
sensors

Article

A Spatial Adaptive Algorithm Framework for
Building Pattern Recognition Using Graph
Convolutional Networks

Weijia Bei 1, Mingqiang Guo 1,* and Ying Huang 2

1 School of Geography and Information Engineering, China University of Geosciences (Wuhan),
Wuhan 430074, China; 20171000718@cug.edu.cn

2 Wuhan Zondy Cyber Technology Ltd. Co., Wuhan 430074, China; huangying@mapgis.com
* Correspondence: gmqandjxs@163.com; Tel.: +86-13207161520

Received: 19 October 2019; Accepted: 11 December 2019; Published: 13 December 2019
����������
�������

Abstract: Graph learning methods, especially graph convolutional networks, have been investigated
for their potential applicability in many fields of study based on topological data. Their topological
data processing capabilities have proven to be powerful. However, the relationships among separate
entities include not only topological adjacency, but also correlation in vision, for example, the spatial
vector data of buildings. In this study, we propose a spatial adaptive algorithm framework with a
data-driven design to accomplish building group division and building group pattern recognition
tasks, which is not sensitive to the difference in the spatial distribution of the buildings in various
geographical regions. In addition, the algorithm framework has a multi-stage design, and processes
the building group data from whole to parts, since the objective is closely related to multi-object
detection on topological data. By using the graph convolution method and a deep neural network
(DNN), the multitask model in this study can learn human thoughts through supervised training, and
the whole process only depends upon the descriptive vector data of buildings without any ancillary
data for building group partition. Experiments confirmed that the method for expressing buildings
and the effect of the algorithm framework proposed are satisfactory. In summary, using deep learning
methods to complete the tasks of building group division and building group pattern recognition is
potentially effective, and the algorithm framework is worth further research.

Keywords: building pattern; node classification; graph partition; graph convolutional networks;
random forest; graph convolutional neural networks; machine learning

1. Introduction

Buildings are important entities in the fields of city computing and city perception. The distributive
characteristics of different building groups can be visually summarized as patterns considered as the
fine-grained features of the city. In addition, patterns of building groups play an important role in
map generalization and navigation [1,2], and the indices (e.g., the area, perimeter, orientation and
compactness) of buildings are descriptive enough for deep learning methods to accomplish some
classical tasks of building pattern classification [3]. In general, building patterns can be divided
into regular patterns and irregular patterns. Grid-like patterns are the main manifestation of regular
patterns, while irregular patterns mainly consist of I-shape, L-shape and independent types [4].

Existing methods for building pattern recognition usually partition building groups with the help
of road networks and other ancillary data [5–7], and thus the applicability in some geographic analysis
scenarios is weakened [8]. Therefore, proposing a building group partition method with high accuracy
is essential for the data independence of finishing the building pattern recognition task.

Sensors 2019, 19, 5518; doi:10.3390/s19245518 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/24/5518?type=check_update&version=1
http://dx.doi.org/10.3390/s19245518
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 5518 2 of 25

The building pattern recognition task is equivalent to the multi-object recognition task, and the
difference is that the former is based on topological data, compared to the traditional multi-object
recognition task of computer vision. The building group partition operation in the building pattern
recognition process is like region proposal methods. Fast R-CNN [9] and its derivative algorithms
are a kind of effective, multi-object recognition framework [10,11]. The contour of the target object is
often irregular. Hence convolutional neural networks (CNNs) are used to calculate the probability of
whether the proposal region contains target objects [12]. On the basis of Fast R-CNN, the appearance
of Mask R-CNN brought the research to the stage of instance segmentation [13]. Mask R-CNN is also
based on region proposal methods and identifying each pixel as the background or as a part of the
object by a fully convolutional network (FCN) [14]. To identify all building patterns in a building
group, the instance segmentation idea is transferable. Inspired by the usage of the FCN in Mask
R-CNN, in this study we summarize three spatial states of one building: the edge state, the inner state
and the free state. Specifically, there is an analogy between the buildings of the edge state and the
contours of an object output by Mask R-CNN, and the method proposed in this study classifies each
building into one of the three states mentioned above by using the graph convolutional network (GCN)
model, like the usage of the FCN.

Graph neural networks (GNNs) and GCNs exhibit excellent performance based on topological
data in different research fields, including social networks [15], protein interface prediction [16], disease
prediction [17,18] and remote sensing image processing [19]. GNNs and GCNs accomplish information
aggregation according to the adjacent relations between nodes in a graph, aiming to perceive the
topological features of different nodes. This notion is closely related to spatial association [20] and the
first law of geography [21] because of the natural formation of adjacent relations based on distances.
However, in general circumstances, the relationships between objects not only include topological
adjacency but also shape similarity, especially in research on building pattern recognition [3,22].
The graph learning methods mentioned above are normally applied to non-Euclidean data, but seldom
focus on the visual characteristics and the spatial distribution of the nodes [23].

To perceive the relationships among the graph node and its neighbors, graph embedding is
employed, which learns to represent graph nodes with n-dimensional vectors. Graph embedding
has a close connection with methods of the representation-based classification (e.g., some up-to-date
works, such as LMRKNN [24], TPCRC [25], the novel DCRC method via l2 regularizations [26] and
MKFLE [27]). Inspired by the representation learning, graph embedding methods on graph domain
(e.g., DeepWalk [28], node2vec [29], LINE [30] and SDNE [31]) and some specific methods like those
seen in [32] and [15] are proposed, which accomplish information aggregation based on the adjacent
relationships among nodes on graphs. The similarities and the discriminations of the graph nodes are
reflected by the representation vectors, with the expectations that the nodes can be correctly classified
into their own classes.

In this work, we propose a representation method, named as the shifting degree of adjacency
weight, to describe the spatial correlation between the buildings and the visual characteristics of the
building nodes. To avoid the overfitting problem [33], the method is rotate-invariant and shift-invariant.
Besides, in order to achieve the objective of building pattern recognition, an algorithm framework is
proposed in this study. The framework has a multi-stage design and processes the building group
data from whole to parts, since the building pattern extraction during the workflow is associated with
the multi-object detection on graphs. Additionally, the mentioned graph learning methods encode
the nodes by the information passing through and aggregation between adjacent nodes to derive the
features of nodes, which solves the problems of the unfixed size of vertices and the uncertain adjacent
relationships. In this study, a novel graph convolution operation is introduced for better performance
of feature encoding.

With a symmetric normalized Laplacian matrix, the adjacency information of nodes has been
normalized during the aggregation operation to address overfitting [15]. In addition, local weight
sharing is generalized to graph structure through a polynomial approximation of the Laplacian

Sensors 2019, 19, 5518 3 of 25

matrix [32,34]. In addition, a graph convolutional neural network (GCNN) [35,36] is constructed by
combining the graph convolution operation with a deep neural network for the graph representation
learning related to the building pattern recognition task. Generally, the whole process only depends
upon the descriptive vector data of buildings without any ancillary data for building group partition,
which improves the applicability of the proposed method.

This study focuses on developing an algorithm framework to finish building group partition and
pattern recognition (e.g., I-shaped, L-shaped, grid-like and single type pattern) tasks based only on the
vector data of building contours. In addition, experiments for exploring reasonable model structures
have been conducted for a satisfactory and convincing result.

The remainder of the paper is structured as follows: Section 2 introduces the experimental datasets
for the model training and testing. Section 3 describes the principles of the proposed methods in details,
and Section 4 articulates the procedure of the algorithm framework. The experiments and results are
presented in Section 5, and some issues are discussed in Section 6. Finally, Section 7 summarizes this
research and presents the future works.

2. Study Materials

Beijing’s Xicheng District and the core areas of the city of Xi’an (Figure 1) were selected as
the study regions. The selection is reasonable because of their long history and their important
development positions. The two study regions include various stages of urban development in China,
and therefore the building distributions and contours are in accordance with the multiplicity principle.
The experimental datasets contain the vector data of building contours at a scale of 1:2000 in the
two mentioned areas for 2017. The vector data of each building contour consists of a series of key
points recording longitude and latitude data. In the annotation process, we first selected the data
of building contours in random rectangular areas as separate data blocks, with 75–154 buildings
per block. The models used by the proposed algorithm framework are trained with supervised or
semi-supervised learning, and the datasets for the training and testing of different models are labeled
according to the specific tasks. In general, three datasets were constructed for the three tasks: building
state identification, building node clustering and building pattern recognition.

Sensors 2020, 20, x FOR PEER REVIEW 3 of 25

sharing is generalized to graph structure through a polynomial approximation of the Laplacian
matrix [32,34]. In addition, a graph convolutional neural network (GCNN) [35,36] is constructed by
combining the graph convolution operation with a deep neural network for the graph representation
learning related to the building pattern recognition task. Generally, the whole process only depends
upon the descriptive vector data of buildings without any ancillary data for building group
partition, which improves the applicability of the proposed method.

This study focuses on developing an algorithm framework to finish building group partition
and pattern recognition (e.g., I-shaped, L-shaped, grid-like and single type pattern) tasks based only
on the vector data of building contours. In addition, experiments for exploring reasonable model
structures have been conducted for a satisfactory and convincing result.

The remainder of the paper is structured as follows: Section 2 introduces the experimental
datasets for the model training and testing. Section 3 describes the principles of the proposed
methods in details, and Section 4 articulates the procedure of the algorithm framework. The
experiments and results are presented in Section 5, and some issues are discussed in Section 6.
Finally, Section 7 summarizes this research and presents the future works.

2. Study Materials

Beijing’s Xicheng District and the core areas of the city of Xi’an (Figure 1) were selected as the
study regions. The selection is reasonable because of their long history and their important
development positions. The two study regions include various stages of urban development in
China, and therefore the building distributions and contours are in accordance with the multiplicity
principle. The experimental datasets contain the vector data of building contours at a scale of 1:2000
in the two mentioned areas for 2017. The vector data of each building contour consists of a series of
key points recording longitude and latitude data. In the annotation process, we first selected the data
of building contours in random rectangular areas as separate data blocks, with 75–154 buildings per
block. The models used by the proposed algorithm framework are trained with supervised or
semi-supervised learning, and the datasets for the training and testing of different models are
labeled according to the specific tasks. In general, three datasets were constructed for the three tasks:
building state identification, building node clustering and building pattern recognition.

Figure 1. Experimental datasets.

3. Methodology

On the basis of the adjacency relationships among the building nodes, each data block, which is
referring to a building group, is processed from whole to parts in the proposed framework with a

Figure 1. Experimental datasets.

