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Abstract: Graph learning methods, especially graph convolutional networks, have been investigated
for their potential applicability in many fields of study based on topological data. Their topological
data processing capabilities have proven to be powerful. However, the relationships among separate
entities include not only topological adjacency, but also correlation in vision, for example, the spatial
vector data of buildings. In this study, we propose a spatial adaptive algorithm framework with a
data-driven design to accomplish building group division and building group pattern recognition
tasks, which is not sensitive to the difference in the spatial distribution of the buildings in various
geographical regions. In addition, the algorithm framework has a multi-stage design, and processes
the building group data from whole to parts, since the objective is closely related to multi-object
detection on topological data. By using the graph convolution method and a deep neural network
(DNN), the multitask model in this study can learn human thoughts through supervised training, and
the whole process only depends upon the descriptive vector data of buildings without any ancillary
data for building group partition. Experiments confirmed that the method for expressing buildings
and the effect of the algorithm framework proposed are satisfactory. In summary, using deep learning
methods to complete the tasks of building group division and building group pattern recognition is
potentially effective, and the algorithm framework is worth further research.

Keywords: building pattern; node classification; graph partition; graph convolutional networks;
random forest; graph convolutional neural networks; machine learning

1. Introduction

Buildings are important entities in the fields of city computing and city perception. The distributive
characteristics of different building groups can be visually summarized as patterns considered as the
fine-grained features of the city. In addition, patterns of building groups play an important role in
map generalization and navigation [1,2], and the indices (e.g., the area, perimeter, orientation and
compactness) of buildings are descriptive enough for deep learning methods to accomplish some
classical tasks of building pattern classification [3]. In general, building patterns can be divided
into regular patterns and irregular patterns. Grid-like patterns are the main manifestation of regular
patterns, while irregular patterns mainly consist of I-shape, L-shape and independent types [4].

Existing methods for building pattern recognition usually partition building groups with the help
of road networks and other ancillary data [5–7], and thus the applicability in some geographic analysis
scenarios is weakened [8]. Therefore, proposing a building group partition method with high accuracy
is essential for the data independence of finishing the building pattern recognition task.
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The building pattern recognition task is equivalent to the multi-object recognition task, and the
difference is that the former is based on topological data, compared to the traditional multi-object
recognition task of computer vision. The building group partition operation in the building pattern
recognition process is like region proposal methods. Fast R-CNN [9] and its derivative algorithms
are a kind of effective, multi-object recognition framework [10,11]. The contour of the target object is
often irregular. Hence convolutional neural networks (CNNs) are used to calculate the probability of
whether the proposal region contains target objects [12]. On the basis of Fast R-CNN, the appearance
of Mask R-CNN brought the research to the stage of instance segmentation [13]. Mask R-CNN is also
based on region proposal methods and identifying each pixel as the background or as a part of the
object by a fully convolutional network (FCN) [14]. To identify all building patterns in a building
group, the instance segmentation idea is transferable. Inspired by the usage of the FCN in Mask
R-CNN, in this study we summarize three spatial states of one building: the edge state, the inner state
and the free state. Specifically, there is an analogy between the buildings of the edge state and the
contours of an object output by Mask R-CNN, and the method proposed in this study classifies each
building into one of the three states mentioned above by using the graph convolutional network (GCN)
model, like the usage of the FCN.

Graph neural networks (GNNs) and GCNs exhibit excellent performance based on topological
data in different research fields, including social networks [15], protein interface prediction [16], disease
prediction [17,18] and remote sensing image processing [19]. GNNs and GCNs accomplish information
aggregation according to the adjacent relations between nodes in a graph, aiming to perceive the
topological features of different nodes. This notion is closely related to spatial association [20] and the
first law of geography [21] because of the natural formation of adjacent relations based on distances.
However, in general circumstances, the relationships between objects not only include topological
adjacency but also shape similarity, especially in research on building pattern recognition [3,22].
The graph learning methods mentioned above are normally applied to non-Euclidean data, but seldom
focus on the visual characteristics and the spatial distribution of the nodes [23].

To perceive the relationships among the graph node and its neighbors, graph embedding is
employed, which learns to represent graph nodes with n-dimensional vectors. Graph embedding
has a close connection with methods of the representation-based classification (e.g., some up-to-date
works, such as LMRKNN [24], TPCRC [25], the novel DCRC method via l2 regularizations [26] and
MKFLE [27]). Inspired by the representation learning, graph embedding methods on graph domain
(e.g., DeepWalk [28], node2vec [29], LINE [30] and SDNE [31]) and some specific methods like those
seen in [32] and [15] are proposed, which accomplish information aggregation based on the adjacent
relationships among nodes on graphs. The similarities and the discriminations of the graph nodes are
reflected by the representation vectors, with the expectations that the nodes can be correctly classified
into their own classes.

In this work, we propose a representation method, named as the shifting degree of adjacency
weight, to describe the spatial correlation between the buildings and the visual characteristics of the
building nodes. To avoid the overfitting problem [33], the method is rotate-invariant and shift-invariant.
Besides, in order to achieve the objective of building pattern recognition, an algorithm framework is
proposed in this study. The framework has a multi-stage design and processes the building group
data from whole to parts, since the building pattern extraction during the workflow is associated with
the multi-object detection on graphs. Additionally, the mentioned graph learning methods encode
the nodes by the information passing through and aggregation between adjacent nodes to derive the
features of nodes, which solves the problems of the unfixed size of vertices and the uncertain adjacent
relationships. In this study, a novel graph convolution operation is introduced for better performance
of feature encoding.

