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Abstract: The cholesterol pathway is an essential biochemical process aimed at the synthesis of
bioactive molecules involved in multiple crucial cellular functions. The end products of this pathway
are sterols, such as cholesterol, which are essential components of cell membranes, precursors of
steroid hormones, bile acids and other molecules such as ubiquinone. Several diseases are caused by
defects in this metabolic pathway: the most severe forms of which cause neurological involvement
(psychomotor retardation and cerebellar ataxia) as a result of a variety of cellular impairments,
including mitochondrial dysfunction. These pathologies are induced by convergent mechanisms
in which the mitochondrial unit plays a pivotal role contributing to defective apoptosis, autophagy
and mitophagy processes. Unraveling these mechanisms would contribute to the development of
effective drug treatments for these disorders. In addition, the development of biochemical models
could have a substantial impact on the understanding of the mechanism of action of drugs that act
on this pathway in multifactor disorders. In this review we will focus in particular on inhibitors of
cholesterol synthesis, mitochondria-targeted drugs and inhibitors of the inflammasome.
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1. The Cholesterol Pathway: A Pleiotropic Biochemical System

The cholesterol pathway (CP), also called the mevalonate pathway, is a crucial metabolic process
that leads to the synthesis of cholesterol and other biomolecules such as steroidal hormones and
isoprenoids. These essential bioactive molecules play an important role in multiple cellular processes,
including intracellular signaling, gene expression, protein modification, cell growth/differentiation,
cytoskeletal dynamics and stability, mitochondrial function and cell membrane structure [1,2].

The CP is promoted by a molecule of acetyl-CoA and its thiolase (Acetoacetyl-CoA), using the
3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) synthase, to synthesize HMG-CoA. HMG-CoA
reductase (HMGCR) then converts HMG-CoA to mevalonate (MVA), which is further metabolized
to Isopentenyl-5-pyrophosphate (IPP) and its isomer Dimethyllallyl-pyrophosphate (DMAPP).
At this point, Farnesyl pyrophosphate (FPP) synthase catalyzes a sequential reaction to generate
mevalonate-derived isoprenoids, such as FPP and geranylgeranyl pyrophosphate (GGPP) [1–3].
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For the synthesis of cholesterol, two molecules of FPP are converted by squalene synthase to the
linear hydrocarbon molecule squalene, which is cyclized to the first sterol intermediate, lanosterol,
and then converted, through a series of reactions, to cholesterol.

FPP is also one of the precursors of important metabolites such as dolichols, ubiquinones
(Coenzyme Q), and carotenoids. These molecules are required for protein N-glycosylation (dolichols),
mitochondrial electron transport chain function (ubiquinone), and free radical scavenging [1].

HMG-CoA Reductase Controls the Cholesterol Pathway

The cholesterol pathway is essential for several cell functions. The regulation of this biochemical
process has been intensely investigated and, in particular, the role of HMGCR which is the
rate-controlling enzyme of cholesterol biosynthesis. This enzyme, ubiquitously expressed in all
cells, is highly regulated and is controlled by a variety of mechanisms [4]. One of these is the negative
feedback, a multivalent process by which cholesterol and isoprenoid products act as inhibitors of
the reductase inducing its degradation from the membranes of the endoplasmic reticulum (ER) [5].
Furthermore, sterols and non-sterol metabolites control the transcription and the translation of HMGCR
by reducing the amount of mRNA in response to increased levels of cholesterol [6].

In addition to the complex feedback mechanism, HMGR controls cholesterol levels through
cross-regulation: this process is employed when the catalytic domain of HMGCR is inactivated
through phosphorylation by an adenosine monophosphate-dependent kinase that alters the enzyme’s
kinetic properties. It also occurs in response to invading pathogens or toxins that cause increases in
HMGR mRNA levels and, thus, higher enzyme activity [7].