3. Methodology

On the basis of the adjacency relationships among the building nodes, each data block, which
is referring to a building group, is processed from whole to parts in the proposed framework

Sensors 2019, 19, 5518 4 of 25

with a multi-stage design. All the building nodes are firstly classified into three spatial states for
further processes. The four major parts, building node state identification, building group partition,
fine-grained partition for building blocks and building pattern recognition, are explained with details
in the following sections.

3.1. Building Node State Identification

3.1.1. Definition of Three Building Node States

According to the possible spatial correlation between the building nodes, three kinds of building
node states are defined:

• Edge state. Intuitively, the edge state buildings are located on the edge of a building block. Their
unique characteristic is that the contrast between the buildings of their two sides is strong (e.g.,
the bright yellow buildings shown in Figure 2). The contrast embodied by the difference of the
descriptive vectors of building nodes will lead to unique feature encoding through the graph
convolution operation. Therefore, the definition of edge state is reasonable, and it is indicative of
the inner state building.

• Inner state. Buildings located in the same building pattern are similar in terms of size, outline
and spatial position; hence, buildings located in the same pattern are defined as the inner state
buildings (e.g., the blue buildings shown in Figure 2).

• Free state. Normally, there is one building that exhibits independence because of its spatial
distance among others. We define such buildings as free state buildings (e.g., the orange buildings
shown in Figure 2).

Sensors 2020, 20, x FOR PEER REVIEW 4 of 25

multi-stage design. All the building nodes are firstly classified into three spatial states for further
processes. The four major parts, building node state identification, building group partition,
fine-grained partition for building blocks and building pattern recognition, are explained with
details in the following sections.

3.1. Building Node State Identification

3.1.1. Definition of Three Building Node States

According to the possible spatial correlation between the building nodes, three kinds of
building node states are defined:

• Edge state. Intuitively, the edge state buildings are located on the edge of a building block.
Their unique characteristic is that the contrast between the buildings of their two sides is strong
(e.g., the bright yellow buildings shown in Figure 2). The contrast embodied by the difference of
the descriptive vectors of building nodes will lead to unique feature encoding through the
graph convolution operation. Therefore, the definition of edge state is reasonable, and it is
indicative of the inner state building.

• Inner state. Buildings located in the same building pattern are similar in terms of size, outline
and spatial position; hence, buildings located in the same pattern are defined as the inner state
buildings (e.g., the blue buildings shown in Figure 2).

• Free state. Normally, there is one building that exhibits independence because of its spatial
distance among others. We define such buildings as free state buildings (e.g., the orange
buildings shown in Figure 2).

Building node state identification

Inner state

Edge state

Free state

Figure 2. Definition of three building node states.

3.1.2. Descriptive Methods for Building Features

We can quantify the differences stated in Section 3.1.2 through descriptive vectors constructed
by the variables summarized in Table 1. The definitions of shifting degree of adjacency weight and
orientation are in Sections 3.1.2.1 and 3.1.2.2, respectively.

3.1.2.1. Definition of the Shifting Degree of Adjacency Weight

The spatial distribution of buildings is fundamental for building group partition. In a building
group, it is intuitive to treat buildings that are close to each other as one building block. The sparse
part reflects the boundary between two separate partitions. Therefore, the distance between
buildings can be used to describe the sparse part [4]. However, distance is merely one descriptive
parameter in one-dimensional space, and it is not enough to describe the spatial distribution of the
buildings. Thus, we need two-dimensional indices to express the sparsity or the density of the
buildings in two-dimensional space (see Figure 3a,c), and the shifting degree of adjacency weight is
defined in this study.

Figure 2. Definition of three building node states.

3.1.2. Descriptive Methods for Building Features

We can quantify the differences stated in Section 3.1.2 through descriptive vectors constructed
by the variables summarized in Table 1. The definitions of shifting degree of adjacency weight and
orientation are in Sections 3.1.2.1 and 3.1.2.2, respectively.

Sensors 2019, 19, 5518 5 of 25

Table 1. Description of spatial characteristics of individual buildings along with their equations and
short descriptions.

Variable Index Equation Description

Position
feature

Shifting degree of adjacency
weight in width direction - See Section 3.1.2.1

Shifting degree of adjacency
weight in height direction - See Section 3.1.2.1

Size
Area index Ab/max(Ab) Building area with normalizing operation

Building perimeter with normalizing operationPerimeter index Pb/max(Pb)

Orientation Orientation index - See Section 3.1.2.2

Shape Compactness
4πAb

P2
b

Quadratic relationship between the area and
the perimeter [37]

Concavity Ab
Ach

Area ratio of the building to its convex hull [37]

3.1.2.1. Definition of the Shifting Degree of Adjacency Weight

The spatial distribution of buildings is fundamental for building group partition. In a building
group, it is intuitive to treat buildings that are close to each other as one building block. The sparse
part reflects the boundary between two separate partitions. Therefore, the distance between buildings
can be used to describe the sparse part [4]. However, distance is merely one descriptive parameter
in one-dimensional space, and it is not enough to describe the spatial distribution of the buildings.
Thus, we need two-dimensional indices to express the sparsity or the density of the buildings in
two-dimensional space (see Figure 3a,c), and the shifting degree of adjacency weight is defined in
this study.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 25

Table 1. Description of spatial characteristics of individual buildings along with their equations and
short descriptions.

Variable Index Equation Description

Position
feature

Shifting degree of
adjacency weight
in width direction

- See Section 3.1.2.1

Shifting degree of
adjacency weight
in height direction

- See Section 3.1.2.1

Size
Area index ܣ/max(ܣ)

Building area with normalizing
operation

Building perimeter with normalizing
operation

Perimeter index ܲ/max(ܲ)
Orientation Orientation index - See Section 3.1.2.2

Shape Compactness ସగ್್మ Quadratic relationship between the area
and the perimeter [37]

 Concavity ್ Area ratio of the building to its convex
hull [37]

Width

c) Abstract form

Height

Width

Height

SBR center

SBR center

The central
building node

The central
building node

a) Central node (edge state) and its neighbors

b) Central node (inner state) and its neighbors
Figure 3. Descriptions of shifting degree of x–y-dimension weight. (a) Central node (edge state) and
its neighbors. (b) Central node (inner state) and its neighbors. (c) Abstract form.

As shown in Figure 3a, we first calculate the center coordinate, width and length of the smallest
bounding rectangle (SBR) of the central building node and its neighbors. Specifically, (see Figure
3a,c), the width is the edge of the SBR that is parallel to the X axis with counterclockwise rotation of
the smallest degree. The adjacent edge is the height of the SBR. The two-dimensional indices are
given by

Figure 3. Descriptions of shifting degree of x–y-dimension weight. (a) Central node (edge state) and its
neighbors. (b) Central node (inner state) and its neighbors. (c) Abstract form.

Sensors 2019, 19, 5518 6 of 25

As shown in Figure 3a, we first calculate the center coordinate, width and length of the smallest
bounding rectangle (SBR) of the central building node and its neighbors. Specifically, (see Figure 3a,c),
the width is the edge of the SBR that is parallel to the X axis with counterclockwise rotation of the
smallest degree. The adjacent edge is the height of the SBR. The two-dimensional indices are given by

Dw =
2S1

L1
(1)

Dh =
2S2

L2
(2)

where Dw denotes the shifting degree of adjacency weight in the width direction and Dh denotes the
shifting degree of adjacency weight in the height direction. The geometrical meanings of S1, S2, L1, and
L2 are shown in Figure 3a,c where L1 denotes the half of the width and L2 denotes the half of the height.
S1 and S2 mean the offset distances between the central building node and the center coordinate of the
SBR in the width direction and height direction, respectively.

3.1.2.2. Description for Building Orientation

The difference in building orientation is important for judging whether buildings should be in the
same building pattern. As shown in Figure 4, we derive the angle N◦(N◦ ∈ [0,π]) between the width
of the SBR (see Section 3.1.2.1) and the X axis. The expression for the descriptive variable is

O =

{ 90−N
180 , W > H,

180−N
180 , H > W

(3)

where H and W are the height and width of the SBR, respectively, as defined in Section 3.1.2.1.
The output value of the expression above is normalized during the calculation procedure to avoid the
overfitting problem [33] during the training process.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 25

௪ܦ = 2 ଵܵܮଵ (1)

ܦ = 2ܵଶܮଶ (2)

where ܦ௪ denotes the shifting degree of adjacency weight in the width direction and ܦ denotes
the shifting degree of adjacency weight in the height direction. The geometrical meanings of ଵܵ , ܵଶ , ܮଵ , and ܮଶ are shown in Figure 3a,c where ܮଵ denotes the half of the width and ܮଶ denotes the
half of the height. ଵܵ and ܵଶ mean the offset distances between the central building node and the
center coordinate of the SBR in the width direction and height direction, respectively.

3.1.2.2. Description for Building Orientation

The difference in building orientation is important for judging whether buildings should be in
the same building pattern. As shown in Figure 4, we derive the angle ܰ°(ܰ° ∈ [0, π]) between the
width of the SBR (see Section 3.1.2.1) and the X axis. The expression for the descriptive variable is

ܱ = ൞ 90 − ܰ180 , ܹ 180,ܪ − ܰ180 , ܪ ܹ (3)

where ܪ and ܹ are the height and width of the SBR, respectively, as defined in Section 3.1.2.1. The
output value of the expression above is normalized during the calculation procedure to avoid the
overfitting problem [33] during the training process.

Figure 4. Description of the building orientation.

3.1.3. Graph Convolutional Network

The building group partition and building pattern recognition are based on the feature
encoding of the building nodes in this study. The descriptive indices for buildings are given in Table
1. Similar to the human visual system, the GCN model makes judgments on the basis of the
differences among the building and its Kth-order neighbors, as human’s eyes distinguish detail
based on the gradient information of pixels.

As shown in Figure 3b, the shifting degree of adjacency weight (Section 3.1.2.1) is small when
the building is located in the inner building group, while the shifting degree is relatively larger when
the building is located on the edge of the building block (Figure 3a). This is one of the differences
between the buildings in various states. In addition, differences are also embodied in the aspects of
size, shape, orientation and other indices. The model learns the judgment rules by using the training
samples.

On the basis of the concepts above, the process for deriving building node encoding is as
follows: First, we consider the situation of one-dimensional linear adjacency. As shown in Figure 5,
only building ܶିଵ and building ܶାଵ are adjacent to building ܶ . Therefore, the difference
information ߜ is derived from the following aggregation operation: ߜ = (߮ − ߮ାଵ) + (߮ − ߮ିଵ) (4)

Figure 4. Description of the building orientation.