With a symmetric normalized Laplacian matrix, the adjacency information of nodes has been
normalized during the aggregation operation to address overfitting [15]. In addition, local weight
sharing is generalized to graph structure through a polynomial approximation of the Laplacian
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matrix [32,34]. In addition, a graph convolutional neural network (GCNN) [35,36] is constructed by
combining the graph convolution operation with a deep neural network for the graph representation
learning related to the building pattern recognition task. Generally, the whole process only depends
upon the descriptive vector data of buildings without any ancillary data for building group partition,
which improves the applicability of the proposed method.

This study focuses on developing an algorithm framework to finish building group partition and
pattern recognition (e.g., I-shaped, L-shaped, grid-like and single type pattern) tasks based only on the
vector data of building contours. In addition, experiments for exploring reasonable model structures
have been conducted for a satisfactory and convincing result.

The remainder of the paper is structured as follows: Section 2 introduces the experimental datasets
for the model training and testing. Section 3 describes the principles of the proposed methods in details,
and Section 4 articulates the procedure of the algorithm framework. The experiments and results are
presented in Section 5, and some issues are discussed in Section 6. Finally, Section 7 summarizes this
research and presents the future works.

2. Study Materials

Beijing’s Xicheng District and the core areas of the city of Xi’an (Figure 1) were selected as
the study regions. The selection is reasonable because of their long history and their important
development positions. The two study regions include various stages of urban development in China,
and therefore the building distributions and contours are in accordance with the multiplicity principle.
The experimental datasets contain the vector data of building contours at a scale of 1:2000 in the
two mentioned areas for 2017. The vector data of each building contour consists of a series of key
points recording longitude and latitude data. In the annotation process, we first selected the data
of building contours in random rectangular areas as separate data blocks, with 75–154 buildings
per block. The models used by the proposed algorithm framework are trained with supervised or
semi-supervised learning, and the datasets for the training and testing of different models are labeled
according to the specific tasks. In general, three datasets were constructed for the three tasks: building
state identification, building node clustering and building pattern recognition.
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3. Methodology

On the basis of the adjacency relationships among the building nodes, each data block, which
is referring to a building group, is processed from whole to parts in the proposed framework
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with a multi-stage design. All the building nodes are firstly classified into three spatial states for
further processes. The four major parts, building node state identification, building group partition,
fine-grained partition for building blocks and building pattern recognition, are explained with details
in the following sections.

3.1. Building Node State Identification

3.1.1. Definition of Three Building Node States

According to the possible spatial correlation between the building nodes, three kinds of building
node states are defined:

• Edge state. Intuitively, the edge state buildings are located on the edge of a building block. Their
unique characteristic is that the contrast between the buildings of their two sides is strong (e.g.,
the bright yellow buildings shown in Figure 2). The contrast embodied by the difference of the
descriptive vectors of building nodes will lead to unique feature encoding through the graph
convolution operation. Therefore, the definition of edge state is reasonable, and it is indicative of
the inner state building.

• Inner state. Buildings located in the same building pattern are similar in terms of size, outline
and spatial position; hence, buildings located in the same pattern are defined as the inner state
buildings (e.g., the blue buildings shown in Figure 2).

• Free state. Normally, there is one building that exhibits independence because of its spatial
distance among others. We define such buildings as free state buildings (e.g., the orange buildings
shown in Figure 2).
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3.1.2. Descriptive Methods for Building Features

We can quantify the differences stated in Section 3.1.2 through descriptive vectors constructed
by the variables summarized in Table 1. The definitions of shifting degree of adjacency weight and
orientation are in Sections 3.1.2.1 and 3.1.2.2, respectively.
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Table 1. Description of spatial characteristics of individual buildings along with their equations and
short descriptions.

Variable Index Equation Description

Position
feature

Shifting degree of adjacency
weight in width direction - See Section 3.1.2.1

Shifting degree of adjacency
weight in height direction - See Section 3.1.2.1

Size
Area index Ab/max(Ab) Building area with normalizing operation

Building perimeter with normalizing operationPerimeter index Pb/max(Pb)

Orientation Orientation index - See Section 3.1.2.2

Shape Compactness
4πAb

P2
b

Quadratic relationship between the area and
the perimeter [37]

Concavity Ab
Ach

Area ratio of the building to its convex hull [37]

3.1.2.1. Definition of the Shifting Degree of Adjacency Weight

The spatial distribution of buildings is fundamental for building group partition. In a building
group, it is intuitive to treat buildings that are close to each other as one building block. The sparse
part reflects the boundary between two separate partitions. Therefore, the distance between buildings
can be used to describe the sparse part [4]. However, distance is merely one descriptive parameter
in one-dimensional space, and it is not enough to describe the spatial distribution of the buildings.
Thus, we need two-dimensional indices to express the sparsity or the density of the buildings in
two-dimensional space (see Figure 3a,c), and the shifting degree of adjacency weight is defined in
this study.
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As shown in Figure 3a, we first calculate the center coordinate, width and length of the smallest
bounding rectangle (SBR) of the central building node and its neighbors. Specifically, (see Figure 3a,c),
the width is the edge of the SBR that is parallel to the X axis with counterclockwise rotation of the
smallest degree. The adjacent edge is the height of the SBR. The two-dimensional indices are given by

Dw =
2S1

L1
(1)

Dh =
2S2

L2
(2)

where Dw denotes the shifting degree of adjacency weight in the width direction and Dh denotes the
shifting degree of adjacency weight in the height direction. The geometrical meanings of S1, S2, L1, and
L2 are shown in Figure 3a,c where L1 denotes the half of the width and L2 denotes the half of the height.
S1 and S2 mean the offset distances between the central building node and the center coordinate of the
SBR in the width direction and height direction, respectively.

