infected, and recovered (removed), denoted by S,
I, and R, respectively. Originally, it is assumed that susceptible
individuals become infected with a rate proportional to the
fraction of infected individuals in the overall population (fully
mixed approximation) and infected individuals recover at a
constant rate. The epidemic process presents a (percolation)
transition between a phase, in which the disease outbreak
reaches a finite fraction of the population, and a phase with only
a limited number of infected individuals [7,8]. The model has
also been investigated for population on lattices (e.g., [9–11])
or on networks (e.g., [12–14]).

For simplicity, we will keep the “medical epidemic”
vocabulary hereafter. However, the model has also been
interesting for describing nonmedical epidemics, such as for
financial bubbles [15,16], migration [17], opinion formation
[18,19], or internet “worm propagation” [20–22]. SIR models
with distributed delay and with discrete delay have also been
studied [23,24].

In the usual SIR model, it is assumed that all contacts
transmit the disease with the same probability. Moreover, the
transmission and recovery coefficients are constant. Hence
the state of system at each time does not depend on the

previous history of the system: it is a memoryless, so-called
Markovian, process. However, real surveys show evidence
of a non-Markovian spreading process [25,26] in agreement
with common expectation. The epidemic processes evolution
and control, in human societies, cannot be considered without
any memory effect. When a disease spreads within a human
population, the experience or knowledge of individuals about
that disease should affect their response [5]. If people know
about the history of a certain disease in the area where they
live, they use different precautions, such as vaccination, when
possible. Thus, some endogenous controlled suppression of
the spreading is expected, although other factors can help
[27–29]. However, knowledge about the history of a disease
does not have the same influence at all times. Experience
about the prevalence of a disease and precautions related to
the “old times” are not always applicable or recommended,
hence people tend to follow new strategies against the diseases.
In other words, memory of the earlier times could have less
effect on the present situation, as compared to more recent
times. It can be expected that long-range memory effects
decay in time more slowly than an exponential decay, but
can typically behave like a power-law damping function.

While much effort has been made so far to determine exact
epidemic thresholds in Markovian epidemic models [30–34],
few works have been devoted to study the non-Markovian
aspects of epidemic processes [35,36]. Furthermore, in this
work we focus on long-range memory effects, which means
arbitrarily long history can be included. That is in contrast
to short-term memory effects, which have been extensively
studied. For instance, Dodds and Watts [37] introduced a
general model of contagion considering memory of past
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exposures to a contagious influence. The authors have argued
that their model can fall into one of three universal classes,
due to the behavior of fixed point curves. Also, in [38–40], the
authors consider “implicit memory” by applying asynchronous
adapting in disease propagation. They show that this type of
memory can lead to a first-order phase transition in outbreaks,
thus hysteresis can arise in such models [40].

It is here briefly recalled that fractional calculus is a
valuable tool to observe the influence of memory effects on
the dynamics of systems [41–46], and has been recently used
in epidemiological models [47–50]. Typically, the evolution
of epidemiological models is described with differential
equations, the derivatives being of integer order. By replacing
the ordinary time derivative by a fractional derivative, a time
correlation function or memory kernel appears, thereby mak-
ing the state of the system dependent on all past states. Thus, it
seems that such a method based on derivatives with noninteger
order, as introduced by Caputo for geophysics problems [51],
is a very proper formalism for such non-Markovian problems.
Moreover, Caputo’s formalism provides the advantage that
it is not necessary to define the fractional order initial
conditions, when solving such differential equations [51–54].
Furthermore, the time correlation function, in the definition of
Caputo fractional derivative, is a power-law function, which is
flexible enough to reflect the fact that the contribution of more
early states is noticeably less relevant than the contribution
of more recent ones on the present state of the dynamical
system.

Most of the previous works have studied the epidemi-
ological models with fractional order differential equations
from a mathematical point of view. They mainly focused
on presenting effective mathematical methods in order to
solve the corresponding differential equations [49,55–57]. For
instance, in [57] a mathematical tool (the multistep generalized
differential transform method) is introduced to approximate
the numerical solution of the SIR model with fractional differ-
ential equations. Also in [48] the authors use fractional order
differential equations for epidemic models and concentrate
on the equilibrium points of the models and their asymptotic
stability of differential equations of fractional order. Other
variations of the SIR model with fractional derivatives have
also been studied. For instance, Seo et al. introduced the SIR
epidemic model with square root interaction of the susceptible
and infected individuals and discussed the local stability
analysis of the model [56]. Also in [49], numerical solution of
the SIR epidemic model of fractional order with two levels of
infection for the transmission of viruses in a computer network
has been presented.

In all previous works, the authors rarely discuss the effect
of fractional order differential equations and memory on the
epidemic thresholds and the macroscopic behavior of epidemic
outbreaks. Hence, one question remains; we address it in this
paper: How does the system robustness change if memory
is included in the SIR model? We also use the fractional
differential equations, describing the SIR model on structured
networks, to see the effect of topology on the evolution of the
SIR model including memory effects.

Furthermore the lack of access to accurate information on
initial conditions sometimes leads to doubt about epidemic
evolution predictions [58]. The same type of difficulty occurs

in related problems, such as in opinion formation [59,60].
Moreover, it may also happen in certain cases that individ-
uals do not believe in old strategies in order to avoid the
disease.