3.1.3. Graph Convolutional Network

The building group partition and building pattern recognition are based on the feature encoding
of the building nodes in this study. The descriptive indices for buildings are given in Table 1. Similar
to the human visual system, the GCN model makes judgments on the basis of the differences among
the building and its Kth-order neighbors, as human’s eyes distinguish detail based on the gradient
information of pixels.

As shown in Figure 3b, the shifting degree of adjacency weight (Section 3.1.2.1) is small when the
building is located in the inner building group, while the shifting degree is relatively larger when the
building is located on the edge of the building block (Figure 3a). This is one of the differences between
the buildings in various states. In addition, differences are also embodied in the aspects of size, shape,
orientation and other indices. The model learns the judgment rules by using the training samples.

On the basis of the concepts above, the process for deriving building node encoding is as follows:
First, we consider the situation of one-dimensional linear adjacency. As shown in Figure 5, only

Sensors 2019, 19, 5518 7 of 25

building Ti−1 and building Ti+1 are adjacent to building Ti. Therefore, the difference information δi is
derived from the following aggregation operation:

δi = (ϕi −ϕi+1) + (ϕi −ϕi−1) (4)

where ϕi denotes the descriptive vector of building Ti. One sample of a real building distribution
shown in Figure 6. Similar to Equation (4), the aggregation operation is given by

δi =
N∑

j=1

Ai, j ×
(
ϕi −ϕ j

)
= ϕideg(i) −

N∑
j=1

Ai, jϕ j (5)

where A refers to the adjacency matrix and deg(i) denotes
∑

j Ai, j.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 25

where ߮ denotes the descriptive vector of building ܶ . One sample of a real building distribution
shown in Figure 6. Similar to Equation (4), the aggregation operation is given by ߜ = ∑ ,ܣ × (φ − φ)ேୀଵ = φdeg(݅) − ∑ ,ேୀଵܣ φ (5)

where ܣ refers to the adjacency matrix and deg(݅) denotes ∑ ,ܣ .

Figure 5. One-dimensional linear adjacency.

Figure 6. Sample of a real building distribution.

For each building node in a graph, the computation process can be described based on the
matrix operation

ߜଵ⋮ߜே൩ = deg(1)φଵ⋮deg(N)φே൩ − ܣ φଵ⋮φே൩ (6)

We define vectors φ = [φଵ, φଶ, … , φே]் and δ = ,ଵߜ] … , ே] and get δߜ = φܦ − φܣ = ܦ) − φ(ܣ = φ (7)ܮ

where ܮ is the Laplacian matrix. Equation (7) shows that the usage of the Laplacian matrix is
equivalent to the aggregation operation. A symmetric normalization operation for the Laplacian
matrix [15] is implemented to address overfitting. The expression is ܮ௦௬௦ = ଵଶିܦܮଵଶିܦ = ேܫ ଵଶ (8)ିܦܣଵଶିܦ −

where ܫே is the identity matrix of size ܰ .
The Fourier transform is an effective tool in the fields of signal analysis and image processing; it

converts the original signal or image information into the Fourier domain [3,38]. In this study, we
first extract the adjacency information from ܮ௦௬௦ (Equation (8)) by using the graph Fourier
transform, and then we introduce a polynomial approximation operation implemented on the
modified Laplacian matrix that optimizes the computational procedure.

First, the spectral decomposition for the Laplacian matrix is given by

ܮ = ܷ ߣଵ ⋯ 0⋮ ⋱ ⋮0 ⋯ ே൩ߣ ܷିଵ (9)

where ܷ = ,ଵሬሬሬሬറݑ) ,ଶሬሬሬሬറݑ … , ݊) ߣ ேሬሬሬሬሬറ) andݑ ∈ [0, ܰ − 1]) is the nth eigenvalue of the Laplacian matrix.
Because ܷ is an orthogonal matrix, and thus ்ܷ = ܷିଵ , according to the definition of the Fourier
transform, the graph Fourier transform [3] is ܨ(ߣ) = መ݂(ߣ) = ∑ ்߯ (݅) ݂(݅)ேୀଵ (10)

where ݂ refers to the signal (the input vector) and ሼ߯ሽୀேିଵ are the eigenvectors of the Laplacian
matrix. The computing process in detail is

Figure 5. One-dimensional linear adjacency.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 25

where ߮ denotes the descriptive vector of building ܶ . One sample of a real building distribution
shown in Figure 6. Similar to Equation (4), the aggregation operation is given by ߜ = ∑ ,ܣ × (φ − φ)ேୀଵ = φdeg(݅) − ∑ ,ேୀଵܣ φ (5)

where ܣ refers to the adjacency matrix and deg(݅) denotes ∑ ,ܣ .

Figure 5. One-dimensional linear adjacency.

Figure 6. Sample of a real building distribution.

For each building node in a graph, the computation process can be described based on the
matrix operation

ߜଵ⋮ߜே൩ = deg(1)φଵ⋮deg(N)φே൩ − ܣ φଵ⋮φே൩ (6)

We define vectors φ = [φଵ, φଶ, … , φே]் and δ = ,ଵߜ] … , ே] and get δߜ = φܦ − φܣ = ܦ) − φ(ܣ = φ (7)ܮ

where ܮ is the Laplacian matrix. Equation (7) shows that the usage of the Laplacian matrix is
equivalent to the aggregation operation. A symmetric normalization operation for the Laplacian
matrix [15] is implemented to address overfitting. The expression is ܮ௦௬௦ = ଵଶିܦܮଵଶିܦ = ேܫ ଵଶ (8)ିܦܣଵଶିܦ −

where ܫே is the identity matrix of size ܰ .
The Fourier transform is an effective tool in the fields of signal analysis and image processing; it

converts the original signal or image information into the Fourier domain [3,38]. In this study, we
first extract the adjacency information from ܮ௦௬௦ (Equation (8)) by using the graph Fourier
transform, and then we introduce a polynomial approximation operation implemented on the
modified Laplacian matrix that optimizes the computational procedure.

First, the spectral decomposition for the Laplacian matrix is given by

ܮ = ܷ ߣଵ ⋯ 0⋮ ⋱ ⋮0 ⋯ ே൩ߣ ܷିଵ (9)

where ܷ = ,ଵሬሬሬሬറݑ) ,ଶሬሬሬሬറݑ … , ݊) ߣ ேሬሬሬሬሬറ) andݑ ∈ [0, ܰ − 1]) is the nth eigenvalue of the Laplacian matrix.
Because ܷ is an orthogonal matrix, and thus ்ܷ = ܷିଵ , according to the definition of the Fourier
transform, the graph Fourier transform [3] is ܨ(ߣ) = መ݂(ߣ) = ∑ ்߯ (݅) ݂(݅)ேୀଵ (10)

where ݂ refers to the signal (the input vector) and ሼ߯ሽୀேିଵ are the eigenvectors of the Laplacian
matrix. The computing process in detail is

Figure 6. Sample of a real building distribution.

For each building node in a graph, the computation process can be described based on the
matrix operation

δ1
...
δN

 =

deg(1)ϕ1
...

deg(N)ϕN

−A

ϕ1
...
ϕN

 (6)

We define vectors ϕ = [ϕ1,ϕ2, . . . ,ϕN]
T and δ = [δ1, . . . , δN] and get

δ = Dϕ−Aϕ = (D−A)ϕ = Lϕ (7)

where L is the Laplacian matrix. Equation (7) shows that the usage of the Laplacian matrix is equivalent
to the aggregation operation. A symmetric normalization operation for the Laplacian matrix [15] is
implemented to address overfitting. The expression is

Lsys = D−
1
2 LD−

1
2 = IN − D−

1
2 AD−

1
2 (8)

where IN is the identity matrix of size N.
The Fourier transform is an effective tool in the fields of signal analysis and image processing;

it converts the original signal or image information into the Fourier domain [3,38]. In this study, we first
extract the adjacency information from Lsys (Equation (8)) by using the graph Fourier transform, and
then we introduce a polynomial approximation operation implemented on the modified Laplacian
matrix that optimizes the computational procedure.

Sensors 2019, 19, 5518 8 of 25

First, the spectral decomposition for the Laplacian matrix is given by

L = U

λ1 · · · 0
...

. . .
...

0 · · · λN

U−1 (9)

where U =
(⇀
u1,

⇀
u2, . . . ,

⇀
uN

)
and λn (n ∈ [0, N − 1]) is the nth eigenvalue of the Laplacian matrix.

Because U is an orthogonal matrix, and thus UT = U−1, according to the definition of the Fourier
transform, the graph Fourier transform [3] is

F(λl) = f̂ (λl) =
N∑

i=1

χT
l (i) fl(i) (10)

where fl refers to the signal (the input vector) and {χl}
N−1
l=0 are the eigenvectors of the Laplacian matrix.

The computing process in detail is

f̂ (λ1)

...
f̂ (λN)

 =

χ1(1) · · · χ1(N)

...
. . .

...
χN(1) · · · χN(N)

→

f1
...
→

fN

 (11)

The inverse Fourier transform is defined as fl =
∑N−1

i=0 f̂ (λl)χl. On the basis of the derivation
above, the convolution can be first converted into a point-wise product in the Fourier domain, and
then reconverted into the vertex domain [3] as follows:

f ∗ g =
N−1∑
l=0

f̂ (λl)ĝ(λl)χl (12)

In addition, in this study we introduce a polynomial approximation of the Laplacian matrix based
on Chebyshev polynomials to obtain the following effects [3,32]:

• Aggregating the differences between each building and its Kth-order neighbors based on
adjacency information;

• Realizing local weight sharing for the convolutional kernels, and;
• Reducing the computational cost for learning.

According to the recursion formula of Chebyshev polynomials, Tk(X) = 2XTk−1(X) − Tk−2(X),
where T0(X) = IN and T1(X) = X, we get the coefficients βk. The approximation of the Laplacian
matrix is designed as [32,34]

L = U

∑K

k=0 βkλ
k
1 · · · 0

...
. . .

...
0 · · ·

∑K
k=0 βKλK

n

UT (13)

Sensors 2019, 19, 5518 9 of 25

The following derivation shows a clearer process:

L = β1U

λ1

1 · · · 0
...

. . .
...

0 · · · λ1
n

UT + . . .+βKU

λK

1 · · · 0
...

. . .
...

0 · · · λK
n

UT =β1

U

λ1

1 · · · 0
...