The regulation of HMGR is necessary for appropriate cholesterol synthesis. Defects in this enzyme
lead to the development of inflammatory disorders [8] and diseases such as hypercholesterolemia [9].
Recent studies have proven that genetic errors can cause mutations in enzymes involved in the
cholesterol cascade [10]; further investigations are necessary to determine the link between mutated
enzymes and inflammatory phenotypes, in order to develop new therapies blocking the cholesterol
damage in its early stages.

2. Diseases Linked to the Deregulation of the CP

Deregulation of the CP causes diseases that are severe and mostly monogenic. Among these,
the mevalonate kinase deficiency (MKD) is a rare autosomal recessive disease caused by a blockade
of the CP [11,12]. A defect in the pre-squalene activity of mevalonate kinase (MK, encoded by
the mevalonate kinase gene, MVK) induces periodic fever syndromes, with different degrees of
severity depending on the residual activity of mevalonate kinase: the autoinflammatory hyper
immunoglobulinemia D (MIM 260920) is characterized by a 1%–8% residual MK activity, while
in mevalonic aciduria (MIM 610377) MK level activity is undetectable [13,14].

There are several other disorders: Smith–Lemli–Opitz syndrome (MIM 270400),
Conradi–Hünermann–Happle syndrome (MIM 302960) congenital hemidysplasia with ichthyosiform
erythroderma and limb defects (CHILD, MIM 308050), and at least three extremely rare autosomal
recessive disorders, Greenberg skeletal dysplasia (MIM 215140), lathosterolosis (MIM 607330) and
desmosterolosis (MIM 602398). These syndromes show significant clinical overlap distinguished by
physical and behavioral abnormalities, including nervous system dysfunctions with different degrees
of severity. [10] (Table 1).
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Table 1. Diseases involved in the deregulation of cholesterol pathway.

Disease/Syndrome MIM Genetics Gene(s) Involved Protein Involved Molecular Features Main Clinical Features

Mevalonate Kinase
Deficiency (MKD) ‡

[15,16]

#260920
#610377

Autosomal
recessive MVK Mevalonate kinase Accumulation of mevalonic acid in

urine and plasma

Elevated serum IgD/IgA, periodic fever,
vomiting, diarrhea, psychomotor
retardation, developmental delay,

cerebellar and cerebral atrophy
Smith Lemli Opitz
Syndrome (SLOS)

[17–20]
#270400 Autosomal

recessive DHCR7 7-dehydrocholesterol
reductase

Low cholesterol levels,
accumulation of 7-DHC

Failure to thrive, microcephaly,
micrognathia, ambiguous genitalia, limb

shortening, polydactyly, mental retardation

Conradi-Hunermann-
Happle [19,21] #302960 X-linked

dominant EBP Sterol-∆8–∆7-isomerase
Increased levels of

8-dehydrocholesterol and
8(9)-cholestenol

Growth deficiency, asymmetric limb
shortening, mental retardation,

ventriculomegaly

CHILD syndrome
[19,22,23] #308050 X-linked

dominant NSDHL
Part of the C-4 sterol
demethylase protein

complex

Increased levels of
8-dehydrocholesterol and

8(9)-cholestenol

Prenatal growth deficiency, hearing loss,
unilateral distribution of abnormalities, skin

lesions, erythema, severe skeletal
abnormalities

Greenberg skeletal
dysplasia [19,24] #215140 Autosomal

recessive LBR 3β-hydroxysteroid-
∆14-reductase

Elevated cholesta-8,14-dien-3-β-ol in
cultured fibroblasts and

cholesta-8,14,24-trien-3β-ol in cartilage

Hydrops-ectopic calcification-moth-eaten
(HEM) skeletal dysplasia, fetal death

Lathosterolosis
[19,25] #607330 Autosomal

recessive SC5DL 3β-hydroxysteroid-
∆5-desaturase

Increased levels of lathosterol in
plasma and cultured fibroblast;

absent 7-dehydrocholesterol,
normal cholesterol

Microcephaly, polysyndactyly, colestatic
liver disease, conductive deafness, severe