This means that the initial time for taking into account
the disease control memory is shifted toward more recent
times: thereafter, the dynamics is evolving with a new fraction
of susceptible and infected individuals, different from that
predicted by the solution of the differential equations. In
contrast, the fractional calculus method allows us to choose
any arbitrary initial time at which the effect of initial conditions
can be introduced on the spreading dynamics with a memory
content. The interest of fractional calculus will appear through
such aspects in the core of the paper.

Thus, the paper is organized as follows. In Sec. II, following
Caputo’s approach, we convert the differential equations of
the standard SIR model to the fractional derivatives, thereby
allowing us to consider memory effects. Using numerical
analysis results (Sec. III), we discuss the influence of memory
on the epidemic thresholds in Sec. III A. We also discuss
the dynamics of a non-Markovian epidemic process, when
choosing different initial conditions or modifying the propor-
tions of agents at a given time in Sec. III B. To complete our
discussion, we study the dynamics of the model on structured
networks in Sec. IV. We also point out that we have observed
qualitatively similar results for the SIS (susceptible-infected-
susceptible) epidemic model. The conclusions are found in
Sec. V.

II. MEMORIAL PROCESS TO FRACTIONAL EQUATION

The evolution of the standard SIR model is described by a
set of coupled ordinary differential equations for susceptible
(S), infected (I ), and recovered(R) individuals, respectively
given by

dS(t)

dt
= −βS(t)I (t),

dI (t)

dt
= βS(t)I (t) − γ I (t), (1)

dR(t)

dt
= γ I (t),

in which β and γ are infection and recovery coefficients,
respectively. The infected individual makes β contacts per
unit time producing new infections within a mean infectious
time of order 1/γ . The evolution of the model is controlled by
quantity β/γ , such that above the epidemic threshold, (β/γ )c,
the disease spreads among a finite fraction of individuals.

These (ordinary) differential equations describe a Markov
epidemic process, in which the state of individuals at each time
step does not depend on previous steps. The set of Eqs. (1) can
be solved iteratively until time t . In particular, the fraction
of susceptible individuals at time t , denoted as St , can be
determined. In fact, 1 − St is the size of outbreaks, i.e., the
population that has or has had the disease until time t .

In order to observe the influence of memory effects,
first we rewrite the differential equations (1) in terms of
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time-dependent integrals as follows:

dS(t)

dt
= −β

∫ t

t0

κ(t − t ′)S(t ′)I (t ′)dt ′,

dI (t)

dt
=

∫ t

t0

κ(t − t ′)[βS(t ′)I (t ′) − γ I (t ′)]dt ′, (2)

dR(t)

dt
= γ

∫ t

t0

κ(t − t ′)I (t ′)dt ′,

in which κ(t − t ′) plays the role of a time-dependent kernel
and is equal to a delta function δ(t − t ′) in a classical Markov
process. In fact, any arbitrary function can be replaced by a
sum of delta functions, thereby leading to a given type of time
correlations. A proper choice, in order to include long-term
memory effects, can be a power-law function which exhibits
a slow decay such that the state of the system at quite early
times also contributes to the evolution of the system. This type
of kernel guarantees the existence of scaling features as it is
often intrinsic in most natural phenomena.

Thus, let us consider the following power-law correlation
function for κ(t − t ′):

κ(t − t ′) = 1

�(α − 1)
(t − t ′)α−2, (3)

in which 0 < α � 1 and �(x) denotes the gamma function. The
choice of the coefficient 1/�(α − 1) and exponent (α − 2)
allows us to rewrite Eqs. (2) to the form of fractional
differential equations with the Caputo-type derivative. If this
kernel is substituted into Eqs. (2), the right-hand side of
the equations, by definition, are fractional integrals of order
(α − 1) on the interval [t0,t], denoted by t0D

−(α−1)
t . Applying

a fractional Caputo derivative of order α − 1 on both sides of
each Eq. (2), and using the fact the Caputo fractional derivative
and fractional integral are inverse operators, the following frac-
tional differential equations can be obtained for the SIR model:

c
t0
Dα

t S(t) = −βS(t)I (t),
c
t0
Dα

t I (t) = βS(t)I (t) − γ I (t), (4)
c
t0
Dα

t R(t) = γ I (t),

where c
t0
Dα

t denotes the Caputo derivative of order α, defined
for an arbitrary function y(t) as follows [51]:

c
t0
Dα

t y(t) = 1

�(α − 1)

∫ t

t0

y ′(τ )dτ

(t − t0)α
. (5)

Hence, the fractional derivatives, when introducing a convo-
lution integral with a power-law memory kernel, are useful to
describe memory effects in dynamical systems. The decaying
rate of the memory kernel (a time-correlation function)
depends on α. A lower value of α corresponds to more slowly
decaying time-correlation functions (long memory). Hence,
in some sense, the strength (through the “length”) of the
memory is controlled by α. As α → 1, the influence of memory
decreases: the system tends toward a memoryless system. Note
that for simplicity, we assume the same memory contributions
(same value of α) for different states of S, I , and R. Obviously,
more complicated functions than Eq. (3) and taking into
account different αi (i = 1,2,3) could be investigated in further
work to take into account different time scales.