. . .
...

0 · · · λ1
n

UT

1

+

. . .+βK

U

λ1

1 · · · 0
...

. . .
...

0 · · · λ1
n

UT

K

=β1L1 + . . .+ βKLK =
∑K

j=1 β jL j

(14)

Equation (14) shows that calculating the eigenvectors is not required, which simplifies the
computational procedure. To match the requirement that the range of the input eigenvalues is [−1, 1],
the following transform is operated on the Laplacian matrix before inputting:

L̃ =
2

λmax
L− IN (15)

where λmax is the maximum of the eigenvalues. In terms of the Laplacian matrix L derived from a
graph G, only the coordinate values referring to two adjacent buildings are 1, whereas the others are
0. Therefore, only same-order neighbors share the same weight from the same convolution kernel
according to Equation (14), and the property of local weight sharing for kernels is realized, which also
enlarges the perception of adjacent regions of the starting building node (Figure 7) for the GCN model
with the settable parameter K shown in Equation (14).Sensors 2020, 20, x FOR PEER REVIEW 9 of 25

Original CDT

a) The 0-order neighbor(the orange node) b) The 1-order neighbors(orange nodes)

c) The 2-order neighbors(blue nodes) d) The 3-order neighbors(brown nodes)

Inner state

Edge state

Free state

Figure 7. Visualization of the perception with different polynomial orders K. (a) The 0-order
neighbor (the orange node). (b) The 1-order neighbors (orange nodes). (c) The 2-order neighbors
(blue nodes). (d) The 3-order neighbors (brown nodes).

Based on the derivation above, the graph convolution formula is given by ݂ ∗ ݃ = (߮ܮ) ∗ ݃ .
After making the low-order polynomial approximation for the Laplacian matrix (Equation (14)), we
get the size of the output matrix as (ܰ, ݊ where ܰ is the number of the vertices in a graph and , (݊ܭ
denotes the length of the descriptive vector of buildings. Therefore, the size of the convolution
kernels is (ܫ ,݊ܭ) , where ܫ refers to the number of convolution kernels. In general, the size of
kernels is proportional to the product of ܭ and ݊ , which demonstrates that the computing cost is
minimized compared with the classical graph convolution method [36].

Training of the GCN model is based on the gradient descent method to minimize the output
loss of the model. According to the chain rule, the gradient expressions used in the back-propagation
process [39] are as follows:

൭б݈ݏݏбݓ.()൱() = ,()δ(ାଵ)ݔ ݅ ∈ ൣ0, ݊ − 1൧, ݆ ∈ [0, ݊ − 1], ݇ ∈ [0, ܭ − 1] (16)

(,)ߜ = ∑ ,()ೖିଵୀݓ (ାଵ) (17)ߜ

where ݊ denotes the length of the input vectors and ݊ refers to the number of convolution
kernels.

In this study, the GCN model consists of two convolutional layers. The graph convolution
operation is shown in Figure 8.

There are three kinds of building states, thus there are three convolution kernels in the second
layer, and Softmax is the selected as the activation function. Each component of the output vector
denotes the probability of the related class.

Figure 7. Visualization of the perception with different polynomial orders K. (a) The 0-order neighbor
(the orange node). (b) The 1-order neighbors (orange nodes). (c) The 2-order neighbors (blue nodes).
(d) The 3-order neighbors (brown nodes).

Based on the derivation above, the graph convolution formula is given by f ∗ g = (Lϕ) ∗ g. After
making the low-order polynomial approximation for the Laplacian matrix (Equation (14)), we get the
size of the output matrix as (N, Kn), where N is the number of the vertices in a graph and n denotes the
length of the descriptive vector of buildings. Therefore, the size of the convolution kernels is (Kn, I),
where I refers to the number of convolution kernels. In general, the size of kernels is proportional to

Sensors 2019, 19, 5518 10 of 25

the product of K and n, which demonstrates that the computing cost is minimized compared with the
classical graph convolution method [36].

Training of the GCN model is based on the gradient descent method to minimize the output loss
of the model. According to the chain rule, the gradient expressions used in the back-propagation
process [39] are as follows: bloss

bw(k)
i. j

(l)

= x(k)i δ
(l+1)
j , i ∈

[
0, n f − 1

]
, j ∈ [0, nk − 1], k ∈ [0, K − 1] (16)

δ
(k,l)
i =

nk−1∑
j=0

w(k)
i, j δ

(l+1)
j (17)

where n f denotes the length of the input vectors and nk refers to the number of convolution kernels.
In this study, the GCN model consists of two convolutional layers. The graph convolution

operation is shown in Figure 8.Sensors 2020, 20, x FOR PEER REVIEW 10 of 25

...

0-order neighbor info-combination K-order neighbor info-combination

0-order kernel function group K-order kernel function group

× (Matrix multiplication)

=

Kernel 1

...

Kernel 1

Kernel 2Kernel 2

Kernel nKernel n

Figure 8. Visualization of the computing process for the graph convolution operation.

Algorithm 1 BFS (G, ௦ܸ , ݒ , ܵଵ)
1: Initialize: ܵ௧ (an empty stack for the BFS algorithm).
2: push ݒ to ܵ௧
3: while not empty (ܵ௧) do
.௧ܵ ← ݒ :4 ()
5: ݈௩ = [neighbors (ݒ)]
6: for each ݒ ∈ ݈௩ do
7: if ݒ ’s state is ܵ then
8: append ݒ to ௦ܸ
9: push ݒ to ܵ௧
10: Return: ௦ܸ

Algorithm 2 Inner state node searching process for group pattern reconstruction
1: Input: Building graph G = (V, E) (where V[i] stores the state of building i recognized by the
GCN (Section 3.1.3)); number of building nodes = N
2: Initialize: ூܸ (an empty list to store the building groups of inner state), ூܰ = 0
3: for i = 0 to N − 1 do
4: if V[i] is ݎ݁݊݊ܫ state and have not been appended to ூܸ then
5: ூܰ + + , append(V[i]) to ூܸ[ூܰ]
6: BFS (G, ூܸ[ூܰ] , V[i], ݎ݁݊݊ܫ state) ◁BFS(Algorithm 1) for node traversing
7: for i = 0 to N − 1 do
8: if V[i] is ݁݀݃݁ state and have not been appended to ூܸ then
9: for j = 0 to ூܰ − 1 do

Figure 8. Visualization of the computing process for the graph convolution operation.

There are three kinds of building states, thus there are three convolution kernels in the second
layer, and Softmax is the selected as the activation function. Each component of the output vector
denotes the probability of the related class.

Sensors 2019, 19, 5518 11 of 25

3.2. Building Group Partition Algorithm

As was stated in Section 3.1, the building nodes in a graph have been classified into three types:
edge state nodes, inner state nodes and free state nodes. Through the distribution of buildings is
extremely random, after the classification of building states, finite kinds of situations are revealed as
follows:

• Situations of inner state: There is only one existing situation of inner state nodes in a building
block. As shown in Figure 9b, the inner state nodes are surrounded by the edge state nodes, and
form the building block with the latter. Algorithm 2 is used for obtaining the building block
containing inner state nodes.

• Situations of edge state nodes: As shown in Figure 9b,e there are two possible situations of edge
state nodes: 1. forming the building block with inner state nodes and 2. forming the building
block only consisting of edge state nodes. Algorithm 2 is adapted to the first situation, while
Algorithm 3 is applied to the second situation.

• Situations of free state nodes: There is only one possible situation of free state nodes because
of its independence compared to the other two kinds of building nodes, as shown in Figure 9c.
Algorithm 4 is used for constructing the building group consisting only of free state nodes.

• Building nodes in the same state, but not in the same building block: It is possible that, though the
nodes are identified as nodes in the same state, they belong to different building blocks (Figure 9d).
Moreover, a fine-grained partition is needed because of the differences in the aspects of size,
outline and orientation because the group partition step mainly focuses on the spatial distribution.
This problem will be solved in the following step.

Algorithm 1 BFS (G, Vs, v, Sn1)

1: Initialize: St (an empty stack for the BFS algorithm).
2: push v to St

3: while not empty (St) do
4: v← St.pop()
5: lv = [neighbors (v)]
6: for each v j ∈ lv do
7: if v j’s state is Sn then
8: append v j to Vs

9: push v j to St

10: Return: Vs

Algorithm 2 Inner state node searching process for group pattern reconstruction

1: Input: Building graph G = (V, E) (where V[i] stores the state of building i recognized by the GCN
(Section 3.1.3)); number of building nodes = N
2: Initialize: VInner (an empty list to store the building groups of inner state), NInner = 0
3: for i = 0 to N − 1 do
4: if V[i] is Inner state and have not been appended to VInner then
5: NInner ++, append(V[i]) to VInner[NInner]

6: BFS (G, VInner[NInner], V[i], Inner state) /BFS(Algorithm 1) for node traversing
7: for i = 0 to N − 1 do
8: if V[i] is edge state and have not been appended to VInner then
9: for j = 0 to NInner − 1 do
10: for k = 0 to VInner[j].length − 1 do
11: if V[i] ∈ neighbors (VInner[j][k]) and VInner[j][k] is Inner state then
12: append(V[i]) to VInner[j][k]
13: Return: VInner

Sensors 2019, 19, 5518 12 of 25

Algorithm 3 Edge state node searching process for group pattern reconstruction

1: Input: Building graph G = (V, E) (where V[i] stores the state of building i recognized by the GCN
(Section 3.1.3)); number of building nodes = N
2: Initialize: Vedge (an empty list to store building groups of edge state), Nedge = 0
3: for i = 0 to N − 1 do
4: if V[i] is edge state and have not been appended to VInner or Vedge then
5: Nedge ++, append(V[i]) to Vedge[Nedge]

6: BFS (G, Vedge[Nedge], V[i], Edge state) /BFS(Algorithm 1) for node traversing
7: Return: Vedge

Algorithm 4 Free state node searching process for group pattern reconstruction

1: Input: Building graph G = (V, E) (where V[i] stores the state of building i recognized by the GCN
(Section 3.1.3)); number of building nodes = N
2: Initialize: V f ree (an empty list to store the building groups of free state), N f ree = 0
3: for i = 0 to N − 1 do
4: if V[i] is f ree state and have not been appended to V f ree then
5: N f ree ++, append(V[i]) to V f ree[N f ree]

6: BFS (G, V f ree[N f ree], V[i], f ree state) /BFS(Algorithm 1) for node traversing
7: Return: V f ree

Sensors 2020, 20, x FOR PEER REVIEW 12 of 25

a) Situation A b) Situation B

c) Situation C d) Situation D

Inner

Inner

Inner

Edge Edge Edge

EdgeEdge

EdgeEdgeEdge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge Edge

Edge

Edge
Free

Free

Free

Free

Free

e) Situation E
Figure 9. Clustering samples of different state building nodes. (a) Situation A. (b) Situation B. (c)
Situation C. (d) Situation D. (e) Situation E.