3.1.2.2. Description for Building Orientation

The difference in building orientation is important for judging whether buildings should be in the
same building pattern. As shown in Figure 4, we derive the angle N◦(N◦ ∈ [0,π]) between the width
of the SBR (see Section 3.1.2.1) and the X axis. The expression for the descriptive variable is

O =

{ 90−N
180 , W > H,

180−N
180 , H > W

(3)

where H and W are the height and width of the SBR, respectively, as defined in Section 3.1.2.1.
The output value of the expression above is normalized during the calculation procedure to avoid the
overfitting problem [33] during the training process.
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3.1.3. Graph Convolutional Network

The building group partition and building pattern recognition are based on the feature encoding
of the building nodes in this study. The descriptive indices for buildings are given in Table 1. Similar
to the human visual system, the GCN model makes judgments on the basis of the differences among
the building and its Kth-order neighbors, as human’s eyes distinguish detail based on the gradient
information of pixels.

As shown in Figure 3b, the shifting degree of adjacency weight (Section 3.1.2.1) is small when the
building is located in the inner building group, while the shifting degree is relatively larger when the
building is located on the edge of the building block (Figure 3a). This is one of the differences between
the buildings in various states. In addition, differences are also embodied in the aspects of size, shape,
orientation and other indices. The model learns the judgment rules by using the training samples.

On the basis of the concepts above, the process for deriving building node encoding is as follows:
First, we consider the situation of one-dimensional linear adjacency. As shown in Figure 5, only
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building Ti−1 and building Ti+1 are adjacent to building Ti. Therefore, the difference information δi is
derived from the following aggregation operation:

δi = (ϕi −ϕi+1) + (ϕi −ϕi−1) (4)

where ϕi denotes the descriptive vector of building Ti. One sample of a real building distribution
shown in Figure 6. Similar to Equation (4), the aggregation operation is given by

δi =
N∑

j=1

Ai, j ×
(
ϕi −ϕ j

)
= ϕideg(i) −

N∑
j=1

Ai, jϕ j (5)

where A refers to the adjacency matrix and deg(i) denotes
∑

j Ai, j.
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For each building node in a graph, the computation process can be described based on the
matrix operation 

δ1
...
δN

 =


deg(1)ϕ1
...

deg(N)ϕN

−A


ϕ1
...
ϕN

 (6)

We define vectors ϕ = [ϕ1,ϕ2, . . . ,ϕN]
T and δ = [δ1, . . . , δN] and get

δ = Dϕ−Aϕ = (D−A)ϕ = Lϕ (7)

where L is the Laplacian matrix. Equation (7) shows that the usage of the Laplacian matrix is equivalent
to the aggregation operation. A symmetric normalization operation for the Laplacian matrix [15] is
implemented to address overfitting. The expression is

Lsys = D−
1
2 LD−

1
2 = IN − D−

1
2 AD−

1
2 (8)

where IN is the identity matrix of size N.
The Fourier transform is an effective tool in the fields of signal analysis and image processing;

it converts the original signal or image information into the Fourier domain [3,38]. In this study, we first
extract the adjacency information from Lsys (Equation (8)) by using the graph Fourier transform, and
then we introduce a polynomial approximation operation implemented on the modified Laplacian
matrix that optimizes the computational procedure.
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First, the spectral decomposition for the Laplacian matrix is given by

L = U


λ1 · · · 0
...

. . .
...

0 · · · λN

U−1 (9)

where U =
(⇀
u1,

⇀
u2, . . . ,

⇀
uN

)
and λn (n ∈ [0, N − 1]) is the nth eigenvalue of the Laplacian matrix.

Because U is an orthogonal matrix, and thus UT = U−1, according to the definition of the Fourier
transform, the graph Fourier transform [3] is

F(λl) = f̂ (λl) =
N∑

i=1

χT
l (i) fl(i) (10)

where fl refers to the signal (the input vector) and {χl}
N−1
l=0 are the eigenvectors of the Laplacian matrix.

The computing process in detail is


f̂ (λ1)

...
f̂ (λN)

 =

χ1(1) · · · χ1(N)

...
. . .

...
χN(1) · · · χN(N)



→

f1
...
→

fN

 (11)

The inverse Fourier transform is defined as fl =
∑N−1

i=0 f̂ (λl)χl. On the basis of the derivation
above, the convolution can be first converted into a point-wise product in the Fourier domain, and
then reconverted into the vertex domain [3] as follows:

f ∗ g =
N−1∑
l=0

f̂ (λl)ĝ(λl)χl (12)

In addition, in this study we introduce a polynomial approximation of the Laplacian matrix based
on Chebyshev polynomials to obtain the following effects [3,32]:

• Aggregating the differences between each building and its Kth-order neighbors based on
adjacency information;

• Realizing local weight sharing for the convolutional kernels, and;
• Reducing the computational cost for learning.

According to the recursion formula of Chebyshev polynomials, Tk(X) = 2XTk−1(X) − Tk−2(X),
where T0(X) = IN and T1(X) = X, we get the coefficients βk. The approximation of the Laplacian
matrix is designed as [32,34]

L = U


∑K

k=0 βkλ
k
1 · · · 0

...
. . .