Although analytical solutions of Eqs. (4) are hard to obtain
for the general case, they can be obtained at the early stage of
the epidemic under a linearization approximation. In this case,
it turns out that the number of infected individuals behaves as
a Mittag-Leffler function [52]:

I (t) = Eα,ζ (t) ≡
∑

k

[(β − γ )tα]k

�(αk + ζ )
(6)

in which ζ is a constant, which depends on the initial conditions
[52]. In particular, for α = ζ = 1, the Mittag-Leffler function
is the exponential function. Thus, in the early stage of epidemic
dynamics, the growth rate of the infected population in Eq. (6)
is positive, if β − γ > 0. Therefore, the number of infected
individuals grows exponentially in such a case, for β > γ , as
of course is expected for the standard memoryless SIR model.
The same reasoning applies in order to determine the epidemic
threshold for α < 1.

III. NUMERICAL RESULTS

Let it be reemphasized that Eqs. (4) consist in a system of
coupled nonlinear differential equations of fractional order, in
the following general form:

c
t0
Dα

t y(i)(t) = f (i)(t,y(1)(t),y(2)(t),y(3)(t)),
(7)

y(i)(t0) = y(i0),

where i = 1,2,3 and y(1),y(2),y(3) denote S,I,R cases, re-
spectively. Also, y(i0) are constants which indicate the initial
conditions.

To solve the equations, we use the predictor-corrector
algorithm, which is well known for obtaining a numerical
solution of first-order problems [61–63]. It is assumed that
there exits a unique solution for each of y(i) on the interval
[0,T ] for a given set of initial conditions. Considering a
uniform grid {tn = nh : n = 0,1,2, . . . ,N}, in which N is
an integer and h ≡ T/N , each Eq. (7) can be rewritten in
a discrete form,

y(i)
n = y

(i)
0 + hα

n−1∑
k=0

bn−k−1f
(i)
k , (8)

where the coefficients bn−k−1 refer to the contribution of
each of the n − 1 past states on the present state of n. The
coefficients are given by

bn−k−1 = (n − 1 − k)α − (n − k)α

�(α + 1)
. (9)

Thereby after solving Eq. (7), numerically, the influence
of memory on the evolution of the SIR epidemic model can
be analyzed. As mentioned in the Introduction, let us consider
two pertinent aspects successively: the finite time behavior and
the role of changing initial conditions.

A. Epidemic threshold at finite times

Let us compare the evolution of a system including memory
effects with the memoryless case. We solve Eq. (7) with initial
conditions y(10) = S0 = 1 − ε, y(20) = I0 = ε. Figure 1 shows
the size of the outbreak for different values of α, measured
until t = 100 and for ε = 10−4. The size of outbreak, 1 − St ,
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FIG. 1. Outbreak size 1 − St for a SIR system having evolved
until time t = 100, vs the parameter defining the threshold: β/γ ,
when including memory effects. Each curve corresponds to a different
value of α, as indicated in the inset. As α decreases, the epidemic
threshold (β/γ )c shifts to higher values.

is zero (with accuracy 10−4) for small values of β/γ . The
specific value of β/γ , in which the epidemic size starts to get
a nonzero value, is identified as the epidemic threshold point.

The stationary time for a memoryless system (α = 1) is
t = 100. With decreasing the value of α (including memory)
the system needs much time to reach the stationary state. Hence
at t = 100, the threshold point is shifted to the higher value of
β/γ . Figure 2 shows that the threshold point is increased with
decreasing of α for a finite time t . Furthermore, as can be seen
in Fig. 1, the size of outbreaks decreases for decreasing α.

Let the interval [t0,t] be the time interval in which memory
effects are taken into account. In Fig. 3, we compare the
evolution of the model with memory for different values of
the finite time t . The memory effects are considered for a
weight α = 0.2. It is seen that as time evolves the influence
of memory decreases, since memory effects decay in time like

10−1 100

α

(β
/γ

) c

t=20
t=200
t=2000

100.3

100.2

100.1

100.0

FIG. 2. Variation of threshold point vs α for different finite times
t = 20,200,2000. For each time, the epidemic threshold is shifted to
higher values with decreasing α. The axes are logarithmic and the
numbers are presented as base 10 exponential notation.

1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

β/γ

1−
S t

α=1.0 , t=20
α=0.2 , t=20
α=0.2 , t=200
α=0.2 , t=2000

FIG. 3. Order parameter 1 − St for a SIR system having evolved
until time t , when including much memory (α = 0.2). Each curve
corresponds to a different finite time t , as indicated in the inset. The
threshold values can be compared with that of the corresponding
epidemic threshold for a memoryless system, i.e., when α = 1 (and
t = 20). The curves for α = 1 at t = 200 and t = 2000 are not drawn
for better readability.

a power-law function. Hence, the epidemic threshold shifts
to lower values of effective infection rate β/γ and approaches
the threshold of the memoryless model (α = 1). The curves for
α = 1 at t = 200 and t = 2000 are hardly distinguishable from
the curve at t = 20 and are not drawn for better readability.
The variation of threshold point, with increasing finite time, is
shown in Fig. 4. Furthermore, for a given β/γ value, it appears
that there is more time available for disease spreading, whence
more individuals become infected.

B. Initial conditions

Recall that the dynamics of a non-Markovian process is
directly influenced by all events from the beginning of the
process. However, some loss of information about some period
of time in the past may lead one to consider that the influence
of memory might not need to be considered as continuous.