Algorithm 5 Building node clustering

1: Input: Building graph G = (V, E) (where ܸ ∈ V means the building nodes from the same
building division (Section 3.2)); N means the number of buildings
2: Initialize: ܵ (an empty list to store building pattern groups), M (a list initialized by False,
storing the state if ܸ have been checked), ܵ௧ (an empty stack for the BFS algorithm), RF (a
function using the RF model to judge whether the buildings should be in the same pattern; see
Section 3.3), L = N, ݊ = − 1
3: while L > 0 do
4: L --, ݊ ++, T ← None
5: append (ܸ) to ܵ[݊] , push ܸ to ܵ௧ ◁ where ܸ ∈ V and M[i] == False
6: while not empty (ܵ௧) do
7: ܸ ← ܵ௧. M [݅] ← True , ()
8: ݈௩ = [neighbors (ܸ)]
9: sort (݈௩) ◁ by the distances to ܸ in ascending order
10: for each ܸ ∈ ݈௩ do
11: if T == None and M [݅] == False then
12: if RF (ܸ , ܸ) is True then
13: T ← ܸ , append (ܸ) to ܵ[݊] , push ܸ to ܵ௧ , L --
14: else if ܶ! = None and M [݅] == False then
15: if RF (ܸ , ܸ , T) is True then
16: append (ܸ) to ܵ[݊] , push ܸ to ܵ௧ , L --
17: Return: ܵ
3.3. Fine-Grained Partition for Building Blocks

As was stated in Section 3.2, the building group partition step divides building nodes into
building blocks according to the spatial distribution. In this study, we use a fine-grained partition
method to extract building patterns based on the similarity of the buildings.

We employ indices of the standard deviation (SD) of these building distances [4], the area
difference, the orientation difference, the compactness difference and the similarity difference [3], to
construct the discriminant vector (Figure 10). The five indices quantify the difference in the related
building nodes. In this study, the RF model [4] is utilized to judge whether the buildings are in the
same pattern. Algorithm 5 is used for building node clustering to accomplish the fine-grained
partition.

Figure 9. Clustering samples of different state building nodes. (a) Situation A. (b) Situation B. (c)
Situation C. (d) Situation D. (e) Situation E.

3.3. Fine-Grained Partition for Building Blocks

As was stated in Section 3.2, the building group partition step divides building nodes into building
blocks according to the spatial distribution. In this study, we use a fine-grained partition method to
extract building patterns based on the similarity of the buildings.

We employ indices of the standard deviation (SD) of these building distances [4], the area difference,
the orientation difference, the compactness difference and the similarity difference [3], to construct
the discriminant vector (Figure 10). The five indices quantify the difference in the related building
nodes. In this study, the RF model [4] is utilized to judge whether the buildings are in the same pattern.
Algorithm 5 is used for building node clustering to accomplish the fine-grained partition.

Sensors 2019, 19, 5518 13 of 25
Sensors 2020, 20, x FOR PEER REVIEW 13 of 25

Output vector

* Standard derivation of building distances
* Area difference
* Orientation difference
* Compactness difference
* Similarity difference

Figure 10. Visualization of the descriptive indices of the difference between building node pairs.

3.4. Building Pattern Recognition

The GCNN model used for building pattern recognition consists of graph convolutional layers
and a deep neural network. In this part, we first derive the adjacency information from the
coordinate data of building contours through the CDT method. The descriptive vectors are
constructed by the shifting degree of the adjacency weight (Section 3.1.2.1) of the key points from the
contours. The input matrix is constructed from the descriptive vectors of the key points in a building
pattern, and the adjacency matrix recording the adjacency information so that the model only
focuses on the topological relationships among the buildings.

The connection of the GCN to the deep neural network is shown as Figure 11. The size of the
output matrix of the graph convolutional layer is (ܰ, where ܰ is the number of ,(Section 3.1.3) (݊ܭ
the vertices in a graph and ݊ denotes the length of the descriptive vector of the nodes. The
representation vector of a graph ܩ is derived by using [40] ℎ = ଵேೡೝೣ ∑ ℎ௩ேೡೝೣୀଵ (18)

where ℎ௩ denotes the output of the graph convolutional layer and ℎ is the input of the fully
connected layer. The training method is the same as mentioned in Section 3.1.3.

Figure 11. Visualization of the method of connecting the convolutional layer and the fully connected
layer.

4. Framework for Building Pattern Recognition

In general, based on the methods described in Section 3, to achieve building pattern recognition,
the algorithm framework proposed in this study consists of the following five parts:

• Graph construction for buildings. Each building node has its own unique identification
number. As shown in Figure 12a,b we first derive the adjacency information through
constructing a constrained Delaunay triangulation (CDT) [4,41,42] for all the buildings.

Figure 10. Visualization of the descriptive indices of the difference between building node pairs.

Algorithm 5 Building node clustering

1: Input: Building graph G = (V, E) (where Vi ∈ V means the building nodes from the same building division
(Section 3.2)); N means the number of buildings
2: Initialize: Sl (an empty list to store building pattern groups), M (a list initialized by False, storing the state if
Vi have been checked), St (an empty stack for the BFS algorithm), RF (a function using the RF model to judge
whether the buildings should be in the same pattern; see Section 3.3), L = N, n = −1
3: while L > 0 do
4: L –, n ++, T← None
5: append (Vi) to Sl[n], push Vi to St / where Vi ∈ V and M[i] == False
6: while not empty (St) do
7: Vi ← St.pop(), M [i]← True
8: lv = [neighbors (Vi)]
9: sort (lv) / by the distances to Vi in ascending order
10: for each V j ∈ lv do
11: if T == None and M[i] == False then
12: if RF (Vi, V j) is True then

13: T← V j, append
(
V j

)
to Sl[n], push V j to St, L –

14: else if T! = None and M [i] == False then
15: if RF (Vi, V j, T) is True then

16: append
(
V j

)
to Sl[n], push V j to St, L –

17: Return: Sl

3.4. Building Pattern Recognition

The GCNN model used for building pattern recognition consists of graph convolutional layers
and a deep neural network. In this part, we first derive the adjacency information from the coordinate
data of building contours through the CDT method. The descriptive vectors are constructed by the
shifting degree of the adjacency weight (Section 3.1.2.1) of the key points from the contours. The input
matrix is constructed from the descriptive vectors of the key points in a building pattern, and the
adjacency matrix recording the adjacency information so that the model only focuses on the topological
relationships among the buildings.

The connection of the GCN to the deep neural network is shown as Figure 11. The size of the
output matrix of the graph convolutional layer is (N, Kn) (Section 3.1.3), where N is the number of the
vertices in a graph and n denotes the length of the descriptive vector of the nodes. The representation
vector of a graph Gi is derived by using [40]

hg =
1

Nvertex

Nvertex∑
i=1

hv (18)

Sensors 2019, 19, 5518 14 of 25

where hv denotes the output of the graph convolutional layer and hg is the input of the fully connected
layer. The training method is the same as mentioned in Section 3.1.3.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 25

Output vector

* Standard derivation of building distances
* Area difference
* Orientation difference
* Compactness difference
* Similarity difference

Figure 10. Visualization of the descriptive indices of the difference between building node pairs.

3.4. Building Pattern Recognition

The GCNN model used for building pattern recognition consists of graph convolutional layers
and a deep neural network. In this part, we first derive the adjacency information from the
coordinate data of building contours through the CDT method. The descriptive vectors are
constructed by the shifting degree of the adjacency weight (Section 3.1.2.1) of the key points from the
contours. The input matrix is constructed from the descriptive vectors of the key points in a building
pattern, and the adjacency matrix recording the adjacency information so that the model only
focuses on the topological relationships among the buildings.

The connection of the GCN to the deep neural network is shown as Figure 11. The size of the
output matrix of the graph convolutional layer is (ܰ, where ܰ is the number of ,(Section 3.1.3) (݊ܭ
the vertices in a graph and ݊ denotes the length of the descriptive vector of the nodes. The
representation vector of a graph ܩ is derived by using [40] ℎ = ଵேೡೝೣ ∑ ℎ௩ேೡೝೣୀଵ (18)

where ℎ௩ denotes the output of the graph convolutional layer and ℎ is the input of the fully
connected layer. The training method is the same as mentioned in Section 3.1.3.

Figure 11. Visualization of the method of connecting the convolutional layer and the fully connected
layer.

4. Framework for Building Pattern Recognition

In general, based on the methods described in Section 3, to achieve building pattern recognition,
the algorithm framework proposed in this study consists of the following five parts:

• Graph construction for buildings. Each building node has its own unique identification
number. As shown in Figure 12a,b we first derive the adjacency information through
constructing a constrained Delaunay triangulation (CDT) [4,41,42] for all the buildings.

Figure 11. Visualization of the method of connecting the convolutional layer and the fully
connected layer.

4. Framework for Building Pattern Recognition

In general, based on the methods described in Section 3, to achieve building pattern recognition,
the algorithm framework proposed in this study consists of the following five parts:

• Graph construction for buildings. Each building node has its own unique identification number.
As shown in Figure 12a,b we first derive the adjacency information through constructing a
constrained Delaunay triangulation (CDT) [4,41,42] for all the buildings.

• Building node state identification. Based on the vector data of building contours, each building
entity is described by indices including its area, perimeter, orientation, compactness and shifting
degree of adjacency weight (Section 3.1.2.1), and then a descriptive vector is constructed.
The descriptive vectors are the input to the GCN model in the subsequent step. To make
rules for building group partition, three states (edge state, inner state and free state) (Section 3.1.1)
are defined to describe the spatial state of the buildings. The related dataset of building node state
labeling is constructed, and the GCN model with semi-supervised learning is trained to enhance
the ability of generalization. The GCN model is used to identify the building node state, which is
indispensable for the building group partition algorithm (see Section 3.2). The partition process
and the building samples identified as different states are shown in Figure 12c.

• Building group partitioning. The building group partition algorithm based on the identification
results of the building state is run. The outputs of the algorithm are the building blocks from the
partitioned building groups (Figure 12d).

