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Abstract: We aimed to identify high-priority organophosphorus flame retardants for action and
research. We thus critically reviewed literature between 2000 and 2019 investigating organophosphorus
flame retardants’ presence indoors and human exposure in Europe, as well as epidemiological evidence
of human effects. The most concentrated compounds indoors were tris(2-butoxyethyl)phosphate
(TBOEP), tris(1-chloro-2-propyl)phosphate (TCIPP), tris(2,3-dichloropropyl)phosphate (TDCIPP).
TBOEP and TCIPP were the most consistently detected compounds in humans’ urine, hair or
breast milk as well as tris (butyl) phosphate (TNBP) and tris (phenyl) phosphate (TPHP). Notably,
epidemiological evidence concerned reprotoxicity, neurotoxicity, respiratory effects and eczema
risk for TDCIPP, eczema increase for TBOEP, and neurodevelopmental outcomes for Isopropylated
triarylphosphate isomers (ITPs). Given the ubiquitous presence indoors and the prevalence of
exposure, the growing health concern seems justified. TDCIPP and TPHP seem to be of particular
concern due to a high prevalence of exposure and epidemiological evidence. TBOEP and TNBP
require epidemiological studies regarding outcomes other than respiratory or dermal ones.

Keywords: environmental health; indoor air quality; epidemiology; biomonitoring; chemical safety;
organophosphate ester

1. Introduction

Flame retardants are chemical compounds that have, since the 1960s, been added to many
products during the manufacturing process [1] with the intention of minimizing the risk of a
fire starting, or reducing fire propagation [2]. Polybrominated biphenyls were used in products
until they were phased out in 1976. They were replaced by a very similar set of chemicals called
polybrominated diphenyl ethers, a family of brominated flame retardants. Polybrominated diphenyl
ethers were the most commonly used flame retardants until the early 2000s [3]. They were added
to consumer products, including furniture, children’s products, and electronics [4]. Because of
their negative impacts on both the environment and health, due to their bioaccumulation and
persistence properties, they have been classified as persistent organic pollutants (POPs) under
the Stockholm Convention and their use has been restricted in Europe since the 2000s [5–8].
Organophosphorus Flame Retardants (OPFRs) were used, among their other uses as plasticizers
or lubricants, as a replacement for brominated flame retardants to maintain fire safety standards after
their phase-out [9,10]. In Europe, the total consumption of flame retardants in 2015 was 498,000 metric
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tons, of which 18% were phosphorus flame retardants, representing 89,640 metric tons [11]—twice
as much as brominated flame retardants. OPFRs are the second-largest flame retardants used in
Europe, after aluminum trihydroxide [11]. OPFRs are organic esters of phosphoric acid, containing
ether alkyl chains or aryl groups, and may be halogenated or nonhalogenated [4]. Halogenated
organophosphates are used as flame retardants, while nonhalogenated organophosphates are mostly
used as plasticizers in consumer products, textiles and construction materials [12,13]. More specifically,
halogenated organophosphates containing such chlorinated forms as tris(1-chloro-2-propyl)phosphate
(TCIPP) or tris(2,3-dichloropropyl)phosphate (TDCIPP) are also widely used in furniture, textiles,
building materials, polyurethane foam and electronics. Nonhalogenated flame retardants such as
tris(2-butoxyethyl)phosphate (TBOEP), Trimethylphosphate (TMP) or Tris(3,5-xylenyl)phosphate (TXP)
are mostly used in floor polishes, coatings, engineering thermoplastics and epoxy resins [10]. All OPFR
acronyms used are presented in Table S1.

OPFRs are not chemically bound in products and may release into the environment via
volatilization, leaching and/or abrasion [14]. They are ubiquitous in the environment and, since the
early 2000s, can be found in water, biota, sediment and soil; because of their widespread use in
consumer products, they are especially present in indoor environments in which they partition air and
dust [15]. OPFRs have thus the potential to expose a population via the ingestion of dust, inhalation of
air or dermal contact with both.

Toxicological studies have observed hazards including neurotoxic and endocrine effects. TMP and
tris (phenyl) phosphate (TPHP) are estrogen receptor agonists [16]. Furthermore, several OPFRs
(TPHP, TMP, Ethylhexyldiphényl phosphate (EHDPP), Tri-o-cresylphosphate (ToCP), Isodecyl diphenyl
phosphate (IDPP), TDCIPP, and Tris(2-chloroethyl)phosphate (TCEP)) have induced a reduction in the
proliferation and growth of human neural stem cells, rat neuronal growth and network activity [17].

Considering current use and human health concerns, with increasing numbers of studies being
dedicated to OPFRs, several reviews have already been performed. Although these have focused on
just one or two aspects (such as contamination, exposure or health effects), it remains important to
consider all aspects in order to characterize the public health concern. As regulations differ from one
country or group of countries to another, we focused on Europe with the perspective of identifying
compounds of concern for (bio)monitoring or regulation.

We reviewed the literature with the following objectives: (i) to identify the compounds of greatest
concern in Europe regarding indoor contamination, human exposure and epidemiological evidence
and (ii) to identify priority data gaps in knowledge. We therefore reviewed recent European studies
dedicated to indoor contaminations and exposures. Because health hazards are not location-specific,
we reviewed the epidemiological evidence without geographic restriction.

2. Materials and Methods

The search covered the period from 2000 to 2019. This review has compiled OPFR
concentrations of indoor air and dust in Europe, human intake in Europe, human exposure in
Europe, and epidemiological studies worldwide regardless of location, given the expected low
variability in human response. Because the review is ultimately interested in human health,
the search was conducted in the PubMed database using the request: organophosphorus flame
retardant*[Title/Abstract] OR OPFR[Title/Abstract] OR phosphorus flame retardant*[Title/Abstract]
OR phosphate ester flame retardant*[Title/Abstract] OR organophosphate flame[Title/Abstract] OR
phosphate flame retardant*[Title/Abstract] OR organophosphate ester flame retardant*[Title/Abstract]
OR organophosphate triester*[Title/Abstract] OR organophosphate ester*[Title/Abstract] OR organic
flame retardant*[Title/Abstract] OR PFR*[Title/Abstract] OR OPE*[Title/Abstract] OR phosphate triester
flame retardant*[Title/Abstract]. A total of 2037 articles were identified and sorted by a single reviewer.
Articles that did not match with the review subject or written in a language other than English
were excluded on the basis of the title and abstract. Fifty-two articles were selected and classified
according to their subject in five categories: “indoor air concentrations”, “indoor dust concentrations”,
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“human intake estimations”, “biological measurements” and “epidemiological studies”. With the
exception of studies on intake estimations, only studies with at least ten measurements were included,
to ensure minimal representativeness.