psychomotor retardation

Desmosterolosis
[19,26–28] #602398 Autosomal

recessive DHCR24 3β-hydroxysterol-
∆24-reductase

Accumulations of desmosterol in
plasma, kidney, liver, brain

Failure to thrive, microcephaly, anomalous
pulmonary venous drainage, ambiguous

genitalia, short limbs, generalized
osteosclerosis, delayed psychomotor

development, severe spasticity
‡ Table 1. List of disorders triggered by alterations on cholesterol pathway. Mutations in the MVK gene cause MKD that range from Hyper-IgD syndrome to Mevalonic aciduria,
depending on the type and severity of the mutations.
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3. Convergent Pathogenic Mechanisms on Deregulation of the Cholesterol Pathway

Despite progress in the understanding of the genetic causes that determine a number of
pathologies associated with the deregulation of the CP, effective and definitive drug treatments are not
always identifiable [20]. Defects in the mevalonate pathway lead to the activation of an inflammatory
process and of cellular mechanisms such as programmed cell death linked to mitochondrial damage,
autophagy and mitophagy (Figure 1).
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Figure 1. Connection between cholesterol disorders and inflammation. Once the cholesterol pathway
is impaired, it can induce activation of the inflammosome and trigger cell apoptosis. On the other
hand, production of (reactive oxygen species) ROS causes defective autophagy and/or mitophagy of
damaged cells and organelles and this can further lead to NLRP3 (inflammosome) activation.

3.1. Inflammatory Mechanisms

The deregulation of the CP implies the activation of an inflammatory process by specific
multiproteins, called inflammasomes [29]. Inflammasomes, described by Martinon and colleagues [30],
are large molecular platforms, specialized in recognizing danger signals and in instructing the general
defense mechanisms of the innate immune system [30–32]. To date, a number of inflammasomes
have been clearly identified [33]: Nucleotide-binding oligomerization domain, Leucine rich Repeat
and Pyrin domain containing (NLRP)1 [34], NLRP2 [35], NLRP3 [36], NLRP6 [37], NLRP7 [38],
NLRP12 [39], NLR apoptosis inhibitory protein(NAIP)/NLR family, CARD-containing 4 (NLRC4)
NAIP/NLRC4 [40]. The NLRP3 protein, in particular, is the best characterized component in the
inflammasome platform and has been shown to be implicated in the development of chronic diseases.
NLRP3, which is a crucial interface between metabolism and inflammation [41], is induced by a wide
spectrum of molecules through mechanisms that have not, as yet, been fully understood.

A variety of models have been proposed to explain the main pathway of activation of NLRP3:
there are interesting data showing a crucial involvement of reactive oxygen species (ROS), produced
by damaged mitochondria [42]. However, the mechanism underlying the role of ROS in priming
NLRP3 remains unclear [43]. Another model, designed by Hornung and colleagues, suggests that
the NLRP3 inflammasome could be triggered by phagolysosomal destabilization and lysosomal
damage: this “endogenous danger signal” represents for the immune system the cause activing the
inflammasome [44].

In the innate immune response, an abnormal synthesis of ROS could be associated with decreased
bioavailability of nitric oxide (NO), which is a major indicator of NLRP3 activation. Indeed, the



Int. J. Mol. Sci. 2016, 17, 47 5 of 16

inhibition of NLRP3 activation by NO is known to be one of the mechanisms of tissue protection by
ischemic preconditioning [45].

ROS and NO have been proposed as triggers of mitochondrial dysfunction [46–48], and data in
the literature have shown that cardiovascular disorders [49] and metabolic syndromes that are related
to cholesterol deregulation are associated with mitochondrial damage [50–55].