...
0 · · ·

∑K
k=0 βKλK

n

UT (13)
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The following derivation shows a clearer process:

L = β1U


λ1

1 · · · 0
...

. . .
...

0 · · · λ1
n

UT + . . .+βKU


λK

1 · · · 0
...

. . .
...

0 · · · λK
n

UT =β1

U


λ1

1 · · · 0
...

. . .
...

0 · · · λ1
n

UT


1

+

. . .+βK

U


λ1

1 · · · 0
...

. . .
...

0 · · · λ1
n

UT


K

=β1L1 + . . .+ βKLK =
∑K

j=1 β jL j

(14)

Equation (14) shows that calculating the eigenvectors is not required, which simplifies the
computational procedure. To match the requirement that the range of the input eigenvalues is [−1, 1],
the following transform is operated on the Laplacian matrix before inputting:

L̃ =
2

λmax
L− IN (15)

where λmax is the maximum of the eigenvalues. In terms of the Laplacian matrix L derived from a
graph G, only the coordinate values referring to two adjacent buildings are 1, whereas the others are
0. Therefore, only same-order neighbors share the same weight from the same convolution kernel
according to Equation (14), and the property of local weight sharing for kernels is realized, which also
enlarges the perception of adjacent regions of the starting building node (Figure 7) for the GCN model
with the settable parameter K shown in Equation (14).Sensors 2020, 20, x FOR PEER REVIEW 9 of 25 
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Based on the derivation above, the graph convolution formula is given by f ∗ g = (Lϕ) ∗ g. After
making the low-order polynomial approximation for the Laplacian matrix (Equation (14)), we get the
size of the output matrix as (N, Kn), where N is the number of the vertices in a graph and n denotes the
length of the descriptive vector of buildings. Therefore, the size of the convolution kernels is (Kn, I),
where I refers to the number of convolution kernels. In general, the size of kernels is proportional to
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the product of K and n, which demonstrates that the computing cost is minimized compared with the
classical graph convolution method [36].

Training of the GCN model is based on the gradient descent method to minimize the output loss
of the model. According to the chain rule, the gradient expressions used in the back-propagation
process [39] are as follows: bloss

bw(k)
i. j


(l)

= x(k)i δ
(l+1)
j , i ∈

[
0, n f − 1

]
, j ∈ [0, nk − 1], k ∈ [0, K − 1] (16)

δ
(k,l)
i =

nk−1∑
j=0

w(k)
i, j δ

(l+1)
j (17)

where n f denotes the length of the input vectors and nk refers to the number of convolution kernels.
In this study, the GCN model consists of two convolutional layers. The graph convolution

operation is shown in Figure 8.Sensors 2020, 20, x FOR PEER REVIEW 10 of 25 

 

...

0-order neighbor info-combination K-order neighbor info-combination

0-order kernel function group K-order kernel function group

× (Matrix multiplication)

=

Kernel 1

...

Kernel 1

Kernel 2Kernel 2

Kernel nKernel n

 
Figure 8. Visualization of the computing process for the graph convolution operation. 

Algorithm 1 BFS (G, ௦ܸ , ݒ , ܵଵ ) 
1:  Initialize: ܵ௧ (an empty stack for the BFS algorithm). 
2:  push ݒ to ܵ௧  
3:  while not empty ( ܵ௧ ) do 
.௧ܵ ← ݒ     :4   ()
5:     ݈௩  = [ neighbors ( ݒ ) ]  
6:     for each ݒ  ∈ ݈௩ do 
7:        if ݒ ’s state is ܵ then 
8:           append ݒ to ௦ܸ  
9:           push ݒ to ܵ௧  
10:  Return: ௦ܸ  
 
Algorithm 2 Inner state node searching process for group pattern reconstruction 
1:  Input:  Building graph G = (V, E) (where V[i] stores the state of building i recognized by the 
GCN (Section 3.1.3)); number of building nodes = N 
2:  Initialize:  ூܸ (an empty list to store the building groups of inner state), ூܰ = 0 
3:  for i = 0 to N − 1 do 
4:     if V[i] is ݎ݁݊݊ܫ state and have not been appended to ூܸ then 
5:       ூܰ + + , append(V[i]) to ூܸ[ ூܰ]  
6:       BFS (G, ூܸ[ ூܰ] , V[i], ݎ݁݊݊ܫ state) ◁BFS(Algorithm 1) for node traversing 
7:  for i = 0 to N − 1 do 
8:     if V[i] is ݁݀݃݁ state and have not been appended to ூܸ then 
9:        for j = 0 to ூܰ − 1 do 

Figure 8. Visualization of the computing process for the graph convolution operation.

There are three kinds of building states, thus there are three convolution kernels in the second
layer, and Softmax is the selected as the activation function. Each component of the output vector
denotes the probability of the related class.
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3.2. Building Group Partition Algorithm

As was stated in Section 3.1, the building nodes in a graph have been classified into three types:
edge state nodes, inner state nodes and free state nodes. Through the distribution of buildings is
extremely random, after the classification of building states, finite kinds of situations are revealed as
follows:

• Situations of inner state: There is only one existing situation of inner state nodes in a building
block. As shown in Figure 9b, the inner state nodes are surrounded by the edge state nodes, and
form the building block with the latter. Algorithm 2 is used for obtaining the building block
containing inner state nodes.