Regarding publications about indoor air and dust concentration, the following items were retrieved:
sampling conditions (country, period and location), sample size, minimal, maximal, mean and median
concentrations and references. OPFRs’ median concentrations were compared between studies
regardless of collection method. Regarding human intake, this review summarizes and compares
the intake (or external doses) estimations of several OPFRs via various pathways (ingestion, dermal
absorption and inhalation). Regarding publications on biological measurements, the following items
were retrieved: metabolite name, parent compound(s), sampling conditions (country, population,
size and year), minimum, maximum, mean and median concentrations and references. Regarding
epidemiological studies, the following items were retrieved: country, population, and exposure
assessment, compounds of interest, health outcomes observed, covariates and human health findings.
Studies reporting only a correlation without assessing adjusted association between risk factors and
health outcomes were not included.

3. Results and Discussion

3.1. Indoor Contamination

Thirty-one studies dealing with the contamination of indoor dust and/or air were identified
and reviewed. OPFR concentrations with at least ten measurements were investigated in Belgium,
the Czech Republic, Denmark, Germany, Norway, Romania, Spain, the Netherlands and the United
Kingdom. We noticed that all studies used samples which were collected after 2006. Five studies
collected more than 60 samples. In Denmark, Langer et al. (2016) [18] collected 497 dust samples from
homes and 151 from daycare centers. Bergh et al. studied 169 air samples in Swedish homes [19].
Luongo and Östman (2016) [20] collected 62 dust and air samples from homes in Sweden, Fromme et al.
(2014) [21] collected 63 air samples from German daycare centers and Xu [22] collected 61 air and dust
samples from homes in Norway.

3.1.1. Dust

A total of 20 studies dealt with the contamination of indoor dust [18–21,23–38]. They are described
in detail in the supplemental information (Table S2). Twenty-nine OPFRs were measured, and 26 were
detected in the indoor dust of daycare centers, cars, private homes, offices and schools. The median
dust concentration of compounds ranged from <0.0018 µg/g in homes in the United Kingdom [33] to
1600 µg/g in Swedish daycare centers [19]. Concentrations (for detected compounds) are shown in
Figure 1. The ten OPFRs having the highest median concentration, independently of the considered
indoor environment, were: TBOEP (median = 1600 µg/g in day care centers in Sweden) > TCIPP
(median = 65 µg/g in UK homes) > TDCIPP (median = 31 µg/g in UK cars) > TCEP (median = 30 µg/g
in homes in Sweden) > EHDPP (median = 29 µg/g in UK classrooms) > TPHP (median = 9.79 µg/g in
homes in the Netherlands) > tris (butyl) phosphate (TNBP) (median = 5.60 µg/g in homes in Sweden) >

Tri-iso-butylphosphate (TIBP) (median = 5.3 µg/g in homes in Sweden) > Tricresylphosphate (TMPP)
(median = 2.7 µg/g in homes in Sweden) > TPHP (median = 2.58 µg/g in homes in The Netherlands).

The paragraph hereafter focuses with more details on studies published since 2012 and not
included in the previous review by Wei [39]. The highest OPFR median concentrations were observed
in Germany, the UK, Denmark and Sweden. However, the differences between countries may be
related to the sample location (daycare centers, cars, private homes, offices and schools). For instance,
the higher sum of OPFR concentrations observed in Sweden was explained by a particularly high
median concentration of TBOEP in daycare centers (median = 1600 µg/g [19]). The recent studies
in homes were conducted in the UK, Sweden, Norway, the Netherlands, Denmark, Germany, the
Czech Republic, Spain and Portugal. Almost the same OPFRs were analyzed in the UK, Sweden,
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Norway, the Netherlands, Germany and the Czech Republic, although OPFR concentrations were
different. In the UK, TCIPP was the most predominant compound, followed by TBOEP, whereas in
Norway and Germany TBOEP was the most predominant compound, followed by TCIPP. In Sweden,
TBOEP and TCIPP were the two OPFRs having the highest concentration. In the Czech Republic,
TCIPP was the predominant but TBOEP was not analyzed. OPFR concentrations were higher in the
UK and Sweden than in other countries, with a median concentration of total OPFRs (with different
OPFRs between studies) of 49 µg/g in Sweden [20], 79 µg/g [33] and 27.44 µg/g [26] in the UK. TBOEP
was the most predominant compound in daycare centers studied in Germany and Denmark, with a
median concentration 8.5 times higher in Germany. In Denmark, the TBOEP median concentration
was followed by the TCEP, TDCIPP and TCIPP median concentrations, while in Germany other OPFRs
made a minor contribution (with TDCIPP not measured). Office samples were collected in the UK
and Germany, and TCIPP was the most predominant in both countries. It was followed by TBOEP in
Germany (not measured in the UK) and EHDPP in the UK. The EHDPP concentration was ten times
higher in the UK than in Germany (median = 1.6 µg/g vs. median = 0.14 µg/g) [26,31]. The sum of the
OPFR median concentration in the UK was higher than in Germany, mainly because of the high TCIPP
concentration. School samples were collected in elementary all-day Austrian schools—only TCEP was
measured, with a median concentration of 2.5 µg/g [32]. Samples were collected from cars in the UK,
Germany and Spain. OPFR concentrations in the UK were nine times higher than in Germany, and 15
times higher than in Spain. OPFR profiles between the UK and Germany were similar, with TCIPP
making a major contribution, followed by TDCIPP and TPHP [26,31]. Two OPFRs were measured in
Spain: TPHP and DPHP. Only TPHP was measured in all three countries.
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Figure 1. Organophosphorus Flame Retardants (OPFRs) dust median concentration in Europe,
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To conclude on OPFRs in dust, TBOEP, TCIPP and TDCIPP were the most concentrated in Europe.
In homes, offices and cars, the predominant compound was TCIPP, whereas in daycare centers it was
TBOEP. TDCIPP was found to be much higher in dust from vehicles and offices than in dust from the
main living areas. These findings confirm those of previous review by Wei [39], who also mentioned
high concentrations of TBOEP in home dust in non-European countries such as Japan. In addition,
this update highlights that, in a given environment, OPFR concentrations in dust tend to be higher in
the UK than in the rest of Europe, likely in line with more stringent fire safety regulations in the UK.