102 103 104

t

(β
/γ

) c

α=0.2
α=0.5
α=0.8

100.3

100.2

100.1

100.0

FIG. 4. Variation of threshold point vs t for different values of
α = 0.2,0.5,0.8. For each α, the epidemic threshold is shifted to
lower values with increasing finite time. The axes are logarithmic
and the numbers are presented as base 10 exponential notation.
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It may happen, in many social networks, that individuals do
not have enough information about the history of a disease,
as recent cases and studies indicate; e.g., see [64–67]. Only
after several individuals have already been infected, do people
start to increase their knowledge about the disease and take
different precautions. The question arises on how the “initial
time” at which a non-Markovian process is started affects the
subsequent dynamics of the process.

If two Markovian processes start at two different times, the
evolution of both processes is identical. However, the scenario
is quite different for a non-Markovian process, i.e., in which the
memory plays a role. This is illustrated through Fig. 5 where
the fractions of susceptible, infected, and removed individuals
are compared in the case of two Markov and non-Markov
epidemic processes. Continuous and dashed (black) lines
correspond to a system with and without including memory
effects, respectively, evolving from the same initial time t = 0.
As can be seen, the fraction of susceptible individuals is greater
in a system with inclusion of memory effects with respect to
that ignoring the memory [Fig. 5(a)]. In other words, the expe-
rience and knowledge which individuals have about the disease
are obviously helping them to protect themselves against
the disease. Equivalently, in a system including the memory
effects, the infection grows more slowly as seen in Fig. 5(b).

Thereafter, consider that a non-Markovian process, includ-
ing memory effects, has evolved until a specific time t1. Let the
process be continuing its evolution, but let the memory of the
system be removed at that time. This corresponds to having a
new initial time and new initial conditions for the epidemics
spreading. The process can be continued without or with
memory. The Markovian case is trivial thereafter and thus not
discussed. Instead, consider that memory effects are only taken
into account at this starting “new initial time.” In other words,
let the population ignore the disease control history (memory)
until t1; let the system continue its dynamics but taking
into account memory effects thereafter from t1. The initial
conditions for the evolution of the system are now a fraction
of susceptible and infected individuals at time t1. The curves
with square symbols in Fig. 5 correspond to what happens for
different “new initial times” t1 = 30,70, for the dynamics of
such a non-Markovian epidemic process. As can be seen, at the
beginning of the dynamics, the fraction of susceptible individ-
uals is reduced, since people do not know about the disease.
However, as soon as it is influenced by memory, the system
becomes more resilient to the spreading. Hence, the fraction
of S individuals remains greater as compared to that with a
memoryless system, having started at t = 0. In a similar man-
ner, the fraction of infected and removed individuals deviate
from the original one and tend toward the populated states of a
memoryless system when the memory from further past times
is included. In this case, the curves become closer to the dashed
curve corresponding to a memoryless system. That means that
the system loses the information related to past times and tends
to present a behavior similar to a memoryless system.

Finally, one can consider “to remove the memory” of
an epidemic process at various times. At each time step,
the system is supposed to lose (or practically negate) the
information about the disease before some “reawareness time”
(see also [68]) and to continue its dynamics regardless of
the past. For illustration, consider the case of such a sudden
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FIG. 5. Effect of different initial times on the dynamics of
a non-Markovian process. The curves denote the fraction of (a)
susceptible, (b) infected, and (c) removed individuals. Dashed and
solid lines correspond to Markovian and non-Markovian processes,
respectively, started from t = 0. The curves with symbols correspond
to the dynamics of non-Markovian processes, started from nonzero
initial times with different initial conditions.

awareness and its impact on epidemic outbreaks through Fig. 5;
the system loses its memory at times t1 = 30 and t2 = 70,
i.e., the dynamics is stopped at t1 = 30, then is continued
until t2 = 70, removing all the history of the system before
that time, next reintroducing the memory dynamics again at
t2 = 70: see the (red curves with) triangular symbols in Fig. 5
corresponding to this case of a double “loss of memory.”
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FIG. 6. Fraction of infected individuals versus time for the SIR
model on a scale-free network with degree exponent λ = 3 and for
different values of α.

Notice that in this particular illustrative case, the behavior of
the system is seen to be close to the dynamics of a memoryless
system, since contributions of the memory of the system are
sometimes removed. Such an illustration points to the interest
of the model in order to compare it with the case of epidemics
spreading waves [65]; for completeness, let it be pointed out
that the connection of periodic epidemics to SIR models has
been already mentioned [69]: flu is yearly recurrent. Notice
also that the value of α could be modified at each new aware-
ness time, but this investigation goes outside the present paper.

IV. THE MODEL ON STRUCTURED NETWORKS

So far we have considered the fully mixed approximation,
such that an infected individual is equally likely to spread the
disease to any other individual. However, in the real world an
individual connects to a small fraction of people. Hence, as is
well known, more realistic modeling can be studied through
networks, where their topology has a significant effect on the
epidemic process [70–72]. For homogeneous networks, each
individual has the same number of connections k ≈ 〈k〉 and
disease propagates with spreading rate β〈k〉. In this case, it is
obvious that the epidemic threshold ( β

γ
)c is simply replaced

by ( β

γ
)c〈k〉. It is also true for the case of fractional differential

equations (4). In other words, threshold point in Fig. 1 for each
value of α is shifted to ( β

γ
)c〈k〉.