• Situations of edge state nodes: As shown in Figure 9b,e there are two possible situations of edge
state nodes: 1. forming the building block with inner state nodes and 2. forming the building
block only consisting of edge state nodes. Algorithm 2 is adapted to the first situation, while
Algorithm 3 is applied to the second situation.

• Situations of free state nodes: There is only one possible situation of free state nodes because
of its independence compared to the other two kinds of building nodes, as shown in Figure 9c.
Algorithm 4 is used for constructing the building group consisting only of free state nodes.

• Building nodes in the same state, but not in the same building block: It is possible that, though the
nodes are identified as nodes in the same state, they belong to different building blocks (Figure 9d).
Moreover, a fine-grained partition is needed because of the differences in the aspects of size,
outline and orientation because the group partition step mainly focuses on the spatial distribution.
This problem will be solved in the following step.

Algorithm 1 BFS (G, Vs, v, Sn1)

1: Initialize: St (an empty stack for the BFS algorithm).
2: push v to St

3: while not empty (St) do
4: v← St.pop()
5: lv = [neighbors (v)]
6: for each v j ∈ lv do
7: if v j’s state is Sn then
8: append v j to Vs

9: push v j to St

10: Return: Vs

Algorithm 2 Inner state node searching process for group pattern reconstruction

1: Input: Building graph G = (V, E) (where V[i] stores the state of building i recognized by the GCN
(Section 3.1.3)); number of building nodes = N
2: Initialize: VInner (an empty list to store the building groups of inner state), NInner = 0
3: for i = 0 to N − 1 do
4: if V[i] is Inner state and have not been appended to VInner then
5: NInner ++, append(V[i]) to VInner[NInner]

6: BFS (G, VInner[NInner], V[i], Inner state) /BFS(Algorithm 1) for node traversing
7: for i = 0 to N − 1 do
8: if V[i] is edge state and have not been appended to VInner then
9: for j = 0 to NInner − 1 do
10: for k = 0 to VInner[ j].length − 1 do
11: if V[i] ∈ neighbors (VInner[ j][k]) and VInner[ j][k] is Inner state then
12: append(V[i]) to VInner[ j][k]
13: Return: VInner
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Algorithm 3 Edge state node searching process for group pattern reconstruction

1: Input: Building graph G = (V, E) (where V[i] stores the state of building i recognized by the GCN
(Section 3.1.3)); number of building nodes = N
2: Initialize: Vedge (an empty list to store building groups of edge state), Nedge = 0
3: for i = 0 to N − 1 do
4: if V[i] is edge state and have not been appended to VInner or Vedge then
5: Nedge ++, append(V[i]) to Vedge[Nedge]

6: BFS (G, Vedge[Nedge], V[i], Edge state) /BFS(Algorithm 1) for node traversing
7: Return: Vedge

Algorithm 4 Free state node searching process for group pattern reconstruction

1: Input: Building graph G = (V, E) (where V[i] stores the state of building i recognized by the GCN
(Section 3.1.3)); number of building nodes = N
2: Initialize: V f ree (an empty list to store the building groups of free state), N f ree = 0
3: for i = 0 to N − 1 do
4: if V[i] is f ree state and have not been appended to V f ree then
5: N f ree ++, append(V[i]) to V f ree[N f ree]

6: BFS (G, V f ree[N f ree], V[i], f ree state) /BFS(Algorithm 1) for node traversing
7: Return: V f ree
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Algorithm 5 Building node clustering 

1:  Input:  Building graph G = (V, E) (where ܸ   ∈ V means the building nodes from the same 
building division (Section 3.2)); N means the number of buildings 
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3.3. Fine-Grained Partition for Building Blocks 

As was stated in Section 3.2, the building group partition step divides building nodes into 
building blocks according to the spatial distribution. In this study, we use a fine-grained partition 
method to extract building patterns based on the similarity of the buildings. 

We employ indices of the standard deviation (SD) of these building distances [4], the area 
difference, the orientation difference, the compactness difference and the similarity difference [3], to 
construct the discriminant vector (Figure 10). The five indices quantify the difference in the related 
building nodes. In this study, the RF model [4] is utilized to judge whether the buildings are in the 
same pattern. Algorithm 5 is used for building node clustering to accomplish the fine-grained 
partition. 

Figure 9. Clustering samples of different state building nodes. (a) Situation A. (b) Situation B. (c)
Situation C. (d) Situation D. (e) Situation E.

3.3. Fine-Grained Partition for Building Blocks

As was stated in Section 3.2, the building group partition step divides building nodes into building
blocks according to the spatial distribution. In this study, we use a fine-grained partition method to
extract building patterns based on the similarity of the buildings.

We employ indices of the standard deviation (SD) of these building distances [4], the area difference,
the orientation difference, the compactness difference and the similarity difference [3], to construct
the discriminant vector (Figure 10). The five indices quantify the difference in the related building
nodes. In this study, the RF model [4] is utilized to judge whether the buildings are in the same pattern.
Algorithm 5 is used for building node clustering to accomplish the fine-grained partition.
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Algorithm 5 Building node clustering

1: Input: Building graph G = (V, E) (where Vi ∈ V means the building nodes from the same building division
(Section 3.2)); N means the number of buildings
2: Initialize: Sl (an empty list to store building pattern groups), M (a list initialized by False, storing the state if
Vi have been checked), St (an empty stack for the BFS algorithm), RF (a function using the RF model to judge
whether the buildings should be in the same pattern; see Section 3.3), L = N, n = −1
3: while L > 0 do
4: L –, n ++, T← None
5: append (Vi) to Sl[n], push Vi to St / where Vi ∈ V and M[i] == False
6: while not empty (St) do
7: Vi ← St.pop(), M [i]← True
8: lv = [neighbors (Vi)]
9: sort (lv) / by the distances to Vi in ascending order
10: for each V j ∈ lv do
11: if T == None and M[ i] == False then
12: if RF (Vi, V j) is True then