Several recent data have shown that autophagy [56], and in particular mitophagy, are key links
between inflammasome ROS and mitochondrial dysfunction [57,58] (Figure 2).
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Figure 2. Schematic representation of the cholesterol pathway and of the mediation of sterol metabolites
(ubiquinone) in mitochondrial respiratory function (Complex I–IV) in response to the inflammation
signal. Inhibitors of CP and MTAse (as MitoQ) are indicated in capital and red characters: statins,
aminobisphosphonate, squalene synthase and farnesyltransferase inhibitors. The block of CP leads to
the activation of the NLRP3 inflammasome and consequently IL-1β through mitochondrial signals.

3.2. Programmed Cell Death

Programmed cell death or apoptosis is a homeostatic process that maintains cell populations in
tissues and acts as a defense mechanism against intracellular damage caused by infection or oxidative
stress. This mechanism is essential for optimal cell function and for the development of immune
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and hormonal systems [59]. Defects of apoptosis cause severe diseases such as cancer, Alzheimer’s,
Parkinson’s and autoimmune conditions [59]. Programmed cell death, linked to an inflammatory
response by the NLRP3 inflammasome, is triggered by the mitochondrial oxidative stress induced
by an increase of ROS, and is followed by the apoptosis mechanism initiated by caspases [60,61].
The mitochondria play a central role in activating and controlling cell death mechanisms through
caspase activity [60]. Our studies on MKD pathogenesis confirm that CP deregulation induces
programmed cell death via mitochondrial signals, especially in neurological areas [62,63].

3.3. Autophagy and Mitophagy

Autophagy is a catabolic process with multiple physiological functions, which acts primarily
as a protective mechanism to prevent cell death. A specific type of autophagy, called mitophagy, is
designed to ensure the integrity of healthy mitochondria and the removal of damaged intracellular
structures [64,65], preventing the accumulation of toxic mitochondrial products. The impairment of
this mechanism contributes to the accumulation of ROS and to the synthesis of pro-inflammatory
molecules that trigger programmed cell death. In addition to this, the abnormal biosynthesis of ROS
supports a hyper-activation of the inflammatory pathways, e.g., though the NLRP3 inflammasome [66].

Low levels of activation of mitophagy may be involved in the pathogenesis of common human
disorders such as Parkinson disease, diabetes, Alzheimer’s disease and some forms of cancer [67,68].

Understanding the molecular mechanism of mitophagy is, therefore, of crucial importance to
explain its pivotal role in cellular homeostasis and to comprehend how altered ”mitodynamics”,
(e.g., aberrant mitochondrial trafficking, modified interorganellar communication, and impaired
mitochondrial quality control) may contribute to the onset of numerous diseases, from inborn errors of
cholesterol biosynthesis to adult-onset neurodegenerative diseases, cancer, cardiovascular disorders,
and infectious/inflammatory conditions, as well as metabolic derangements [69].

Furthermore, impaired autophagy, controlled by multiple pathways including protein
isoprenylation, has been identified as one of the causes of the pathogenesis of SLOS [70], due
to inefficient clearance of defective mitochondria. Similarly, in the pathogenesis of MKD, the
cumulative effect of mitochondrial deregulation triggers the activation of NLRP3 and, consequently,
the biosynthesis of pro-inflammatory cytokines that amplify the inflammation system [71–73].

4. Innovative Target Therapies Counteracting Inflammation Caused by Cholesterol Dysfunctions

In the light of the pathogenic mechanisms of CP deregulation, the potential therapeutic targets are
both at pathway level (activation of NLRP3) and at molecular level (mitochondria and inflammasome)
(Figure 2).

4.1. Inhibitors of Cholesterol Synthesis

The cholesterol pathway cascade is regulated by, among others, drugs such as statins (mycotoxins
used to lower cholesterol levels), and bisphosphonates, used to treat various bone-degenerative
diseases, including osteoporosis. These two agents, which are widely used in clinical practice for their
structural resemblance to substrates within the pathway, can inhibit mevalonate synthesis (statins)
or mevalonate downstream metabolism (bisphosphonates), leading to reduced formation of the
isoprenoids FPP and GGPP [73,74].