Now, let us consider heterogeneous scale-free networks
with degree distribution P (k) ∼ k−λ. In heterogeneous mean-
field approximation, it is assumed that all nodes are statistically
equivalent and thus one can consider groups of nodes with the
same degree k. With this assumption the ordinary differential
equations describing the SIR model are given by

dsk(t)

dt
= −βksk(t)�k(t),

dik(t)

dt
= βksk(t)�k(t) − γ ik(t), (10)

drk(t)

dt
= γ ik(t),
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α=0.2 , t=100
α=0.4 , t=100
α=0.6 , t=100
α=1.0 , t=100

FIG. 7. Outbreak size, 1 − St , for the SIR model on a scale-free
network with degree exponent λ = 3 in terms of β/γ . The dynamics
is evolved until time t = 100, when including memory effects. Each
curve corresponds to a different value of α, as indicated in the insert.

where

�k(t) =
∑

k−1 kP (k)ik(t)∑
k kP (k)

(11)

and ik, sk , and rk denote the density of infected, susceptible,
and removed nodes in each group, respectively. It turned out
that in scale-free networks characterized by a degree exponent
2 < λ � 3, there is no epidemic threshold [72].

Following the same procedure presented in Sec. II, we can
rewrite Eqs. (10) to the fractional derivatives, as follows:

c
t0
Dα

t sk(t) = −βsk(t)�k(t),
c
t0
Dα

t ik(t) = βsk(t)�k(t) − γ ik(t), (12)
c
t0
Dα

t rk(t) = γ ik(t),

For a network with degree exponent λ = 3, we solve Eqs. (12)
numerically. Figure 6 shows the evolution of the fraction
of total infected individuals i(t) = ∑

k P (k)ik(t), with con-
sidering memory effects with different values of α. While
for a memoryless SIR model (α = 1), the system reaches
a stationary state after a short time (t 	 20), the stationary
time is increased with decreasing the value of α. Furthermore,
we obtain the size of outbreaks at a finite time. Figure 7
shows 1 − St , measured with accuracy 10−5 until t = 100 for
different values of α. As we can see, the epidemic threshold
is always zero, as it is for Markov epidemic spreading on
scale-free networks with λ = 3. However, the size of epidemic
decreases with decreasing α. The same results are obtained for
networks with 2 < λ < 3. However, for λ > 3, the epidemic
threshold is shifted with including the memory, similar to what
is observed for the homogeneous networks.

V. CONCLUSION

Memory plays a significant role in the evolution of many
real dynamical processes, including the cases of epidemic
spreading. Here we have reported a study on the evolution
of the SIR epidemic model, considering memory effects.
Using the fractional calculus technique, we show that the
dynamics of such a system depends on the strength of memory
effects, controlled by the order of fractional derivatives α. At
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finite times, including memory effects, the epidemic threshold
(β/γ )c is shifted to higher values than those for memoryless
systems, at values depending on the memory decay rate
α. In the case that the model evolves on heterogeneous
scale-free networks with 2 < λ � 3, the threshold point is
always zero. However, the fraction of individuals who are
infected or recovered, is reduced if the memory “length”
increases. Hence, memory renders the system more robust
against the disease spreading. If the epidemic process evolves
further in time, for a fixed memory strength, (i) the disease
can infect more individuals and (ii) the epidemic threshold is
shifted to smaller values and tends to the memoryless case
values.

Furthermore, we have shown the following result: the
evolution of an epidemic process, including memory effects,
much depends on the fraction of infected individuals at the
beginning of the memory effect insertion in the evolution.
During a non-Markovian epidemic process, if the system
abruptly loses its memory at a definite time and if from that
time on, one lets the non-Markovian process continue again,
starting with the number of infected individuals at that time,
the dynamics of the system deviates from the basic case, in
which the system continuously includes memory effects from
the beginning of the process.

Our observations are obtained from a simple epidemio-
logical model: the SIR model. Obviously many parameters
are here assumed to be constant. We are aware that some,
e.g., policy, feedback might influence the parameter values.
They may depend on space, groups, and time. External field
conditions may also surely influence real aspects. However, we
guess that many qualitative behaviors as those presented here
are likely to be quite generally found in reality. More advanced
epidemic models, based on various types of complex networks,
are surely interesting subjects for further investigations, in line
with investigations such as, e.g., in [30–34]. We also wish to
point out that we have observed qualitatively similar results for
the SIS epidemic model. Finally, we may claim that our results
are not limited to the epidemiological (“medical”) models but
also can be extended for analogous epidemic spreading of
rumors, gossip, opinions, religions, and other topics pertinent
to epidemics on many social networks.
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FIG. 8. Schematic comparison between homogeneous and frac-
tional time axes.