3.1.2. Air

A total of 10 studies [19–21,27,36,37,40–43] dealt with the contamination of indoor air in
Europe and are presented in detail in Table S3. A total of 16 OPFRs were detected; median
concentrations ranged from 0.001 ng/m3 in homes in the Czech Republic [36] to 330 ng/m3 in
offices in Sweden [41]. However, the passive sampling technique (polyurethane foam) used by
Vykoukalová may underestimate air concentrations by sampling, principally, the gas phase, contrary
to other studies with active sampling. The five OPFRs with the highest median concentrations were:
TCIPP (median = 330 ng/m3 in offices in Sweden) > TNBP (median = 49 ng/m3 in Germany daycare
centers) > TDCIPP (median = 28 ng/m3 in offices in Sweden) > TCEP (median = 25 ng/m3 in daycare
centers in Sweden) > TIBP (median = 13 ng/m3 in homes in Sweden).

We describe hereafter the most recent (>2012) publications investigating indoor air contamination
since the previous review by Wei [39], and have thus not included this in our investigation. In homes,
air concentrations were measured in four countries: Sweden, Norway, the Czech Republic and
Belgium. The concentrations of detected compounds are displayed in Figure 2. With the exception of
Belgium (all median < LOD), countries had similar concentration profiles with a predominance of
TCIPP followed by TNBP. However, the median TCIPP concentration was between 2 and 10 times
higher in Norway than in Sweden or the Czech Republic. In daycare centers (Figure 2), TNBP and
TCIPP were measured only in Germany, with TNBP being 25 times more concentrated than TCIPP.
In offices (Figure 2), TCIPP largely predominates in Sweden and Germany, with median concentrations
being 10 times higher in Sweden. Samples from schools were collected in Germany and Sweden
(Figure 2). In Germany, TCIPP, TNBP and TIBP were measured with a similar contribution of TCIPP
and TNBP, while in Sweden, only TPHP was analyzed. No study was found that included air sample
measurements from cars.
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To conclude on European indoor air, the two predominant compounds in air were TCIPP and
TNBP, thus confirming previous findings from Wei, who noticed it was not specific to Europe [39].
TCIPP dominated in homes and offices, followed by TNBP, whereas in German daycare centers TNBP
concentrations were higher than those of TCIPP.

Overall, on indoor air and dust contamination, 16 OPFRs were measured in air and 30 in dust.
We should note that a comparison between all of these studies might be limited by possible heterogeneity
in the detection limits and analytical protocols. We did not consider these elements in detail in this
review and assume that among the most recent studies in Europe technical heterogeneities are likely to
be small and only slightly influential on the present conclusions. The number of collected samples,
the measured compounds and the sampling might also differ between studies. Globally, TBOEP
and TDCIPP were more concentrated in dust than in air, in line with their log Koa (13.1 and 10.6,
respectively). Conversely, TNBP was present in air with a log Koa of 8.2. TCIPP also has a log Koa
of 8.2 and was measured at a high concentration in both indoor matrices. Considering the findings,
it would be useful to document more broadly the presence of, at least, these main OPFRs in air and
dust of living spaces in Europe, considering more countries, and ideally on representative samples of
homes, schools, an daycare centers.

3.2. Human Exposure to OPFRs in Europe

3.2.1. Intake Estimation

Because of the frequent occurrence of OPFRs in dust and air, humans are exposed to these pollutants
via dust ingestion, dermal contact and inhalation, in addition to dietary intake [39]. Several studies
have estimated OPFR intake using a similar concentration in the environment, ingestion rates and
time-activity patterns [39].

Dust ingestion has long been considered the most important pathway for OPFR exposure [44,45].
The median ingestion via dust to the sum of OPFRs was estimated at 6.6 ng/kg bw/d for nonworking
adults and 128 ng/kg bw/d for children in Belgium [46], at 6.5 ng/kg bw/d for adults and 22.4 ng/kg
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bw/d for children in Germany [25], at 2.6 ng/kg bw/d for adults and 60.6 ng/kg bw/d for children living
in urban areas in Romania [30], and at 8.9 ng/kg bw/d for adults in Norway [37]. Sums of OPFRs
inform on global intake; however, comparisons are limited because the included compounds may
differ from one study to another. Considering compounds separately, a 2015 study by Brommer and
Harrad [26] on the UK population, estimated dust ingestion intake at 0.92 ng/kg bw/d for TCIPP,
0.07 ng/kg bw/d for TDCIPP and 0.03 ng/kg bw/d for TCEP in adults. With a higher frequency of
hand-to-mouth behavior in children, Brommer and Harrad (2015) [26] estimated exposure via dust
ingestion at 43 ng/kg bw/d for TCIPP, 4 ng/kg bw/d for TDCIPP and 1.7 ng/kg bw/d for TCEP in the UK.
Therefore, toddler OPFR intake via dust ingestion was approximately 10 to 20 times higher than in
adults in Belgium, Germany, Romania and the UK. Abou-Elwafa Abdallah et al. (2016) [47] estimated
dermal absorption in the UK for TCIPP, TDCIPP and TCEP for adults at 3.8, 0.2 and 0.1 ng/kg bw/d
and for toddlers at 32.9, 1.6 and 1.5 ng/kg bw/d, respectively. Dermal intakes were thus higher than
via dust ingestion for these three OPFRs for UK adults. The contrary was true for UK children, and
also for many OPFRs in car dust in Greece [28], notably for TBOEP and TPHP, which are not volatile
making the ingestion of dust the main exposure route. Data suggest that inhalation (including both
gaseous and particulate phases) exposure may also be an important pathway [48] especially for more
volatile compounds such as TCEP or TCIPP [37]. In Norway, the adult median inhalation exposure to
OPFRs was 9.3 ng/kg bw/d, which is similar to dust ingestion exposure (8.9 ng/kg bw/d) [37].

Overall, major indoor pathways seem to differ from one OPFR to another. In European populations,
dust ingestion was the major exposure pathway for TBOEP and TPHP, while inhalation was the
major exposure route for TCIPP and TCEP. Unlike EHDPP, dietary exposure is negligible for TBOEP,
TPHP, TCIPP and TCEP [22]. Dermal absorption is a minor pathway for EHDPP, TBOEP, TCIPP,
TCEP and TPHP [22]. No European data were found concerning a major pathway for TDCIPP.
However, these observations are issued from few studies with diverse protocols, OPFRs of interest and
microenvironments; a comprehensive and systematic study on exposure routes of main OPFRs would
be of great interest.