13: T← V j, append
(
V j

)
to Sl[n], push V j to St, L –

14: else if T! = None and M [i] == False then
15: if RF (Vi, V j, T) is True then

16: append
(
V j

)
to Sl[n], push V j to St, L –

17: Return: Sl

3.4. Building Pattern Recognition

The GCNN model used for building pattern recognition consists of graph convolutional layers
and a deep neural network. In this part, we first derive the adjacency information from the coordinate
data of building contours through the CDT method. The descriptive vectors are constructed by the
shifting degree of the adjacency weight (Section 3.1.2.1) of the key points from the contours. The input
matrix is constructed from the descriptive vectors of the key points in a building pattern, and the
adjacency matrix recording the adjacency information so that the model only focuses on the topological
relationships among the buildings.

The connection of the GCN to the deep neural network is shown as Figure 11. The size of the
output matrix of the graph convolutional layer is (N, Kn) (Section 3.1.3), where N is the number of the
vertices in a graph and n denotes the length of the descriptive vector of the nodes. The representation
vector of a graph Gi is derived by using [40]

hg =
1

Nvertex

Nvertex∑
i=1

hv (18)
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where hv denotes the output of the graph convolutional layer and hg is the input of the fully connected
layer. The training method is the same as mentioned in Section 3.1.3.
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4. Framework for Building Pattern Recognition

In general, based on the methods described in Section 3, to achieve building pattern recognition,
the algorithm framework proposed in this study consists of the following five parts:

• Graph construction for buildings. Each building node has its own unique identification number.
As shown in Figure 12a,b we first derive the adjacency information through constructing a
constrained Delaunay triangulation (CDT) [4,41,42] for all the buildings.

• Building node state identification. Based on the vector data of building contours, each building
entity is described by indices including its area, perimeter, orientation, compactness and shifting
degree of adjacency weight (Section 3.1.2.1), and then a descriptive vector is constructed.
The descriptive vectors are the input to the GCN model in the subsequent step. To make
rules for building group partition, three states (edge state, inner state and free state) (Section 3.1.1)
are defined to describe the spatial state of the buildings. The related dataset of building node state
labeling is constructed, and the GCN model with semi-supervised learning is trained to enhance
the ability of generalization. The GCN model is used to identify the building node state, which is
indispensable for the building group partition algorithm (see Section 3.2). The partition process
and the building samples identified as different states are shown in Figure 12c.

• Building group partitioning. The building group partition algorithm based on the identification
results of the building state is run. The outputs of the algorithm are the building blocks from the
partitioned building groups (Figure 12d).

• Building node clustering. A breadth-first search (BFS) is used to traverse building nodes in a graph,
and the graph of each building block is constructed by CDT. A random forest (RF) algorithm is
introduced to judge whether two or three building entities (Section 3.3) can be categorized into
the same building pattern. The objective of this step is to extract all the separate building patterns
in a building block (Figure 12e).

• Building pattern recognition. In this final step, a GCNN model (Section 3.4) is used to recognize
the building patterns, as shown in Figure 12f. The model is trained with supervised learning with
the building node pattern datasets.

To make a more intuitive description, the specific process of the framework is summarized in
Algorithm 6, and the whole workflow is shown in Figure 12.
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Algorithm 6 Framework for building pattern recognition

1: Require:
2: X: denotes the data of a building block selected in advance.
3: Xj: denotes primary data of a building object with ID j, including the coordinate data of
4: the building contours.
5: Step 1: Construct a graph G for X using CDT.
6: Step 2: Calculate the values of the variables mentioned in Section 3.1.2 to construct a
7: new descriptive vector for each building object X j, on the basis of the adjacent relations
8: derived from the graph G.
9: Step 3: Classify each building Xj into the state Sj by the GCN model (see Section 3.1.3).
10: Step 4: Accomplish building graph partition. Functions fa2, fa3 and
11: fa4 stand for Algorithms 2–4 respectively.
12: VInner = fa2(G)

13: Vedge = fa3(G)

14: V f ree = fa4(G)

15: Where VInner[i] denotes the ith building group and VInner [i] = [ X0 . . . Xk−1]. k stands for
16: the number of the buildings of the ith building group. Data structures of Vedge and
17: V f ree are the same as VInner.
18: Step 5: Utilize the RF model to accomplish the fine-grained partition (Section 3.3) for
19: the building groups from VInner, Vedge and V f ree.
20: Initialize:
21: Sl: an empty list.
22: V: a list consists of all the building groups from VInner, Vedge and V f ree.
22: for i = 0 to V.length − 1 do
23: G′ = V [i]
24: S′ = fa5 (G′) / fa5 stands for the function of Algorithm 5
25: for j = 0 to S′.length − 1 do
26: append S′[ j] to Sl / S′[ j] denotes a building group
27: end for
28: end for
29: Step 6: Classify the building group into the pattern with the GCNN model.
30: for i = 0 to Sl.length − 1 do
31: p′ = GCNN(Sl[i]) / p′ means the classifying result
32: end for
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5. Experiments and Results

5.1. Building Node State Recognition

In the task of building state identification (Section 3.1.3), the output of the GCN model is a
probability vector {Pi}