APPENDIX

It could be instructive to study fractional order operators
within a geometric interpretation (see interesting references
in [53]). Here we compare the time scales in fractional- and
integer-order dynamics. To image a geometric interpretation,
let us consider the right-sided fractional integral of order α,

xα
t = 1

�(α)

∫ t

0
v(τ )(t − τ )α−1dτ (A1)

and write it in the form

xα
t =

∫ t

0
v(τ )dTt (τ ), (A2)

where

Tt (τ ) = 1

�(α + 1)
{tα − (τ − t)α}. (A3)

If we compare Eq. (A2) with its counterpart xα
t = ∫ t

0 v(τ )dτ , in
the homogeneous time scheme, the main difference is related
to the different time variables T and τ . Notice that time
variable Tt (τ ) has a scaling property. If we take t1 = kt and
τ1 = kτ , then Tt1 (τ1) = kαTt (τ ). Hence, in the fractional order
dynamics, the time is “accelerating” in the early time and after
that it is “slowing down,” as sketched in Fig. 8.

In this case, the “passing time” in the two axes of time is not
the same. For this reason, in epidemic “fractional” dynamics,
the epidemic threshold is shifted to the higher values. A lower
α indicates a “stronger” (long-lasting) memory and a more
pronounced shift of threshold point. However, if one waits long
enough, the same behavior will be observed in both fractional
and usual homogeneous time. In fractional dynamics, after a
“very long” time, the threshold point coincides with the one
appearing in integer-order dynamics.
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[36] M. Boguñá, L. F. Lafuerza, R. Toral, and M. A. Serrano, Phys.

Rev. E 90, 042108 (2014).

[37] P. S. Dodds and D. J. Watts, Phys. Rev. Lett. 92, 218701
(2004).

[38] L. Chen, F. Ghanbarnejad, W. Cai, and P. Grassberger, Europhys.
Lett. 104, 50001 (2013).

[39] W. Cai, L. Chen, F. Ghanbarnejad, and P. Grassberger, Nat. Phys.
11, 936 (2015).

[40] L. Chen, F. Ghanbarnejad, and D. Brockmann,
arXiv:1603.09082.

[41] R. Herrmann, Fractional Calculus: An Introduction for Physi-
cists, 2nd ed. (World Scientific, River Edge, NJ, 2014).

[42] P. L. Butzer, U. Westphal, J. Douglas, W. R. Schneider, G. Za-
slavsky, T. Nonnemacher, A. Blumen, and B. West, Applications
of Fractional Calculus in Physics (World Scientific, Singapore,
2000).

[43] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[44] H. Safdari, M. Z. Kamali, A. H. Shirazi, M. Khaliqi, G. Jafari,

and M. Ausloos, PLoS One 11, e0154983 (2016).
[45] H. Ebadi, M. Saeedian, M. Ausloos, and G. R. Jafari, Europhys.

Lett. 116, 30004 (2016).
[46] H. Safdari, A. V. Chechkin, G. R. Jafari, and R. Metzler, Phys.

Rev. E 91, 042107 (2015).
[47] E. F. D. Goufo, R. Maritz, and J. Munganga, Adv. Diff. Eq. 278,

1 (2014).
[48] H. A. A. El-Saka, Math. Sci. Lett. 2, 195 (2013).
[49] A. A. M. Arafa, M. Khalil, and A. Hassan, J. Fract. Calc. Appl.

6, 208 (2015).
[50] A. A. M. Arafa, S. Z. Rida and M. Khalil, Int. J. Biomath 7,

1450036 (2014).
[51] M. Caputo, Geophys. J. R. Astron. Soc. 13, 529 (1967).
[52] I. Podlubny, Fractional Differential Equations (Academic, New

York, 1999).
[53] I. Podlubny, Fract. Calc. Appl. Anal. 5, 367 (2002).
[54] A. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, in Theory

and Applications of Fractional Differential Equations, North-
Holland Mathematics Studies Vol. 204 (Elsevier Science B. V.,
Amsterdam, 2006).

[55] F. Awawdeh, A. Adawi, and Z. Mustafa, Chaos, Solitons Fractals
42, 3047 (2009).

[56] Y. I. Seo, A. Zeb, G. Zaman, and I. H. Jung, Appl. Math. 3, 1882
(2012).

[57] A. A. Freihat and A. H. Handam, Appl. Appl. Math. 9, 622
(2014).

[58] A. H. Shirazi, A. Namaki, A. A. Roohi, and G. R. Jafari, J. Artif.
Soc. Soc. Simul. 16, 1 (2013).

[59] L. F. Caram, C. F. Caiafa, A. N. Proto, and M. Ausloos, Physica
A 389, 2628 (2010).

[60] L. F. Caram, C. F. Caiafa, M. Ausloos, and A. N. Proto, Phys.
Rev. E 92, 022805 (2015).

[61] K. Diethelm and A. D. Freed, in The FracPECE Subroutine for
the Numerical Solution of Differential Equations of Fractional
Order, Forschung und wissenschaftliches Rechnen 1998, edited
by S. Heinzel and T. Plesser (GWDG-Berichte, Gesellschaft für
wissenschaftliche Datenverarbeitung, Göttingen, 1999), Vol. 52,
pp. 57–71.

[62] K. Diethelm, N. J. Ford, and A. D. Freed, Num. Algorithms 36,
31 (2004).