3.2.2. Human Biological Measurements of Exposure

A total of 12 studies that reported concentrations of OPFRs or their metabolites (presented in
Table S1 with their parent compounds) in more than ten human samples were identified and
reviewed [15,21,35,49–57]. Metabolites were measured in urine, whereas OPFR parents’ compounds
were measured in hair and milk. OPFRs and metabolites analyzed in matrices were not exactly the
same between articles. These studies were conducted in Germany, Belgium, Norway, Sweden and
Spain. The data are summarized in Figure 3 (only detected chemicals are displayed) and detailed in
supplemental information (Table S4).

A total of 15 metabolites were measured in urinary samples (Figure 3 for detected
compounds): Diethyl phosphate (DEP, metabolite of TEP), Bis(2-butoxyethyl) phosphate
(BBOEP), Bis(2-butoxyethyl)-(2-hydroxyethyl) phosphate (BBOEHEP) and Di-(2-butoxyethyl)
phosphate (DBOEP) (metabolites of TBOEP), Diphenyl phosphate (DPHP, metabolite of TPHP),
Diethylhexyl phosphate (DEHP, metabolite of TEHP), Bis-(2-chlorethyl)-phosphate (BCEP) and
Di-(2-chloroethyl) phosphate (DCEP) (metabolites of TCEP), Di-n-butyl phosphate (DnBP, metabolite
of TNBP), BDCIPP (metabolite of TDCIPP), Bis(1,3-dichloro-2-propyl) phosphate (BCIPP) and
Di-(2-chloroisopropyl) phosphate (DCIPP, metabolite of TCIPP), Di-m-cresyl phosphate (DmCP,
metabolite of TmCP), Di-o-cresyl phosphate (DoCP, metabolite of ToCP) and Di-p-cresyl phosphate
(DpCP, metabolite of TpCP). Samples of urine were collected in Norway, Germany and Belgium from
children aged from 20 months to 12 years and adults. Median concentrations ranged from 0.12 ng/L
for BDCIPP to 3.2 ng/L for DEP [51,54].
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Compounds having median concentrations of metabolites above 1 ng/mL, were TEP > TBOEP
> TPHP > TEHP [21,51,54]. In populations including mothers and children (general population,
see Figure 3), the metabolite with the highest median concentration was DEP with a median of 3.2 ng/L,
followed by DEHP (median = 1.4 ng/L) and DPHP (median = 1.3 ng/L) [54].

In children, the two metabolites with the highest concentration were DBOEP (median = 2 ng/L) [21]
and DPHP (median = 1.8 ng/L) [53].

DBOEP, DBP, DPHP and BDCIPP urinary concentrations were measured in samples from both
mothers and children [21,50,51,53,57]. DBOEP and DPHP median concentrations were higher in
children, whereas DnBP and BDCIPP median concentrations were similar in mothers and children.

The only study to report on OPFR concentrations in hair was conducted in 2012, in Norwegian
children aged from 6 to 12 years and their mothers. Seven OPFRs were found: TBOEP, TCEP, TPHP,
TDCIPP, EHDPP, TNBP and TMPP (Figure 4). The median concentration ranged from 8 ng/g for TMPP
to 318 ng/g for TBOEP [52]. The TBOEP median concentration in children was around five times
higher than in mothers, while for other OPFRs the median concentrations were similar. Two studies
investigated OPFR concentrations in breastmilk in Sweden and Spain [49,56]. Fifteen OPFRs were
measured, ten were detected and their median concentrations ranked as follows: TCIPP > TMP > TBOEP
> TNBP > TPHP > EHDPP > TCEP > TDCIPP > TEP > TMPP (Figure 5). TCIPP was predominant,
with a median concentration of 45 ng/g of lipid weight. Other OPFR median concentrations ranged
from 0.8 to 19 ng/g of lipid weight.

To conclude, OPFRs (or their metabolites) concentrations differ between matrices, likely reflecting
different metabolisms. In urine, the OPFR with the highest concentration was DEP (a TEP metabolite),
so an estimation of its intake and exposure pathways would be of interest. It is important to stress
that DEP is also a degradation product of organophosphorus insecticides such as chlorpyrifos [54].
In children’s hair, the most concentrated OPFR was TBOEP, whose intake was high, especially via
dust ingestion. The highest concentration in TCEP was noticed in mothers’ hair, while the highest
concentration of TCIPP was in breastmilk. These OPFRs had a high human intake estimation, mainly
via inhalation and dust ingestion [22]. Despite the high TDCIPP human intake via dust ingestion
and dermal absorption, concentrations of this OPFR (or its metabolite) in urine, hair and breastmilk
appeared very low compared to other OPFRs, which deserves confirmation from other studies.
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Considering their widespread environmental occurrence, the biomonitoring of OPFR is likely to
develop in the coming years. A great expectation is a comprehensive strategy on the search for
metabolites or parent compounds in human matrices, before representative surveys could occur on
large populations.
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This broad review allows us to put indoor concentrations and human exposure in Europe into
perspective. TCIPP, TDCIPP and TBOEP had the highest median concentrations in dust samples,
and logically the highest estimation for dust ingestion intake. Specifically, TBOEP was measured
at high concentrations in daycare centers, but only in Germany, and in children’s hair. TCIPP was
measured as having a median concentration ten times higher than TBOEP and TDCIPP in maternal
milk, consistent with high dust ingestion TCIPP intake.

3.3. Epidemiological Associations

Since 2000, 19 epidemiological studies have been assessed, mostly in the USA, on the
associations between exposure to OPFRs and health effects in humans, and they are presented
in Table 1 [40,58–74]. The health outcomes studied were reproductive, thyroid, neurodevelopmental,
respiratory, immunotoxic and dermal. Exposure to OPFRs was assessed using house dust, passive
wristband, and urine or blood samples. In these studies, metabolites are specific to the OPFR parent
compound, with the exception of the TPHP metabolite, because DPHP is also a metabolite of EHDPP
and resorcinol bis(diphenyl phosphate) [58,59].



Int. J. Environ. Res. Public Health 2020, 17, 6713 10 of 22

Table 1. Epidemiological evidence on organophosphorus flame retardants, 2000–2019.