• Building node clustering. A breadth-first search (BFS) is used to traverse building nodes in a graph,
and the graph of each building block is constructed by CDT. A random forest (RF) algorithm is
introduced to judge whether two or three building entities (Section 3.3) can be categorized into
the same building pattern. The objective of this step is to extract all the separate building patterns
in a building block (Figure 12e).

• Building pattern recognition. In this final step, a GCNN model (Section 3.4) is used to recognize
the building patterns, as shown in Figure 12f. The model is trained with supervised learning with
the building node pattern datasets.

To make a more intuitive description, the specific process of the framework is summarized in
Algorithm 6, and the whole workflow is shown in Figure 12.

Sensors 2019, 19, 5518 15 of 25

Algorithm 6 Framework for building pattern recognition

1: Require:
2: X: denotes the data of a building block selected in advance.
3: Xj: denotes primary data of a building object with ID j, including the coordinate data of
4: the building contours.
5: Step 1: Construct a graph G for X using CDT.
6: Step 2: Calculate the values of the variables mentioned in Section 3.1.2 to construct a
7: new descriptive vector for each building object X j, on the basis of the adjacent relations
8: derived from the graph G.
9: Step 3: Classify each building Xj into the state Sj by the GCN model (see Section 3.1.3).
10: Step 4: Accomplish building graph partition. Functions fa2, fa3 and
11: fa4 stand for Algorithms 2–4 respectively.
12: VInner = fa2(G)

13: Vedge = fa3(G)

14: V f ree = fa4(G)

15: Where VInner[i] denotes the ith building group and VInner [i] = [X0 . . . Xk−1]. k stands for
16: the number of the buildings of the ith building group. Data structures of Vedge and
17: V f ree are the same as VInner.
18: Step 5: Utilize the RF model to accomplish the fine-grained partition (Section 3.3) for
19: the building groups from VInner, Vedge and V f ree.
20: Initialize:
21: Sl: an empty list.
22: V: a list consists of all the building groups from VInner, Vedge and V f ree.
22: for i = 0 to V.length − 1 do
23: G′ = V [i]
24: S′ = fa5 (G′) / fa5 stands for the function of Algorithm 5
25: for j = 0 to S′.length − 1 do
26: append S′[j] to Sl / S′[j] denotes a building group
27: end for
28: end for
29: Step 6: Classify the building group into the pattern with the GCNN model.
30: for i = 0 to Sl.length − 1 do
31: p′ = GCNN(Sl[i]) / p′ means the classifying result
32: end for

Sensors 2019, 19, 5518 16 of 25

Sensors 2020, 20, x FOR PEER REVIEW 14 of 25

• Building node state identification. Based on the vector data of building contours, each building
entity is described by indices including its area, perimeter, orientation, compactness and
shifting degree of adjacency weight (Section 3.1.2.1), and then a descriptive vector is
constructed. The descriptive vectors are the input to the GCN model in the subsequent step. To
make rules for building group partition, three states (edge state, inner state and free state)
(Section 3.1.1) are defined to describe the spatial state of the buildings. The related dataset of
building node state labeling is constructed, and the GCN model with semi-supervised learning
is trained to enhance the ability of generalization. The GCN model is used to identify the
building node state, which is indispensable for the building group partition algorithm (see
Section 3.2). The partition process and the building samples identified as different states are
shown in Figure 12c.

• Building group partitioning. The building group partition algorithm based on the identification
results of the building state is run. The outputs of the algorithm are the building blocks from the
partitioned building groups (Figure 12d).

• Building node clustering. A breadth-first search (BFS) is used to traverse building nodes in a
graph, and the graph of each building block is constructed by CDT. A random forest (RF)
algorithm is introduced to judge whether two or three building entities (Section 3.3) can be
categorized into the same building pattern. The objective of this step is to extract all the separate
building patterns in a building block (Figure 12e).

• Building pattern recognition. In this final step, a GCNN model (Section 3.4) is used to recognize
the building patterns, as shown in Figure 12f. The model is trained with supervised learning
with the building node pattern datasets.

c)Building node state identificationa)Original CDT b)Graph constructing

Inner state

Edge state

Free state

d)Building group partition
e)Fine-grained partition for

building blocks
f)Building pattern recognition

Figure 12. Description of building group pattern abstraction and detection algorithm framework. (a)
Original CDT. (b) Graph constructing. (c) Building node state identification. (d) Building group
partition. (e) Fine-grained partition for building blocks. (f) Building pattern recognition.

To make a more intuitive description, the specific process of the framework is summarized in
Algorithm 6, and the whole workflow is shown in Figure 12.

Figure 12. Description of building group pattern abstraction and detection algorithm framework.
(a) Original CDT. (b) Graph constructing. (c) Building node state identification. (d) Building group
partition. (e) Fine-grained partition for building blocks. (f) Building pattern recognition.

5. Experiments and Results

5.1. Building Node State Recognition

In the task of building state identification (Section 3.1.3), the output of the GCN model is a
probability vector {Pi}

M−1
i=0 , where M denotes the number of possible classes. If Pi is the maximum,

then i refers to the class in which the object belongs. As was stated in Section 4, the graph generated
by CDT is the input of the GCN model. The model structure, shown in Figure 13, consists of two
convolutional layers with 64 kernels and 3 kernels, respectively. The Softmax function is selected as the
activation function of the last layer, and its output is a probability vector. During the training process,
we use the Adam optimization algorithm as the optimizer. The regularization weight is set as 5× 10−4.
To enhance the generalization ability, the model is trained with semi-supervised learning [15], and the
dropout probability is set as 0.5. Meanwhile, the model is trained by one graph per step.Sensors 2020, 20, x FOR PEER REVIEW 16 of 25

Figure 13. Structure of the graph convolutional network (GCN) model for building node state
identification. Node info aggregation(v1) refers to using the low-order polynomial approximation
method (Section 3.4).

As shown in Figure 14, after training on the Beijing Xicheng District dataset for 40 epochs, the
training accuracy achieved 86.05% with the semi-supervised learning algorithm. The testing
accuracy on the Xi’an dataset achieved 92.71%, and the testing loss was 0.362.

The confusion matrix is shown in Table 2, and the kappa coefficient is 0.832. Given that the
training set and the testing are based on data from two typical cities in China, the accuracies and the
two curves indicate the good generalization ability of the GCN model. Figure 15b shows the partial
results of the trained model on the testing data. The buildings with blue contours are identified as
edge state buildings.

Figure 14. Training and testing results from the GCN model for building node state identification.

Table 2. Confusion matrix of the building node state identification experiment with the dataset of the
core areas of Xi’an.

Number of Examples = 950 Actual Inner State Actual Edge State Actual Free State
Predicted inner state 668 24 1
Predicted edge state 37 184 2
Predicted free state 0 0 34

Figure 13. Structure of the graph convolutional network (GCN) model for building node state
identification. Node info aggregation(v1) refers to using the low-order polynomial approximation
method (Section 3.4).

Sensors 2019, 19, 5518 17 of 25

As shown in Figure 14, after training on the Beijing Xicheng District dataset for 40 epochs,
the training accuracy achieved 86.05% with the semi-supervised learning algorithm. The testing
accuracy on the Xi’an dataset achieved 92.71%, and the testing loss was 0.362.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 25

Figure 13. Structure of the graph convolutional network (GCN) model for building node state
identification. Node info aggregation(v1) refers to using the low-order polynomial approximation
method (Section 3.4).

As shown in Figure 14, after training on the Beijing Xicheng District dataset for 40 epochs, the
training accuracy achieved 86.05% with the semi-supervised learning algorithm. The testing
accuracy on the Xi’an dataset achieved 92.71%, and the testing loss was 0.362.

The confusion matrix is shown in Table 2, and the kappa coefficient is 0.832. Given that the
training set and the testing are based on data from two typical cities in China, the accuracies and the
two curves indicate the good generalization ability of the GCN model. Figure 15b shows the partial
results of the trained model on the testing data. The buildings with blue contours are identified as
edge state buildings.

Figure 14. Training and testing results from the GCN model for building node state identification.

Table 2. Confusion matrix of the building node state identification experiment with the dataset of the
core areas of Xi’an.

Number of Examples = 950 Actual Inner State Actual Edge State Actual Free State
Predicted inner state 668 24 1
Predicted edge state 37 184 2
Predicted free state 0 0 34

Figure 14. Training and testing results from the GCN model for building node state identification.

The confusion matrix is shown in Table 2, and the kappa coefficient is 0.832. Given that the
training set and the testing are based on data from two typical cities in China, the accuracies and the
two curves indicate the good generalization ability of the GCN model. Figure 15b shows the partial
results of the trained model on the testing data. The buildings with blue contours are identified as
edge state buildings.Sensors 2020, 20, x FOR PEER REVIEW 17 of 25

I-type

L-type

Grid-type
(c) Building pattern recognition

(a) Original data

(b) Edge state buildings

Figure 15. Partial results from the proposed algorithm framework.

Figure 16 shows the training accuracies and losses with different polynomial orders ܭ . The
results indicate that the performance is poor when ܭ = 1 , but performance begins to improve from ܭ = 2 to ܭ = 3 . When ܭ = 4 , the accuracy decreases. This confirms that a larger perception region
helps improve the accuracy. In addition, the findings indicate that the best performance emerges
when ܭ = 3, with higher values of ܭ having an adverse impact.

Figure 16. Test results from the GCN model for building node state identification with different
polynomial orders K.

5.2. Fine-Grained Partition

The RF model is employed to judge whether the buildings belong to the same building pattern
for the fine-grained partition task (Section 3.3). The Beijing Xicheng District dataset is used for model
training, while the Xi’an dataset is used for testing. The input vectors are prepared by following the
steps described in Section 3.3, and the RF model is trained with supervised learning. In addition, a

Figure 15. Partial results from the proposed algorithm framework.

Sensors 2019, 19, 5518 18 of 25

Table 2. Confusion matrix of the building node state identification experiment with the dataset of the
core areas of Xi’an.

Number of Examples = 950 Actual Inner State Actual Edge State Actual Free State

Predicted inner state 668 24 1
Predicted edge state 37 184 2
Predicted free state 0 0 34

Figure 16 shows the training accuracies and losses with different polynomial orders K. The results
indicate that the performance is poor when K = 1, but performance begins to improve from K = 2
to K = 3. When K = 4, the accuracy decreases. This confirms that a larger perception region helps
improve the accuracy. In addition, the findings indicate that the best performance emerges when
K = 3, with higher values of K having an adverse impact.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 25

I-type

L-type

Grid-type
(c) Building pattern recognition

(a) Original data

(b) Edge state buildings

Figure 15. Partial results from the proposed algorithm framework.