[63] R. Garrappa, Int. J. Comput. Math. 87, 2281 (2010).
[64] L. Eichelberger, Soc. Sci. Med. 65, 1284 (2007).
[65] B. K. Johns, in Changing Waves: The Epidemics of 1832 and

1854, Ch2olera: Hamilton’s Forgotten Epidemics, edited by

022409-8

https://doi.org/10.1006/jtbi.1996.0088
https://doi.org/10.1006/jtbi.1996.0088
https://doi.org/10.1006/jtbi.1996.0088
https://doi.org/10.1006/jtbi.1996.0088
https://doi.org/10.1016/S0378-4371(03)00176-6
https://doi.org/10.1016/S0378-4371(03)00176-6
https://doi.org/10.1016/S0378-4371(03)00176-6
https://doi.org/10.1016/S0378-4371(03)00176-6
https://doi.org/10.1103/PhysRevE.82.051921
https://doi.org/10.1103/PhysRevE.82.051921
https://doi.org/10.1103/PhysRevE.82.051921
https://doi.org/10.1103/PhysRevE.82.051921
https://doi.org/10.1103/PhysRevE.64.066112
https://doi.org/10.1103/PhysRevE.64.066112
https://doi.org/10.1103/PhysRevE.64.066112
https://doi.org/10.1103/PhysRevE.64.066112
https://doi.org/10.1098/rspb.2007.1159
https://doi.org/10.1098/rspb.2007.1159
https://doi.org/10.1098/rspb.2007.1159
https://doi.org/10.1098/rspb.2007.1159
https://doi.org/10.1103/PhysRevLett.104.258701
https://doi.org/10.1103/PhysRevLett.104.258701
https://doi.org/10.1103/PhysRevLett.104.258701
https://doi.org/10.1103/PhysRevLett.104.258701
https://doi.org/10.1016/j.physa.2004.06.091
https://doi.org/10.1016/j.physa.2004.06.091
https://doi.org/10.1016/j.physa.2004.06.091
https://doi.org/10.1016/j.physa.2004.06.091
https://doi.org/10.1142/S021952591250049X
https://doi.org/10.1142/S021952591250049X
https://doi.org/10.1142/S021952591250049X
https://doi.org/10.1142/S021952591250049X
https://doi.org/10.1016/j.physa.2012.09.030
https://doi.org/10.1016/j.physa.2012.09.030
https://doi.org/10.1016/j.physa.2012.09.030
https://doi.org/10.1016/j.physa.2012.09.030
https://doi.org/10.1016/j.physa.2014.09.006
https://doi.org/10.1016/j.physa.2014.09.006
https://doi.org/10.1016/j.physa.2014.09.006
https://doi.org/10.1016/j.physa.2014.09.006
https://doi.org/10.1016/j.nonrwa.2010.05.018
https://doi.org/10.1016/j.nonrwa.2010.05.018
https://doi.org/10.1016/j.nonrwa.2010.05.018
https://doi.org/10.1016/j.nonrwa.2010.05.018
https://doi.org/10.1007/BF00169563
https://doi.org/10.1007/BF00169563
https://doi.org/10.1007/BF00169563
https://doi.org/10.1007/BF00169563
https://doi.org/10.1016/j.nonrwa.2008.10.014
https://doi.org/10.1016/j.nonrwa.2008.10.014
https://doi.org/10.1016/j.nonrwa.2008.10.014
https://doi.org/10.1016/j.nonrwa.2008.10.014
https://doi.org/10.1016/j.physa.2003.09.023
https://doi.org/10.1016/j.physa.2003.09.023
https://doi.org/10.1016/j.physa.2003.09.023
https://doi.org/10.1016/j.physa.2003.09.023
https://doi.org/10.1093/imammb/5.3.181
https://doi.org/10.1093/imammb/5.3.181
https://doi.org/10.1093/imammb/5.3.181
https://doi.org/10.1093/imammb/5.3.181
https://doi.org/10.2217/17469600.2.5.399
https://doi.org/10.2217/17469600.2.5.399
https://doi.org/10.2217/17469600.2.5.399
https://doi.org/10.2217/17469600.2.5.399
https://doi.org/10.1140/epjb/e20020122
https://doi.org/10.1140/epjb/e20020122
https://doi.org/10.1140/epjb/e20020122
https://doi.org/10.1140/epjb/e20020122
https://doi.org/10.1103/PhysRevLett.97.088701
https://doi.org/10.1103/PhysRevLett.97.088701
https://doi.org/10.1103/PhysRevLett.97.088701
https://doi.org/10.1103/PhysRevLett.97.088701
https://doi.org/10.1103/PhysRevLett.90.028701
https://doi.org/10.1103/PhysRevLett.90.028701
https://doi.org/10.1103/PhysRevLett.90.028701
https://doi.org/10.1103/PhysRevLett.90.028701
https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1038/srep24676
https://doi.org/10.1038/srep24676
https://doi.org/10.1038/srep24676
https://doi.org/10.1038/srep24676
https://doi.org/10.1103/PhysRevLett.110.108701
https://doi.org/10.1103/PhysRevLett.110.108701
https://doi.org/10.1103/PhysRevLett.110.108701
https://doi.org/10.1103/PhysRevLett.110.108701
https://doi.org/10.1103/PhysRevE.90.042108
https://doi.org/10.1103/PhysRevE.90.042108
https://doi.org/10.1103/PhysRevE.90.042108
https://doi.org/10.1103/PhysRevE.90.042108
https://doi.org/10.1103/PhysRevLett.92.218701
https://doi.org/10.1103/PhysRevLett.92.218701
https://doi.org/10.1103/PhysRevLett.92.218701
https://doi.org/10.1103/PhysRevLett.92.218701
https://doi.org/10.1209/0295-5075/104/50001
https://doi.org/10.1209/0295-5075/104/50001
https://doi.org/10.1209/0295-5075/104/50001
https://doi.org/10.1209/0295-5075/104/50001
https://doi.org/10.1038/nphys3457
https://doi.org/10.1038/nphys3457
https://doi.org/10.1038/nphys3457
https://doi.org/10.1038/nphys3457
http://arxiv.org/abs/arXiv:1603.09082
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1371/journal.pone.0154983
https://doi.org/10.1371/journal.pone.0154983
https://doi.org/10.1371/journal.pone.0154983
https://doi.org/10.1371/journal.pone.0154983
https://doi.org/10.1209/0295-5075/116/30004
https://doi.org/10.1209/0295-5075/116/30004
https://doi.org/10.1209/0295-5075/116/30004
https://doi.org/10.1209/0295-5075/116/30004
https://doi.org/10.1103/PhysRevE.91.042107
https://doi.org/10.1103/PhysRevE.91.042107
https://doi.org/10.1103/PhysRevE.91.042107
https://doi.org/10.1103/PhysRevE.91.042107
https://doi.org/10.12785/msl/020308
https://doi.org/10.12785/msl/020308
https://doi.org/10.12785/msl/020308
https://doi.org/10.12785/msl/020308
https://doi.org/10.1142/S1793524514500363
https://doi.org/10.1142/S1793524514500363
https://doi.org/10.1142/S1793524514500363
https://doi.org/10.1142/S1793524514500363
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1016/j.chaos.2009.04.012
https://doi.org/10.1016/j.chaos.2009.04.012
https://doi.org/10.1016/j.chaos.2009.04.012
https://doi.org/10.1016/j.chaos.2009.04.012
https://doi.org/10.4236/am.2012.312257
https://doi.org/10.4236/am.2012.312257
https://doi.org/10.4236/am.2012.312257
https://doi.org/10.4236/am.2012.312257
https://doi.org/10.18564/jasss.2054
https://doi.org/10.18564/jasss.2054
https://doi.org/10.18564/jasss.2054
https://doi.org/10.18564/jasss.2054
https://doi.org/10.1016/j.physa.2010.02.032
https://doi.org/10.1016/j.physa.2010.02.032
https://doi.org/10.1016/j.physa.2010.02.032
https://doi.org/10.1016/j.physa.2010.02.032
https://doi.org/10.1103/PhysRevE.92.022805
https://doi.org/10.1103/PhysRevE.92.022805
https://doi.org/10.1103/PhysRevE.92.022805
https://doi.org/10.1103/PhysRevE.92.022805
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1080/00207160802624331
https://doi.org/10.1080/00207160802624331
https://doi.org/10.1080/00207160802624331
https://doi.org/10.1080/00207160802624331
https://doi.org/10.1016/j.socscimed.2007.04.022
https://doi.org/10.1016/j.socscimed.2007.04.022
https://doi.org/10.1016/j.socscimed.2007.04.022
https://doi.org/10.1016/j.socscimed.2007.04.022