The statins are a class of drugs similar to HMG-CoA in chemical structure that inhibits HMGCR,
binding competitively to the active site of the enzyme. This competition reduces mevalonate
biosynthesis and slows down the subsequent serial steps to produce cholesterol. According to Williams
(2002), statins have greater affinity for HMGCR than HMG-CoA, therefore they are particularly efficient
in controlling the production of excessive levels of cellular cholesterol [75]. Depending on dosage and
type, statins display differential capacity to inhibit the mevalonate pathway and to prevent coronary
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and atherosclerosis complications [76]. For all these reasons, they are considered the “gold standard”
for metabolic prevention of coronary heart diseases [77].

Statins are divided into two categories based on their molecular structure and chemistry: natural
statins, such as lovastatin, simvastatin, and pravastatin, and synthetic statins, such as fluvastatin,
cerivastatin, atorvastatin, and rosuvastatin [78].

The chemical composition influences the pharmacological properties of these drugs, affecting,
for example, their affinity for the enzyme HMGCR, their systemic availability and their
metabolism/excretion pathways [79].

A variety of combinations of statins with other agents, such as ezetimibe/simvastatin, are available
on the pharmaceutical market [80].

Despite the widespread use and high safety profile of statins, recent studies have produced
controversial data regarding the side effects of these drugs in particular myopathy and
rhabdomyolysis [81,82]. Indeed, a recent observation has suggested that these adverse clinical effects
may be caused by the mitochondrial dysfunction caused by statins [82]. According to this study, these
drugs are able to promote mitochondrial permeability transient pore opening and generate apoptotic
proteins, but no changes in HMGCR activities have been noted. However, because of the contradictory
results and interpretations in literature, further studies are necessary to verify this hypothesis.

Finally, Izadpanah proposed a very fitting theory on these adverse clinical effects, suggesting
that statins play a role in inflammation pleiotropy through stem cells: the positive effect is supported
by the capacity of mesenchymal stem cells to differentiate into macrophages capable of reducing
inflammation, while the negative effect could be determined by an increase in cellular senescence and
apoptosis markers [83].

Bisphosphonates (BPs) are another family of drugs that act on the CP: they are currently employed
to treat pathological conditions characterized by osteoclast-mediated bone loss, due to osteoporosis
and other metabolic bone diseases (osteolytic bone metastasis, hypercalcemia and Paget’s disease).
BPs have the ability to inhibit bone digestion and resorption by concentrating bone phosphates
and inhibiting osteoclast function and viability, thereby slowing down bone loss [84]. They are
chemically stable analogs of pyrophosphates and compete with the analogue portion of the isoprenoid
diphosphate intermediates of the mevalonate pathway. The impact of BPs on the CP is mainly due
to their pyrophosphate-like structure, which enables them to bind to, and inhibit, key isoprenoid
biosynthetic enzymes, such as farnesylpyrophosphate synthase (FPPS). The inhibition caused by the
structure of BPs prevents the post-translational prenylation of various Guanosine-51-Triphosphate
(GTP)-binding proteins, not only in osteoclast, but also in blood cells, leading to an impairment of the
various cellular functions these proteins modulate [85,86].

BPs can be divided into two groups, nitrogen-containing (N-containing) and non-N-containing
BPs (or pyrophosphate-resembling BPs), based on their different mechanism of action and cell
effects [73,74].

The former class has become available more recently and is more powerful. It includes alendronate,
pamidronate, risedronate, ibandronate and zoledronate and interferes with the mevalonate pathway by
blocking FPPS. The second group, which includes etidronate and clodronate, interferes with adenosine
triphosphate (ATP)-dependent intracellular pathways: the non-N-containing BPs are metabolically
incorporated into nonhydrolyzable ATP analogues that disturb mitochondrial activity and inhibit
ATP-dependent enzymes [87–89].