Figure 16 shows the training accuracies and losses with different polynomial orders ܭ . The
results indicate that the performance is poor when ܭ = 1 , but performance begins to improve from ܭ = 2 to ܭ = 3 . When ܭ = 4 , the accuracy decreases. This confirms that a larger perception region
helps improve the accuracy. In addition, the findings indicate that the best performance emerges
when ܭ = 3, with higher values of ܭ having an adverse impact.

Figure 16. Test results from the GCN model for building node state identification with different
polynomial orders K.

5.2. Fine-Grained Partition

The RF model is employed to judge whether the buildings belong to the same building pattern
for the fine-grained partition task (Section 3.3). The Beijing Xicheng District dataset is used for model
training, while the Xi’an dataset is used for testing. The input vectors are prepared by following the
steps described in Section 3.3, and the RF model is trained with supervised learning. In addition, a

Figure 16. Test results from the GCN model for building node state identification with different
polynomial orders K.

5.2. Fine-Grained Partition

The RF model is employed to judge whether the buildings belong to the same building pattern for
the fine-grained partition task (Section 3.3). The Beijing Xicheng District dataset is used for model
training, while the Xi’an dataset is used for testing. The input vectors are prepared by following the
steps described in Section 3.3, and the RF model is trained with supervised learning. In addition,
a support vector machine (SVM) model is trained under the same conditions for comparison [3].
The experimental results, given in Table 3, indicate the RF method achieves better performance.
The experiment confirms that the effect of the proposed method is satisfactory, and the generalization
ability of the RF model is strong enough to be applied to other datasets.

Table 3. Comparative results of the two methods for the building node clustering task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)

SVM 98.30% 84.35%
RF 99.06% 96.77%

5.3. Building Group Pattern Recognition and Comparative Analysis

The structure of the GCNN model used for the building pattern recognition task is shown in
Figure 17. In this experiment, the Beijing Xicheng District dataset is used for model training and
the Xi’an dataset is used for testing. Table 4 shows the results: the accuracies of training and testing
are 98.20% and 89.83%, respectively. In addition, the confusion matrix of the recognition result on
the testing set (Xi’an dataset) is shown in Table 5. The kappa coefficient is 0.847. Two samples of
recognition results on the testing set are shown in Figures 15c and 18.

Sensors 2019, 19, 5518 19 of 25

Sensors 2020, 20, x FOR PEER REVIEW 18 of 25

support vector machine (SVM) model is trained under the same conditions for comparison [3]. The
experimental results, given in Table 3, indicate the RF method achieves better performance. The
experiment confirms that the effect of the proposed method is satisfactory, and the generalization
ability of the RF model is strong enough to be applied to other datasets.

Table 3. Comparative results of the two methods for the building node clustering task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)
SVM 98.30% 84.35%
RF 99.06% 96.77%

5.3. Building Group Pattern Recognition and Comparative Analysis

The structure of the GCNN model used for the building pattern recognition task is shown in
Figure 17. In this experiment, the Beijing Xicheng District dataset is used for model training and the
Xi’an dataset is used for testing. Table 4 shows the results: the accuracies of training and testing are
98.20% and 89.83%, respectively. In addition, the confusion matrix of the recognition result on the
testing set (Xi’an dataset) is shown in Table 5. The kappa coefficient is 0.847. Two samples of
recognition results on the testing set are shown in Figures 15c and 18.

Figure 17. Structure of the graph convolutional neural network (GCNN) model. Node info
aggregation(v1) refers to using the low-order polynomial approximation method (Section 3.1.3).

Figure 17. Structure of the graph convolutional neural network (GCNN) model. Node info
aggregation(v1) refers to using the low-order polynomial approximation method (Section 3.1.3).

Table 4. Comparative results of the three methods for the building pattern recognition task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)

SVM 99.68% 77.18%
RF 99.45% 81.78%

GCNN 98.20% 89.83%

Table 5. Confusion matrix of the building pattern recognition experiment with the dataset of the core
areas of Xi’an.

Number of Examples = 354 Actual I-Shape Actual L-Shape Actual Grid-Like

Predicted I-shape 118 9 11
Predicted L-shape 6 109 7
Predicted Grid-like 1 2 91Sensors 2020, 20, x FOR PEER REVIEW 19 of 25

High-density
in Grid-like distribution

Low-density
in I-Shape pattern

High-density
in Grid-like distribution

High-density
in I-Shape pattern

Figure 18. Part of the pattern recognition results with different densities.

The following comparative experiment was done for better testing the advantages and
disadvantages of the proposed method. Indices of mean distance [4], standard deviation of building
distances [4], black-and-white ratio [43] and area ratio of the building to the smallest bounding
rectangle of the group [4] are employed to construct the descriptive vectors for the building patterns.
The SVM model and the RF model were utilized for comparison, and the descriptive vectors of the
building patterns extracted from the datasets were used as the input of the models. The comparative
results are listed in Table 4. Both the SVM method and the RF method have high training accuracy,
but their testing accuracy is not good. The results can be explained by the fact that the descriptive
vector input to the SVM model and the RF model leads to the sensitivity to spatial distribution of the
buildings in various geographical regions, while the random distribution of the buildings in the
datasets leads to the density being extremely not stationary. As shown in Figure 18, the building
patterns that are the same class but have different density of buildings cause difficulties for the
models in learning generalization features and identification rules. By contrast, the GCNN model in
this study only focuses on the adjacency relationship.

Therefore, the proposed method is not spatial distribution sensitive, especially when the
training data and testing data are not from the same dataset.

As in the experiment above, five indices (standard deviation of building distances, similarity
difference, area difference, orientation difference and compactness difference among the building
and its neighbors) [3] are utilized to construct the descriptive vector for one building node. The
vectors are used as the input to the SVM model and the RF model. The two models are trained by
using the same datasets as for the GCN model (Section 5.1). Table 6 lists the comparative results,
which indicate that the accuracy of the GCN method is the best on the testing dataset, while the
generalization ability of the other two methods is relatively poor.

Table 4. Comparative results of the three methods for the building pattern recognition task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)
SVM 99.68% 77.18%
RF 99.45% 81.78%

GCNN 98.20% 89.83%

Figure 18. Part of the pattern recognition results with different densities.

Sensors 2019, 19, 5518 20 of 25

The following comparative experiment was done for better testing the advantages and
disadvantages of the proposed method. Indices of mean distance [4], standard deviation of building
distances [4], black-and-white ratio [43] and area ratio of the building to the smallest bounding rectangle
of the group [4] are employed to construct the descriptive vectors for the building patterns. The SVM
model and the RF model were utilized for comparison, and the descriptive vectors of the building
patterns extracted from the datasets were used as the input of the models. The comparative results
are listed in Table 4. Both the SVM method and the RF method have high training accuracy, but their
testing accuracy is not good. The results can be explained by the fact that the descriptive vector input
to the SVM model and the RF model leads to the sensitivity to spatial distribution of the buildings
in various geographical regions, while the random distribution of the buildings in the datasets leads
to the density being extremely not stationary. As shown in Figure 18, the building patterns that are
the same class but have different density of buildings cause difficulties for the models in learning
generalization features and identification rules. By contrast, the GCNN model in this study only
focuses on the adjacency relationship.

Therefore, the proposed method is not spatial distribution sensitive, especially when the training
data and testing data are not from the same dataset.

As in the experiment above, five indices (standard deviation of building distances, similarity
difference, area difference, orientation difference and compactness difference among the building and
its neighbors) [3] are utilized to construct the descriptive vector for one building node. The vectors are
used as the input to the SVM model and the RF model. The two models are trained by using the same
datasets as for the GCN model (Section 5.1). Table 6 lists the comparative results, which indicate that
the accuracy of the GCN method is the best on the testing dataset, while the generalization ability of
the other two methods is relatively poor.

Table 6. Comparative results of the three methods for the building node state identification task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)

SVM 94.52% 81.35%
RF 96.84% 89.39%

GCNN 86.05% 92.71%

5.4. Parameter Descriptive Ability Analysis

In this experiment, we examined the descriptive ability of each descriptive variable. We used a
single variable to construct the input vectors and repeated the experimental steps of building node
state identification. The results shown in Figure 19 indicate that the testing accuracy (90.8%) is close to
the accuracy (92.71%) of the original experiment (Section 5.1) when the input vectors are constructed
only by the shifting degree of adjacency weight (Section 3.1.2.1). Therefore, it can be inferred that,
for the task of building group partition that is related to human visual perception, the descriptive
ability of the shifting degree of adjacency weight is effective. In addition, the findings also confirm that
the concept of using the shifting degree of adjacency weight is reasonable in machine-learning tasks
based on topological graphs when relating to visual perception.

Sensors 2019, 19, 5518 21 of 25

Sensors 2020, 20, x FOR PEER REVIEW 20 of 25

Table 5. Confusion matrix of the building pattern recognition experiment with the dataset of the core
areas of Xi’an.

Number of Examples = 354 Actual I-Shape Actual L-Shape Actual Grid-Like
Predicted I-shape 118 9 11
Predicted L-shape 6 109 7
Predicted Grid-like 1 2 91

Table 6. Comparative results of the three methods for the building node state identification task.

Method Training Accuracy (Beijing Xicheng District) Testing Accuracy (Xi’an)
SVM 94.52% 81.35%
RF 96.84% 89.39%

GCNN 86.05% 92.71%

5.4. Parameter Descriptive Ability Analysis

In this experiment, we examined the descriptive ability of each descriptive variable. We used a
single variable to construct the input vectors and repeated the experimental steps of building node
state identification. The results shown in Figure 19 indicate that the testing accuracy (90.8%) is close
to the accuracy (92.71%) of the original experiment (Section 5.1) when the input vectors are
constructed only by the shifting degree of adjacency weight (Section 3.1.2.1). Therefore, it can be
inferred that, for the task of building group partition that is related to human visual perception, the
descriptive ability of the shifting degree of adjacency weight is effective. In addition, the findings
also confirm that the concept of using the shifting degree of adjacency weight is reasonable in
machine-learning tasks based on topological graphs when relating to visual perception.

Figure 19. Experimental results for the descriptive abilities of different indices.