MEMORY EFFECTS ON EPIDEMIC EVOLUTION: THE . . . PHYSICAL REVIEW E 95, 022409 (2017)

D. A. Herring and H. T. Battles (McMaster University, Hamilton,
CND, 2012), pp 42–51.

[66] D. M. Morens and J. K. Taubenberger, Lancet Infect. Dis. 15,
852 (2015).

[67] O. Tomori, BMC Med. 13, 116 (2015).
[68] S. Funk, E. Gilad, C. Watkins, and V. A. A. Jansen, Proc. Natl.

Acad. Sci. USA 106, 6872 (2009).

[69] D. Greenhalgh, IMA J. Math. Appl. Med. Biol. 5, 81 (1988).
[70] C. Moore and M. E. J. Newman, Phys. Rev. E 61, 5678

(2000).
[71] M. Kuperman and G. Abramson, Phys. Rev. Lett. 86, 2909

(2001).
[72] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200

(2001).

022409-9

https://doi.org/10.1016/S1473-3099(15)00109-7
https://doi.org/10.1016/S1473-3099(15)00109-7
https://doi.org/10.1016/S1473-3099(15)00109-7
https://doi.org/10.1016/S1473-3099(15)00109-7
https://doi.org/10.1186/s12916-015-0359-7
https://doi.org/10.1186/s12916-015-0359-7
https://doi.org/10.1186/s12916-015-0359-7
https://doi.org/10.1186/s12916-015-0359-7
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1073/pnas.0810762106
https://doi.org/10.1093/imammb/5.2.81
https://doi.org/10.1093/imammb/5.2.81
https://doi.org/10.1093/imammb/5.2.81
https://doi.org/10.1093/imammb/5.2.81
https://doi.org/10.1103/PhysRevE.61.5678
https://doi.org/10.1103/PhysRevE.61.5678
https://doi.org/10.1103/PhysRevE.61.5678
https://doi.org/10.1103/PhysRevE.61.5678
https://doi.org/10.1103/PhysRevLett.86.2909
https://doi.org/10.1103/PhysRevLett.86.2909
https://doi.org/10.1103/PhysRevLett.86.2909
https://doi.org/10.1103/PhysRevLett.86.2909
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200