Author Date Country Population Exposure Assessment Compounds of Interest Health Outcome Covariates Human Health Findings

Doherty et al. [58] 2019 USA

149 children of
36 months

Urine sample collected
from mothers between 24-

and 29-week gestation

DPHP, BDCIPP, IP-PPP,
BCIPHIPP

Children’s cognitive function
(Composite, Fine Motor, Visual
Reception, Receptive Language,

Expressive Language) was
assessed using the Mullen Scales
of Early Learning (MSEL) at age

between 2 and 3 years

Maternal age, education, income,
race/ethnicity, BMI, and

child’s sex

Concentrations of IP-PPP (ng/mL) were
associated with MSEL Cognitive Composite

Score (β= −2.61; 95% CI: −5.69, 0.46), Fine
Motor Scale (β= −3.08; 95% CI: −5.26, −0.91)

and the Expressive Language Scale (β= −1.21;
95% CI: −2.91, 0.49)

227 children of
36 months

Urine sample collected
from mothers between 24-

and 29-week gestation

DPHP, BDCIPP, IP-PPP, and
BCIPHIPP

Children’s language (Vocabulary,
Grammatical Complexity) was

assessed using the
MacArthur-Bates

Communicative Development
Inventories (MB-CDI) at age

between 2 and 3 years

Maternal age, education, income,
race/ethnicity, BMI, and

child’s sex

Prenatal IP-PPP concentrations were inversely
associated with age-standardized scores on the

MB-CDI Vocabulary assessment (β= −1.19;
95% CI: −2.53, 0.16)

Ait Bamai et al. [59] 2018 Japan 296 children
House dust samples

collected at age 7
of children

TMP, TEP, TPP, TBP, TCIP
Eczema and wheeze were

assessed in children aged 7 years
using the International Study of

Asthma and Allergies in
Childhood questionnaire

Sex, household income, maternal
smoking, and parental history

of atopy.

Among children without any filaggrin
mutations, TDCIPP was associated with

wheeze (OR: 1.22, 95% CI: 1.00–1.48)TCEP, TEHP, TBEP, TDCPP,
TPhP, TCP

Araki et al. [60] 2018 Japan

128 elementary
school-aged children Multisurface dust

TMP, TEP, TPP, TNBP, International Study of Asthma
and Allergies in Childhood

(ISAAC) questionnaire

Sex, grade, annual income, and
dampness index

Association between TDCIPP in house dust
and eczema (OR:3.75; 95% CI: 1.39, 10.2)TCIPP, TCEP, TEHP, TBEP,

TDCPP, TPHP, TMPP

113 to 128 elementary
school-aged children

Urine samples collected
from children

5-HO-EHDPHP, EHPHP,

International Study of Asthma
and Allergies in Childhood

(ISAAC) questionnaire

Sex, grade, annual income,
dampness index, and creatinine

Association between ΣuTCIPP and
rhinoconjunctivitis (4th quartile vs. 1st

quartile) (OR= 5.01; 95% CI: 1.53, 6.5; p = 0.008],
TBEP-OH (>LOD vs. <LOD) and eczema (OR=
2.86; 95% CI: 1.04, 7.85; p = 0.041), BDCIPP (3rd

tertile vs. 1st tertile) and at least one of the
symptoms (wheeze, rhino-conjunctivitis,

eczema) (OR= 3.91; 95% CI: 1.24, 12.3; p = 0.019]

BBOEP, 3-HO-TBEP, BBOEHEP,
BCIPP, BCIPHIPP, DPHP,

4-HO-DPHP,
3-HO-TPHP, 4-HO-TPHP,
BDCIPP, DNBP, uTCEP

Carignan et al. [61] 2018

USA

201 couples from the
Environment and

Reproductive Health
(EARTH)

One or two spot urine
samples per in vitro

fertilization cycle

BCIP, BDCIPP, DPHP, IP-PPP,
tb-PPP

Proportion of fertilized oocytes,
number of best quality embryos,
proportion of cycles resulting in
implantation, clinical pregnancy

and live birth

Year of IVF treatment cycle,
primary infertility diagnosis, and

maternal urinary PFR
metabolites as well as paternal
and maternal age, body mass

index, and race/ethnicity.

Paternal urinary concentrations of BDCIPP
were associated with fertilization (95% CI: 0.01,

0.12; p-trend = 0.06)

USA

211 women from the
Environment and

Reproductive Health
(EARTH)

One or two urine samples
per IVF cycle

BCIP, BDCIPP, DPHP, IP-PPP,
tb-PPP

Proportion of fertilized oocytes,
number of best quality embryos,
proportion of cycles resulting in
implantation, clinical pregnancy

and live birth

Maternal age, body mass index,
race/ethnicity, year of IVF

treatment cycle, and primary
Society for Assisted

Reproductive Technology (SART)
infertility diagnosis at

study entry

Association between the levels of two
individual metabolites (DPHP and tb-PPP) and
of total metabolites, and reduced probability

of successful fertilization, implantation,
clinical pregnancy, and live birth

Deziel et al. [62] 2018 USA
200 women (100

papillary thyroid cancer
cases and 100 controls)

Single spot urine samples BCIPP, BCIHPP, BDCIPP
Age, BMI, education level, family

history of thyroid cancer,
previous benign thyroid disease,

and alcohol consumption

No association between BCIPHIPP, BCIPP,
DPHP, BDCIPP, IP-PPP, tb-PPP and papillary

thyroid cancer (PTC)IP-PPP, DPHP and tb-PPP
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Table 1. Cont.

Author Date Country Population Exposure Assessment Compounds of Interest Health Outcome Covariates Human Health Findings

Hoffman et al. [63] 2018 USA 248 pairs women–child
Urine samples collected

between 24–30 weeks
gestation

BDCIPP, DPHP, IP-PPP, Gestational age in days
(combination of last menstrual
period and earliest-ultrasounds

data) and birthweight

Maternal age, race, education,
parity, prepregnancy BMI and

season of urine sample collection

Among female infants, IP-PPP was associated
with birth (β = −1.00 week; 95% CI: −1.85, −0.15

weeks; p= 0.02). Among male infants, DPHP
was associated with gestational duration (β =
0.75 weeks; 95% CI: 0.01, 1.50 weeks; p = 0.05)BCIPHIPP, BCIPP, tb-PPP

Preterm birth (defined as <37
weeks gestation)

Maternal age, race, education,
parity, prepregnancy BMI and

season of urine sample collection

Among females infants, preterm birth was
associated with IP-PPP (OR: 4.58; 95% CI: 1.23,
17.06) and BDCIPP (OR: 3.99; CI: 1.08, 14.78).
Among male infants maternal urinary IP-PPP
concentrations were associated with preterm

birth (OR: 0.21; 95% CI: 0.06, 0.68).