M−1
i=0 , where M denotes the number of possible classes. If Pi is the maximum,

then i refers to the class in which the object belongs. As was stated in Section 4, the graph generated
by CDT is the input of the GCN model. The model structure, shown in Figure 13, consists of two
convolutional layers with 64 kernels and 3 kernels, respectively. The Softmax function is selected as the
activation function of the last layer, and its output is a probability vector. During the training process,
we use the Adam optimization algorithm as the optimizer. The regularization weight is set as 5× 10−4.
To enhance the generalization ability, the model is trained with semi-supervised learning [15], and the
dropout probability is set as 0.5. Meanwhile, the model is trained by one graph per step.Sensors 2020, 20, x FOR PEER REVIEW 16 of 25 
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As shown in Figure 14, after training on the Beijing Xicheng District dataset for 40 epochs,
the training accuracy achieved 86.05% with the semi-supervised learning algorithm. The testing
accuracy on the Xi’an dataset achieved 92.71%, and the testing loss was 0.362.
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Figure 14. Training and testing results from the GCN model for building node state identification.

The confusion matrix is shown in Table 2, and the kappa coefficient is 0.832. Given that the
training set and the testing are based on data from two typical cities in China, the accuracies and the
two curves indicate the good generalization ability of the GCN model. Figure 15b shows the partial
results of the trained model on the testing data. The buildings with blue contours are identified as
edge state buildings.Sensors 2020, 20, x FOR PEER REVIEW 17 of 25 
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Table 2. Confusion matrix of the building node state identification experiment with the dataset of the
core areas of Xi’an.

Number of Examples = 950 Actual Inner State Actual Edge State Actual Free State

Predicted inner state 668 24 1
Predicted edge state 37 184 2
Predicted free state 0 0 34

Figure 16 shows the training accuracies and losses with different polynomial orders K. The results
indicate that the performance is poor when K = 1, but performance begins to improve from K = 2
to K = 3. When K = 4, the accuracy decreases. This confirms that a larger perception region helps
improve the accuracy. In addition, the findings indicate that the best performance emerges when
K = 3, with higher values of K having an adverse impact.
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5.2. Fine-Grained Partition

The RF model is employed to judge whether the buildings belong to the same building pattern for
the fine-grained partition task (Section 3.3). The Beijing Xicheng District dataset is used for model
training, while the Xi’an dataset is used for testing. The input vectors are prepared by following the
steps described in Section 3.3, and the RF model is trained with supervised learning. In addition,
a support vector machine (SVM) model is trained under the same conditions for comparison [3].
The experimental results, given in Table 3, indicate the RF method achieves better performance.
The experiment confirms that the effect of the proposed method is satisfactory, and the generalization
ability of the RF model is strong enough to be applied to other datasets.

Table 3. Comparative results of the two methods for the building node clustering task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)

SVM 98.30% 84.35%
RF 99.06% 96.77%

5.3. Building Group Pattern Recognition and Comparative Analysis

The structure of the GCNN model used for the building pattern recognition task is shown in
Figure 17. In this experiment, the Beijing Xicheng District dataset is used for model training and
the Xi’an dataset is used for testing. Table 4 shows the results: the accuracies of training and testing
are 98.20% and 89.83%, respectively. In addition, the confusion matrix of the recognition result on
the testing set (Xi’an dataset) is shown in Table 5. The kappa coefficient is 0.847. Two samples of
recognition results on the testing set are shown in Figures 15c and 18.
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Table 4. Comparative results of the three methods for the building pattern recognition task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)

SVM 99.68% 77.18%
RF 99.45% 81.78%

GCNN 98.20% 89.83%

Table 5. Confusion matrix of the building pattern recognition experiment with the dataset of the core
areas of Xi’an.

Number of Examples = 354 Actual I-Shape Actual L-Shape Actual Grid-Like

Predicted I-shape 118 9 11
Predicted L-shape 6 109 7
Predicted Grid-like 1 2 91Sensors 2020, 20, x FOR PEER REVIEW 19 of 25 
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The following comparative experiment was done for better testing the advantages and
disadvantages of the proposed method. Indices of mean distance [4], standard deviation of building
distances [4], black-and-white ratio [43] and area ratio of the building to the smallest bounding rectangle
of the group [4] are employed to construct the descriptive vectors for the building patterns. The SVM
model and the RF model were utilized for comparison, and the descriptive vectors of the building
patterns extracted from the datasets were used as the input of the models. The comparative results
are listed in Table 4. Both the SVM method and the RF method have high training accuracy, but their
testing accuracy is not good. The results can be explained by the fact that the descriptive vector input
to the SVM model and the RF model leads to the sensitivity to spatial distribution of the buildings
in various geographical regions, while the random distribution of the buildings in the datasets leads
to the density being extremely not stationary. As shown in Figure 18, the building patterns that are
the same class but have different density of buildings cause difficulties for the models in learning
generalization features and identification rules. By contrast, the GCNN model in this study only
focuses on the adjacency relationship.

Therefore, the proposed method is not spatial distribution sensitive, especially when the training
data and testing data are not from the same dataset.

As in the experiment above, five indices (standard deviation of building distances, similarity
difference, area difference, orientation difference and compactness difference among the building and
its neighbors) [3] are utilized to construct the descriptive vector for one building node. The vectors are
used as the input to the SVM model and the RF model. The two models are trained by using the same
datasets as for the GCN model (Section 5.1). Table 6 lists the comparative results, which indicate that
the accuracy of the GCN method is the best on the testing dataset, while the generalization ability of
the other two methods is relatively poor.