Also in the case of BPs there are data in the literature describing effects that are exactly
opposite to those illustrated above [90]. The main side effects related to the use of these drugs
are the following: renal toxicity [91,92] and acute-phase reactions (related specially to zoledronic
acid) [93–97], gastrointestinal toxicity (associated to oral agents as clodronate and ibandronate) [98],
and osteonecrosis of the jaw as an adverse effect of the aminobisphophonate therapy in patients whose
immune system is already compromised [99].
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In addition, a number of plant and fungal derived isoprenoids and inhibitors, introduced in
various amounts through the diet, are able to modulate the CP. For example, natural isoprenoid
compounds, such as geraniol, menthol, farnesol, profoundly affect MP regulation, as also do
squalene synthase inhibitors (zaragozic acid, ZAA) [100,101] and inhibitors of farnesyltransferase
(manumycin A, Tipifarnib) [102,103].

4.2. Mitochondrial-Target Anti-Oxidants

The drugs that belong to the Mitochondrial-Target Anti-oxidants (MTAs) family are studied
for their anti-oxidant activity and mitochondrial protection properties, and are therefore good
candidate molecules to contrast oxidative stress caused by cholesterol deregulation [104]. MTAs are
mitochondria-targeted drugs several hundred-fold more potent at preventing mitochondrial oxidative
damage than untargeted antioxidants [90]. Once accumulated in the mitochondria, MTAs are
able to inhibit selected steps along the pathway of activation of programmed cell death [105,106].
The compounds that belong to the MTAs family are MitoQ, Mitotempo and MitoVitE. MitoQ, in
particular, is a promising antioxidant biomolecule that has been shown to protect mitochondria from
various types of oxidative damage by decreasing ROS production [106–119].

The antioxidant component of MitoQ is ubiquinone, the same bioactive molecule found in
Coenzyme Q10 [108].

MitoQ, positively charged with a lipophilic cation, is able to penetrate the biological membranes
and accumulate selectively in the mitochondria, within the negative mitochondrial matrix [119].
The mitochondrial respiratory chain rapidly reduces MitoQ ubiquinone to its active ubiquinol form,
MitoQuinol, which acts as antioxidant molecule and mobile electron donor [107,119]. In particular,
ubiquinol decreases local oxidative damage, by donating a hydrogen atom to radical species formed
during lipid peroxidation [120–122].

After neutralizing a free radical or ROS, the ubiquinol form is converted to ubiquinone, which is
subsequently converted back to the active ubiquinol form [108,123], with restored antioxidant function.

Recently, the mitochondrial effects of MitoQ have been tested in several in vitro models
demonstrating that this Mitochondrial-Target drug can reduce free radicals and oxidative damage,
maintaining mitochondrial function and preventing cell death caused by endogenous oxidative
stress [106,111,124,125].

The MitoQ antioxidant mechanism may be due to the inhibition of lipid peroxidation in the
mitochondrial inner membrane, but further studies are necessary to define the specific mechanism of
action of this drug in preventing mitochondrial damage [126].

Mito Q is already being studied as potential treatment for neurodegenerative diseases
such as Alzheimer’s disease and ischaemia-reperfusion injury, as well as other ageing-related
dysfunctions [107].

Potentially therapeutic concentration of MitoQ could be delivered to mitochondria in vivo through
the oral administration of well-tolerated doses of the drug [127].

MitoQ has been shown to decrease mitochondrial damage even at high doses in rats, without
side effects [128]. Data in the literature have provided robust evidence to support the testing of
MTAs in preclinical trials using neurodegenerative disease cell and mouse models, as well as on
Alzheimer’s patients.