Castorina et al. [64] 2017 USA 248 to 249 pairs
women–child

Urine samples collected
during the 2nd prenatal

study visit
BDCIPP, DPHP, IP-PPP, tb-PPP

Children’s cognitive abilities was
assessed by a single bilingual

psychometrician at age 7 using
the Wechsler Intelligence Scale

for Children, 4th edition
(WISC-IV) (Full-Scale IQ,

Working memory, Perceptual
reasoning, Verbal

comprehension, Processing
speed)

Maternal education, PPVT
scores, CES-D scores, country of
birth and prenatal urinary DAP
metabolite levels, HOME z-score,
language of WISC testing, child
sex and age at assessment, and

household poverty

Association between DPHP and Full-Scale IQ
(β: −2.9; 95% CI: −6.3, 0.5), DPHP and Working
memory (WISC-IV scale) (β: −3.9; 95% CI: −7.3,
−0.5), ΣPFR metabolites and Working memory
(WISC-IV scale) (β: −4.6, 95% CI: −8.9, −0.3).

Urine samples collected
during the 2nd prenatal

study visit
BDCIPP, DPHP, IP-PPP, tb-PPP

Children’s behavior was
assessed by maternal and teacher

report at age 7 using the
Behavior Assessment System for

Children 2 (BASC-2) (ADHD
Index, Inattention DSM-IV,

Hyperactive/Impulsive DSM-IV,
total subscale DSM-IV) and the
Conners’ ADHD/DSM-IV Scales

(CADS) (Hyperactivity scale,
Attention problems scale)

Sex, age at assessment, maternal
country of birth, HOME score at

7-years, prenatal DAPs, and
maternal depression and

education

Association between IP-PPP and Hyperactivity
scale (BASC-2—Maternal Report (T-score) (β:
2.4; 95% CI: 0.1, 4.7), BDCIPP and Attention
problems scale (BASC-2—Teacher Report
(T-score) (β: 1.1; 95% CI: −0.1,2.3; p- < 0.1)

Hoffman et al. [65] 2017 USA 70 cases and 70 controls Dust samples from homes TCEP, TCIPP, TDCPP and TPHP Diagnostic of papillary thyroid
cancer (PTC)

Indicator of tumor
aggressiveness for FR exposure

above the median

Higher levels of TCEP associated with
increased odds of PTC (OR: 2.42; 95% CI: (1.10,

5.33)

Lipscomb et al. [66] 2017 USA 72 children aged
3–5 years

Passive wristband
samplers worn

continuously for 7 days
TPP, TCIPP, TCEP, TDCPP

Children’s social behaviors were
assessed using the Social Skills
Improvement System-Rating

Scales (SSIS-RS) by their teacher
in the preschools they were
attending (seven subscales

representing positive behaviors:
Communication, Cooperation,

Assertion, Responsibility,
Empathy, Engagement, and
Self-Control; four subscales

representing behavior problem
domains: Externalizing,

Bullying,
Hyperactivity/Inattention, and

Internalizing)

Gender, age, family context, and
child’s exposure to

adverse experiences

lnΣOPFR levels were associated with
responsibility (β =−0.25, p < 0.001) and

externalizing problems (β = 0.31, p < 0.05)
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Table 1. Cont.

Author Date Country Population Exposure Assessment Compounds of Interest Health Outcome Covariates Human Health Findings

Preston et al. [67] 2017 USA

51 adults 133 urine samples collected
at months 1,6 and 12 DPHP

Free thyroxine (fT4), total
thyroxine (TT4), total

triiodothyronine (TT3), and
thyroid stimulating hormone

(TSH) in serum samples

Sampling round, time of sample
collection, specific

gravity-corrected iodine and
BDE-47 and sex

DPHP was associated with a 0.43 µg/dL (95%
CI: 0.47, 1.36) increase in mean TT4 levels

25 women 61 urine samples collected
at months 1,6 and 12 DPHP

Free thyroxine (fT4), total
thyroxine (TT4), total

triiodothyronine (TT3), and
thyroid stimulating hormone

(TSH) in serum samples

Sampling round, time of sample
collection, specific

gravity-corrected iodine and
BDE-47

DPHP was associated with a 0.91 µg/dL (95%
CI: 0.47, 1.36) increase in mean TT4 levels

26 men 61 urine samples collected
at months 1,6 and 12 DPHP

Free thyroxine (fT4), total
thyroxine (TT4), total

triiodothyronine (TT3), and
thyroid stimulating hormone

(TSH) in serum samples

Sampling round, time of sample
collection, specific

gravity-corrected iodine and
BDE-47

No significant association between DPHP and
TT4, fT4, TT3, TSH

Soubry et al. [68] 2017 USA 67 men Urines samples BCIP, BDCIPP, DPHP, IP-PPP,
tb-PPP

DNA extracted from sperm
samples

Age, obesity-status and multiple
testing, exposure to

monoisopropylphenyl
Association between BDCIPP, DPHP, IP-PPP
and hyper- or hypomethylation of different

genes specific to the metabolitesdiphenyl phosphate

Canbaz et al. [69] 2016 Sweden

110 children who
developed asthma at 4
or at 8 years, matched

with 110 controls from a
large perspective study

Dust collected from the
mother’s mattress two
months after childbirth

TCEP, TCIPP, TDCPP, TBEP,
TPhP, EHDPHP, mmp-TMPP

Asthma at 4 or 8 years was
defined based on at least two of
the following three criteria: (i) >1
episode of wheeze in the last 12
months; (ii) a doctor’s diagnosis
of asthma; (iii) asthma medicine

prescribed occasionally or
regularly over the last 12 months

No association between PEFRs concentrations
and development of childhood asthma

Zhao et al. [70] 2016 China 154 men and 101
women One blood sample TCIPP, TBEP, TPHP, TEP, TNBP,

EHDPP Blood samples

Negative association between
EHDPP, TPHP, and TNBP levels

and sphingosine
1-phosphate concentration

Association between levels of the six PEFRs and
increased sphingomyelin concentration (p <

0.001 for all OPFRs). The S1P level in the
highest quartile of EHDPP was 36% lower

(95% CI: −39%, −33%; p < 0.001) than that in
the lowest quartile, 16% lower (95% CI: −19%,
−14%; p < 0.001) than that in the highest

TPHP quartile, and 36% lower (95% CI: −38%,
−33%; p < 0.001) than that in the highest

TNBP quartile

Araki et al. [71] 2014 Japan
516 inhabitants (adults

and children) in 156
different homes

Floor dust
TMP, TEP, TPP, TNBP, TCIPP,
TCEP, TEHP, TBEP, TDCPP, T

PHP, TMPP

All inhabitants of each home
were asked to complete a

self-administered questionnaire
participants who reported
having received medical

treatment for bronchial asthma,
atopic dermatitis, allergic rhinitis,
and/or allergic conjunctivitis at

any time during the preceding 2
years were classified as positive

Gender, age, tobacco smoke,
ETS exposure,

Association between TNBP in multi-surface
dust and asthma (OR: 5.34; 95% CI: 1.45, 19.7),

TNBP in multi-surface dust and allergic
rhinitis (OR: 2.55; 95% CI: 1.29, 45.01)

recent renovations, wall-to-wall
carpeting, dampness

index, hair/fur-bearing pets in
the dwelling,

mechanical ventilation
equipment usage, and total

fungi
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Table 1. Cont.