Table 6. Comparative results of the three methods for the building node state identification task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)

SVM 94.52% 81.35%
RF 96.84% 89.39%

GCNN 86.05% 92.71%

5.4. Parameter Descriptive Ability Analysis

In this experiment, we examined the descriptive ability of each descriptive variable. We used a
single variable to construct the input vectors and repeated the experimental steps of building node
state identification. The results shown in Figure 19 indicate that the testing accuracy (90.8%) is close to
the accuracy (92.71%) of the original experiment (Section 5.1) when the input vectors are constructed
only by the shifting degree of adjacency weight (Section 3.1.2.1). Therefore, it can be inferred that,
for the task of building group partition that is related to human visual perception, the descriptive
ability of the shifting degree of adjacency weight is effective. In addition, the findings also confirm that
the concept of using the shifting degree of adjacency weight is reasonable in machine-learning tasks
based on topological graphs when relating to visual perception.
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5.5. Model Structure Exploration Results

Different strategies of model structure have different applicability in the tasks of building state
identification and building pattern recognition. This experiment is aimed to explore the difference
of the performances with different model structures. Figure 20 shows the model structures and the
related experimental results using the Xi’an dataset for testing.Sensors 2020, 20, x FOR PEER REVIEW 21 of 25 
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Figure 20 (Structures 1.1 and 1.2) show that the classification ability of the fully connected layer is
not good compared with the graph convolutional layer in the building state identification task, and the
total precisions are 81.26% and 92.71%, respectively. Figure 20 (Structures 2.1 and 2.2) show that, in the
task of building pattern recognition, using the convolution operation described in Section 3.1.3 offers
better performance than the classical graph convolution method [36], as the accuracies on the testing
set are 89.83% and 71.57%, respectively, while the latter requires a greater amount of computation.

6. Discussion

6.1. Spatial Adaptive Algorithm Framework Using GCNs

The GCN model and the GCNN model is not spatial distribution sensitive in the building pattern
recognition task, because they only focus on the adjacency information and the characteristic differences
between the building and its neighbors. By comparison, the RF-based method [4] is most likely limited
because the variables input measure the indices in Euclidean space directly which lead to a bad
performance, since some spatial features, such as the sparsity of the building blocks, sizes and the
geometries of the buildings are very flexible and various. The experiments have demonstrated that our
method for building pattern recognition outperforms the existing related methods, especially from the
aspects of generalization ability and testing accuracy.

In addition, by combining the GCN model and the proposed algorithms, this bottom-up method
can perceive the relationships among the building and its neighbors in the process of building a group
partition, without the requirement of ancillary data (e.g., road networks and rivers).

6.2. Remaining Issues

As seen in Section 5, though the GCN model and the GCNN model are better in terms of
generalization ability and testing results, their training accuracies are not satisfactory. One of the
reasons for this is the existence of ambiguous situations during the annotation process.

A sample is shown in Figure 21. Intuitively, buildings (a) and (b) should be in the edge state
(Section 3.1.1), given their position in the building block. However, given the adjacency information
and the small shifting degree of adjacency weight (Section 3.1.2.1), these buildings can reasonable be
identified as inner state buildings. Such ambiguous situations lead to difficulty in making a precise
graph dataset, destabilizing training and decreasing accuracy.
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In addition, CDT is constructed for the coordinate data of the building contours as the input to
the GCNN model (Section 3.4). However, another method of constructing CDT based on the center
points of the building nodes [3] is not employed in this study, because the performance is often poor
when the GCNN model is used in small graphs.
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Therefore, an obvious limitation of the proposed method is that the topological structures of the
same building patterns are not always stationary because of the various shapes of the buildings, and
this leads to difficulty for the learning of the model.

7. Conclusions and Future Works

7.1. Conclusions

In this research, an algorithm framework for building pattern extraction and recognition combining
the graph convolution operation, the RF model, a neural network and spatial adaptive algorithms,
has been proposed. Besides, the multi-stage design of the framework is to achieve building pattern
extraction which is associated with the multi-object detection task on topological data. The shifting
degree of adjacency weight proposed in this research is utilized in order to exploit the distribution
features of the building nodes and spatial adjacent relations. Experiments confirm the effectiveness
of the descriptive vector constructed by the shifting degree of adjacency weight and other variables
(e.g., the area, perimeter, orientation and compactness). Additionally, training and testing results
indicate good generalization ability of the GCN model, since the training set and testing set are derived
from the two various regions, Beijing’s Xicheng District and the core areas of the city of Xi’an, which
shows that the proposed method is not spatial distribution sensitive. Another superiority is that this
framework enables the building group partition task to be performed without any ancillary data. In
addition, our study confirms the feasibility of using the graph convolution method to address the
problem of building pattern recognition through a sample experimental study.

7.2. Future Works

We explored the applicability of different model structures and derived an ideal effect with
reasonable computation cost. In the future works, the improvement of the aggregation operation
(Section 3.1.3) is one of the important options for increasing the accuracy, since we simply calculate
the gradients of the vectors in the research. More effort will be put into devising better descriptive
methods for buildings and exploring more powerful models. In addition, as is stated in Section 6.2,
the performance degradation of the GCNN model in small graphs is worthy of research in the future.
Last but not least, solving the problem of ambiguous situations during the annotation process is
essential, otherwise the performance of the models will be hard to be improved for the lack of precise
graph datasets.
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