The use of mitochondria-targeted peptides has also been shown to be effective in
treating/reducing hypercholesterolemia in an animal model of acute kidney injury, in which renal
injuries appeared to be alleviated after peptide treatment [129]. Data in literature confirm that several
diseases, including cardiovascular and neurodegenerative diseases, insulin resistance and diabetes as
well as age-related cancers, bear a common relationship to mitochondrial damage; this would support
the hypothesis of a pivotal role for MTAs [130].
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4.3. NLRP3 Inhibitors

Although this issue is still controversial, some data link the CP to the NLRP3 inflammasome. MKD,
for example, is associated with an autoinflammatory phenotype which is probably linked to reduced
protein prenylation and/or increased mitochondrial damage. Whatever the mechanism involved,
autoinflammation is associated with increased activation of NLRP3 and Caspase-1. Thus, inhibition of
NLRP3 may deserve to be further investigated for its potential to deal with inflammatory phenomena
related to CP dysfunction. Over the past 10 years, a growing body of data has been collected regarding
the function of NLRs, which is crucial for the identification of new therapeutic opportunities using
small molecule inhibitors [130,131].

A new class of small molecule inhibitors of NLRP3 has recently been discovered. Coll and
colleagues have described an innovative compound, called MCC950, which effectively reduces the
synthesis of IL-1β in a disease model of multiple sclerosis [132], and could represent an effective tool
to treat NLRP3-associated syndromes, such as autoinflammatory and autoimmune diseases [133].
Another compound, known as Andro, was tested in an experimental design in vivo and in an in vitro
model of colon carcinogenesis, with the aim of establishing the effect of the NLRP3 inflammasome.
It is worth noting that Andro acts as a trigger, promoting mitophagy in macrophages by inducing
a decrease in membrane potential through the inactivation of the NLRP3 inflammasome [134].

The interest elicited by the effectiveness of this new class of drugs is supported by a growing
body of data. Following the synthesis of compounds such as glyburide [135], which was the
first molecule to be studied for its ability to prevent NLRP3 activation, albeit only at high
doses in vivo, a number of similar molecules has been synthesized. Among these, 16673-34-0
(5-chloro-2-methoxy-N-[2-(4-sulfamoylphenyl)ethyl] benzamide), which was developed to limit the
infarct size following myocardial ischemia–reperfusion in a mouse model, proved to be highly
effective [136].

5. Outstanding Questions

Several studies have described how the oxidative damage of mitochondria and the activation of
inflammasomes can interact to determine defects of the CP. Targeting these two mechanisms would be
relevant both to curing rare disorders of cholesterol biosynthesis and to the treatment of metabolic and
degenerative disorders. Although considerable evidence, deriving from cellular and animal models, is
available, much remains to be understood about the real potential of inflammasome inhibitors in the
clinical setting. The crucial fact remains that cholesterol is tightly regulated by positive and negative
feedback mechanisms that may affect different cell types and functions in different ways.

For example, consistent data show that shortage of geranygeranyiol can lead to inflammation
by reducing prenylation of membrane bound GTP-binding proteins of the Rab and Rac family, with
consequent activation of the inflammasome [137–140]. However, recent data support the idea that
also the shortage of cholesterol may exert an anti-inflammatory effect by reducing the substrate
available to synthesize 25-hydroxycholesterol [141]. The matter becomes even more complicated if we
consider that 25-hydroxycholesterol can regulate the enzymes of the pathway through modulation
of transcription factors, the so-called sterol regulatory element-binding proteins (SREBPs), and thus
affect the concentration of mevalonate-derived compounds.

Furthermore, the regulation of the CP may vary greatly depending on the cell type. CP plays
an essential role in liver metabolism and in the production of biliary acids. In monocytes, the main
function of the CP is probably to modulate the activity of membrane bound proteins or regulate cell
membrane composition. Therefore, it is difficult to predict how pharmaceutical interventions on this
pathway may influence the various functions of the different cells types and organs.

For the same reasons, it is hard to predict what the long term consequences of treatments
that reduce the inflammatory response and hyper-protect mitochondria could be. Further studies
addressing these questions in preclinical settings are needed. In the meantime, randomized controlled
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trials will definitely clarify the preventive and curative potential of these novel therapeutic strategies
on neurodegenerative and cardiovascular inflammatory disorders.
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