Author Date Country Population Exposure Assessment Compounds of Interest Health Outcome Covariates Human Health Findings

Meeker et al. [72] 2013 USA 33 men Urine samples BDCIPP, DPHP Blood and semen samples Age, BMI, and time of sample
collection, abstinence period

Association between BDCIPP levels and
decreases in sperm quality parameters, and

concentrations of total T3 (% change: 6.6; 95%
CI: 1.6,12,8, p = 0.02) and TSH in serum (%
change: 40.3; 95% IC: 11.4, 77.1, p = 0.006).

DPHP was
associated with a 57% (95% CI: −77.8, −18.8, p =

0.01) decrease in sperm concentration and a
20% (95% CI: –41.1, 0.5) decrease in

sperm motility

Hutter et al. [32] 2013 Austria 436 children Air TCEP, TDCPP
The cognitive evaluation was

accomplished by a
neurodevelopment test

Social status, gender and region
(urban/rural)

Significant correlations of TCEP in PM10 and
PM2.5 and school dust samples with cognitive

performance. Cognitive performance
decreased with increasing concentrations

of TCEP

Bergh et al. [40] 2011 Sweden Adults (men and
women) Air

TEP, TiPrP, TPrP, TiBP, TBP, TCEP,
TCIPP, TPeP, THP, TDCPP, TPP,

DPEHP, TEHP, TToP, d27-TBP cis

No association between OPFRs levels and
reported Sick Building Syndrome symptoms

Kanazawa et al. [73] 2010 Japan 134 adults (70 women
and 64 men) Floor dust TBP, TBEP, TDCPP

Age (ordinal variable in
increments of 10 years), gender,

history of allergy, time spent

Association between TBP and mucosal
symptoms of Sick Building Syndrome (OR:
15, 95% CI: 2.7–80), TBOEP (OR: 0.3, 95% CI:
0.1–0.7), TDCIPP (OR: 2.2, 95% CI: 1.0–4.6)

at home (h/day; ≤12, >12), and
condensation and moldy odor

Meeker et al. [74] 2009 USA 38 men House dust TDCPP, TPP

Serum and semen samples:
hormones (Free T4, Total T3,

TSH, FSH, LH, Inhibin B,
Testosterone, SHBG, FAI,

estradiol, Prolactin, Sperm
concentration, sperm mobility,

sperm morphology)

Age, BMI

Association between TDCIPP and Free T4 (β:
−2.8; 95% CI: −4.6, −1.0; p: 0.004), TDCPP and

prolactin (β:17.3; 95% CI: 4.1–32.2; p: 0.008),
TPP and prolactin (β: 9.7; 95% CI: 2.3,18.9;

p: 0.02)

50 men Age, BMI and abstinence period
Association between TPP and sperm

concentration (β: −18.8; 95% CI: −30.1, −4.5;
p: 0.01)

Bold: Key elements of the table.
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Reproductive functions: Three OPFR, TDCIPP, TPHP and Isopropylated triarylphosphate isomers
(ITPs) (or their metabolites) were tested for possible impacts on the reproductive system. Of 201
couples undergoing in vitro fertilization, the urinary TDCIPP metabolite concentrations among the men
(though not the women) were associated with a reduced probability of successful oocyte fertilization [61].
In another study, urinary concentrations of the TDCIPP metabolite were cross-sectionally associated
with a decrease in both sperm quality parameters (sperm motility, sperm morphology, straight lie
velocity and curvilinear velocity) and the thyroid-stimulating hormone (TSH) levels that prompt the
thyroid gland to produce hormones [72]. An inverse association was observed between TDCIPP
house dust concentrations and occupants’ prolactin hormonal levels in serum [74]. Among female
infants, the maternal TDCIPP and ITP metabolite concentrations measured in urine samples collected
during the late-second or early-third trimester were associated with an increased risk of preterm
birth [63]. Conversely, among male infants, the maternal ITP metabolite concentrations measured
in urine samples collected during the late-second or early-third trimester were associated with a
decreased risk of preterm birth [63]. The TPHP metabolite concentrations measured in urine samples
collected during in vitro fecundation from women were inversely associated with the probability of
successful fertilization (presence of a fertilized oocyte with two pronuclei 17–20 h after insemination),
implantation (defined as a serum β-hCGlevel > 6 mIU = mL, approximately 17 d (range = 15–20 d) after
egg retrieval), clinical pregnancy (the presence of an intrauterine pregnancy confirmed by ultrasound
at approximately 6-week gestation) and live birth (defined as the birth of a neonate on or after 24-week
gestation) [61]. Another study observed an association between house dust TPHP concentration and
decrease in sperm concentration among 50 men from couples that were infertile due to a male factor,
a female factor, or a combination of both [74]. The same study observed an association between
house dust TPHP concentration and an increase in serum prolactin hormone levels in a population
of 38 men [74]. Among male infants, urinary TPHP metabolite concentrations were associated with
a modest increase in gestational duration. Baby boys having the highest levels of prenatal TPHP
exposure were born approximately 5 days later than those with the lowest levels of exposure [63].

Thyroid systems: Three OPFRs, TDCIPP, TPHP and TCEP (or their metabolites), were tested
for possible impacts on the thyroid system. TDCIPP metabolite urinary concentrations were
associated with a decrease in concentrations of total triiodothyronine (T3 hormone that helps
regulate various physiological processes including growth, metabolism, body temperature and
cardiac rhythm), measured cross-sectionally in serum [72]. A positive association was found between
TPHP metabolite urinary concentrations and mean total thyroxine levels measured cross-sectionally
in serum (T4 hormone, mainly secreted by the thyroid gland, and essential for proper metabolic
functioning) among women, but not in men [67]. The TDCIPP urinary metabolite concentrations
measured in women from a case-control study (100 cases and 100 controls) were not associated with
an increased risk of papillary thyroid cancer [62]. The TCEP concentrations measured in house
dust samples were associated with an increased risk of papillary thyroid cancer in women from a
case-control study (70 cases and 70 controls) [65].

Neurodevelopmental outcomes: TDCIPP, TPHP and ITP have been studied to assess their
effect on neurodevelopment. Prenatal urinary TDCIPP metabolite concentrations were positively
associated with attention problems (measured using the Behavior Assessment System for Children-2
scale—Teacher Report) among 7-year-olds [64]. This study found no association between prenatal
urinary TDCIPP metabolite concentrations and the hyperactivity scale among children aged 7 [64].
Prenatal urinary TPHP metabolite concentrations were associated with a decrease in intellectual
quotient assessed by the Wechsler Intelligence Scale for Children, 4th edition (WISC-IV), among
children at age 7, and particularly for the working memory domain [64]. Prenatal urinary ITP
metabolite concentration was inversely associated with age-standardized scores on the MacArthur-Bates
Communicative Development Inventories vocabulary assessment, Mullen Scales of Early Learning
cognitive composite score, fine motor scale and expressive language scale at age 36 months [58].
Furthermore, prenatal concentrations of this metabolite were positively associated with higher scores
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on the hyperactivity scale at age 7 [64] in the California area, where Firemaster® 550 (containing ITPs,
Great Lakes Solutions, Chemtura Corporation, Philadelphia, PA, USA.) was used.

Respiratory outcomes and immunotoxicity: Three OPFRs, TDCIPP, TCIPP and TNBP, or their
metabolites, were tested for possible effects on the respiratory system or immunotoxicity. TDCIPP
measured in house dust samples was associated with an increased risk of wheezing in children 7 years
of age [59], though not with asthma among children aged 4–8 years [69]. A positive association
between urinary TCIPP metabolite concentrations and an increased risk of rhino-conjunctivitis was
cross-sectionally observed among children aged 6–12 years [60]. TCIPP measured in house dust two
months after birth was not associated with the development of asthma at 4 or 8 years in a case-control
study (110 cases and 110 controls) [69]. In the cross-sectional study conducted by Araki et al. [71],
the authors did not observe any association between an increased risk of allergic rhinitis in adults and
children and TCIPP concentration in house dust. On the contrary, they found a positive association
between TNBP concentrations in house dust and risk of asthma among children and adults, as well as
an increased risk of allergic rhinitis [60].

Dermal effects: Only one study [60] tested for an association between increased risk of eczema and
TDCIPP. Eczema was evaluated using the International Study of Asthma and Allergies in Childhood
(ISAAC), while exposure assessed using TDCIPP in house dust and TBOEP urinary metabolites
and TCIPP (or its metabolite BCIPP) was cross-sectionally associated with eczema in school-aged
children [60].

Other outcomes: Blood concentrations of six OPFRs (TCIPP, TBOEP, TPHP, TEP, TNBP and
EHDPP) independently increased sphingomyelin concentrations (which participate in cardiovascular
function) in blood among adults [70]. Otherwise, TBOEP indoor concentrations in air were associated
with an increased risk of sick building syndrome in Japan [73].

In conclusion, both TDCIPP and TPHP were consistently associated with multiple health outcomes,
mainly reproductive. High TCIPP concentrations were possibly associated with adverse respiratory
outcomes when exposure was assessed via measurement in human samples, but not when assessed
by measurement in indoor environments. Two epidemiological studies associated the ITP urinary
metabolite concentrations during pregnancy with various neurodevelopmental outcomes among
children in North America. Globally, most epidemiologic studies have addressed relatively modest
population sample sizes and thus were limited in statistical power. Considering OPFRs in large
epidemiological studies would be useful, especially for compounds widely measured in human
environments and matrices such as TBOEP and TNBP.

4. Conclusions

Due to an increase in their use, a significant OPFR presence was observed in both indoor
environments and human biological matrices in Europe. In this review, we chose to have a broad
spectrum from contamination to health effects in humans, complementary to more detailed reviews
that exist on specific aspects. We tabulated our findings in Table 2, and summarized them in Figure 6,
with the objective to contribute to identifying the prevention and research areas that should be priorities.
The most concentrated OPFRs in dust were TBOEP, TCIPP and TDCIPP, and in the air, TCIPP and
TNBP. These OPFRs deserve to be studied in more microenvironments in larger and representative
surveys. Of these OPFRs, both TBOEP and TCIPP were also found to have the highest concentrations in
human matrices, especially among children. TDCIPP and TNBP were also observed in human matrices,
however these were among the lowest concentrations. These findings rely on few studies and need
to be confirmed on larger representative samples. TDCIPP is one of the most investigated OPFRs in
association studies, and has been linked with multiple health outcomes, while TPHP is associated with
reproductive outcomes. Considering widespread exposure and epidemiological evidence for these
two OPFRs, health risk assessment, including a more systematic assessment of relative importance of
different microenvironments and exposure routes, may be useful in informing decision making about
preventive actions. While TBOEP and TNBP were frequently found in both indoor environments
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and human matrices, especially in children, association studies have mostly investigated respiratory
outcomes, so epidemiological studies would be a priority for these compounds. Table 2 also indicates
that several OPFRs have occasionally been studied and detected indoors, so both confirmation studies
and a search in biological matrices would be of interest. Lastly, there is a lack of European data
concerning Isopropylphenyl phenyl phosphate (IP-PPP) concentrations in both indoor environments
and human matrices that must be investigated. Moreover, its classification as potentially neurotoxic
and reprotoxic for the fetus (Vermont Department of Health) might incite further epidemiological
studies with enough statistical power to assess a potential effect on neurodevelopmental outcomes.
More generally, neurodevelopmental outcomes appear to have been studied less than other health
effects and may deserve specific attention.

Table 2. Summary of OPFRs indoor contamination, population exposure in Europe and epidemiologic evidence.

Compound Indoor
Contamination

Human
Exposure

Epidemiological Evidence of Adverse Effect

Reproductive Thyroid Respiratory/Immune Neuro-Development Dermal

BCMP-BCEP
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Table 2. Cont.

Compound Indoor
Contamination

Human
Exposure

Epidemiological Evidence of Adverse Effect

Reproductive Thyroid Respiratory/Immune Neuro-Development Dermal
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