5.5. Model Structure Exploration Results

Different strategies of model structure have different applicability in the tasks of building state
identification and building pattern recognition. This experiment is aimed to explore the difference of
the performances with different model structures. Figure 20 shows the model structures and the
related experimental results using the Xi’an dataset for testing.

Figure 19. Experimental results for the descriptive abilities of different indices.

5.5. Model Structure Exploration Results

Different strategies of model structure have different applicability in the tasks of building state
identification and building pattern recognition. This experiment is aimed to explore the difference
of the performances with different model structures. Figure 20 shows the model structures and the
related experimental results using the Xi’an dataset for testing.Sensors 2020, 20, x FOR PEER REVIEW 21 of 25

Structure 1.1 Structure 1.2

Structure 2.1 Structure 2.2

Figure 20. Experimental results for network structure exploration.

Figure 20 (Structures 1.1 and 1.2) show that the classification ability of the fully connected layer
is not good compared with the graph convolutional layer in the building state identification task,
and the total precisions are 81.26% and 92.71%, respectively. Figure 20 (Structures 2.1 and 2.2) show
that, in the task of building pattern recognition, using the convolution operation described in Section
3.1.3 offers better performance than the classical graph convolution method [36], as the accuracies on
the testing set are 89.83% and 71.57%, respectively, while the latter requires a greater amount of
computation.

6. Discussion

6.1. Spatial Adaptive Algorithm Framework Using GCNs

The GCN model and the GCNN model is not spatial distribution sensitive in the building
pattern recognition task, because they only focus on the adjacency information and the characteristic
differences between the building and its neighbors. By comparison, the RF-based method [4] is most
likely limited because the variables input measure the indices in Euclidean space directly which lead
to a bad performance, since some spatial features, such as the sparsity of the building blocks, sizes
and the geometries of the buildings are very flexible and various. The experiments have
demonstrated that our method for building pattern recognition outperforms the existing related
methods, especially from the aspects of generalization ability and testing accuracy.

In addition, by combining the GCN model and the proposed algorithms, this bottom-up
method can perceive the relationships among the building and its neighbors in the process of

Figure 20. Experimental results for network structure exploration.

Sensors 2019, 19, 5518 22 of 25

Figure 20 (Structures 1.1 and 1.2) show that the classification ability of the fully connected layer is
not good compared with the graph convolutional layer in the building state identification task, and the
total precisions are 81.26% and 92.71%, respectively. Figure 20 (Structures 2.1 and 2.2) show that, in the
task of building pattern recognition, using the convolution operation described in Section 3.1.3 offers
better performance than the classical graph convolution method [36], as the accuracies on the testing
set are 89.83% and 71.57%, respectively, while the latter requires a greater amount of computation.

6. Discussion

6.1. Spatial Adaptive Algorithm Framework Using GCNs

The GCN model and the GCNN model is not spatial distribution sensitive in the building pattern
recognition task, because they only focus on the adjacency information and the characteristic differences
between the building and its neighbors. By comparison, the RF-based method [4] is most likely limited
because the variables input measure the indices in Euclidean space directly which lead to a bad
performance, since some spatial features, such as the sparsity of the building blocks, sizes and the
geometries of the buildings are very flexible and various. The experiments have demonstrated that our
method for building pattern recognition outperforms the existing related methods, especially from the
aspects of generalization ability and testing accuracy.

In addition, by combining the GCN model and the proposed algorithms, this bottom-up method
can perceive the relationships among the building and its neighbors in the process of building a group
partition, without the requirement of ancillary data (e.g., road networks and rivers).

6.2. Remaining Issues

As seen in Section 5, though the GCN model and the GCNN model are better in terms of
generalization ability and testing results, their training accuracies are not satisfactory. One of the
reasons for this is the existence of ambiguous situations during the annotation process.

A sample is shown in Figure 21. Intuitively, buildings (a) and (b) should be in the edge state
(Section 3.1.1), given their position in the building block. However, given the adjacency information
and the small shifting degree of adjacency weight (Section 3.1.2.1), these buildings can reasonable be
identified as inner state buildings. Such ambiguous situations lead to difficulty in making a precise
graph dataset, destabilizing training and decreasing accuracy.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 25

building a group partition, without the requirement of ancillary data (e.g., road networks and
rivers).

6.2. Remaining Issues

As seen in Section 5, though the GCN model and the GCNN model are better in terms of
generalization ability and testing results, their training accuracies are not satisfactory. One of the
reasons for this is the existence of ambiguous situations during the annotation process.

A sample is shown in Figure 21. Intuitively, buildings (a) and (b) should be in the edge state
(Section 3.1.1), given their position in the building block. However, given the adjacency information
and the small shifting degree of adjacency weight (Section 3.1.2.1), these buildings can reasonable be
identified as inner state buildings. Such ambiguous situations lead to difficulty in making a precise
graph dataset, destabilizing training and decreasing accuracy.

Center of the SBR

(a)
(b)

Inner state

Edge state

Figure 21. Recognition results from the GCN model for building state identification.

In addition, CDT is constructed for the coordinate data of the building contours as the input to
the GCNN model (Section 3.4). However, another method of constructing CDT based on the center
points of the building nodes [3] is not employed in this study, because the performance is often poor
when the GCNN model is used in small graphs.

Therefore, an obvious limitation of the proposed method is that the topological structures of the
same building patterns are not always stationary because of the various shapes of the buildings, and
this leads to difficulty for the learning of the model.

7. Conclusions and Future Works

7.1. Conclusions

In this research, an algorithm framework for building pattern extraction and recognition
combining the graph convolution operation, the RF model, a neural network and spatial adaptive
algorithms, has been proposed. Besides, the multi-stage design of the framework is to achieve
building pattern extraction which is associated with the multi-object detection task on topological
data. The shifting degree of adjacency weight proposed in this research is utilized in order to exploit
the distribution features of the building nodes and spatial adjacent relations. Experiments confirm
the effectiveness of the descriptive vector constructed by the shifting degree of adjacency weight and
other variables (e.g., the area, perimeter, orientation and compactness). Additionally, training and
testing results indicate good generalization ability of the GCN model, since the training set and
testing set are derived from the two various regions, Beijing’s Xicheng District and the core areas of
the city of Xi’an, which shows that the proposed method is not spatial distribution sensitive.
Another superiority is that this framework enables the building group partition task to be performed
without any ancillary data. In addition, our study confirms the feasibility of using the graph
convolution method to address the problem of building pattern recognition through a sample
experimental study.

Figure 21. Recognition results from the GCN model for building state identification.

In addition, CDT is constructed for the coordinate data of the building contours as the input to
the GCNN model (Section 3.4). However, another method of constructing CDT based on the center
points of the building nodes [3] is not employed in this study, because the performance is often poor
when the GCNN model is used in small graphs.

Sensors 2019, 19, 5518 23 of 25

Therefore, an obvious limitation of the proposed method is that the topological structures of the
same building patterns are not always stationary because of the various shapes of the buildings, and
this leads to difficulty for the learning of the model.

7. Conclusions and Future Works

7.1. Conclusions

In this research, an algorithm framework for building pattern extraction and recognition combining
the graph convolution operation, the RF model, a neural network and spatial adaptive algorithms,
has been proposed. Besides, the multi-stage design of the framework is to achieve building pattern
extraction which is associated with the multi-object detection task on topological data. The shifting
degree of adjacency weight proposed in this research is utilized in order to exploit the distribution
features of the building nodes and spatial adjacent relations. Experiments confirm the effectiveness
of the descriptive vector constructed by the shifting degree of adjacency weight and other variables
(e.g., the area, perimeter, orientation and compactness). Additionally, training and testing results
indicate good generalization ability of the GCN model, since the training set and testing set are derived
from the two various regions, Beijing’s Xicheng District and the core areas of the city of Xi’an, which
shows that the proposed method is not spatial distribution sensitive. Another superiority is that this
framework enables the building group partition task to be performed without any ancillary data. In
addition, our study confirms the feasibility of using the graph convolution method to address the
problem of building pattern recognition through a sample experimental study.

7.2. Future Works

We explored the applicability of different model structures and derived an ideal effect with
reasonable computation cost. In the future works, the improvement of the aggregation operation
(Section 3.1.3) is one of the important options for increasing the accuracy, since we simply calculate
the gradients of the vectors in the research. More effort will be put into devising better descriptive
methods for buildings and exploring more powerful models. In addition, as is stated in Section 6.2,
the performance degradation of the GCNN model in small graphs is worthy of research in the future.
Last but not least, solving the problem of ambiguous situations during the annotation process is
essential, otherwise the performance of the models will be hard to be improved for the lack of precise
graph datasets.

Author Contributions: Conceptualization, W.B., and M.G.; Methodology, W.B., and M.G.; Project administration,
M.G.; Software, W.B.; Supervision, M.G.; Visualization, W.B.; Writing—original draft, W.B.; Writing—review and
editing, M.G. and Y.H.; Funding acquisition, M.G.

Funding: This work was supported by the National Natural Science Foundation of China (Nos. 41701446,
41971356) and the Hubei Province Natural Science Foundation of China (No. 2017CFB277).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Du, S.; Luo, L.; Cao, K.; Shu, M. Extracting building patterns with multilevel graph partition and building
grouping. ISPRS J. Photogramm. Remote Sens. 2016, 122, 81–96. [CrossRef]

2. Du, S.; Shu, M.; Feng, C. Representation and discovery of building patterns: A three-level relational approach.
Int. J. Geogr. Inf. Sci. 2016, 30, 1161–1186. [CrossRef]

3. Yan, X.; Ai, T.; Yang, M.; Yin, H. A graph convolutional neural network for classification of building patterns
using spatial vector data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [CrossRef]

4. He, X.; Zhang, X.; Xin, Q. Recognition of building group patterns in topographic maps based on graph
partitioning and random forest. ISPRS J. Photogramm. Remote Sens. 2018, 136, 26–40. [CrossRef]

5. Regnauld, N. Contextual Building Typification in Automated Map Generalization. Algorithmica 2001, 30,
312–333. [CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2016.10.001
http://dx.doi.org/10.1080/13658816.2015.1108421
http://dx.doi.org/10.1016/j.isprsjprs.2019.02.010
http://dx.doi.org/10.1016/j.isprsjprs.2017.12.001
http://dx.doi.org/10.1007/s00453-001-0008-8

Sensors 2019, 19, 5518 24 of 25

6. Li, Z.; Yan, H.; Ai, T.; Chen, J. Automated building generalization based on urban morphology and Gestalt
theory. Int. J. Geogr. Inf. Sci. 2004, 18, 513–534. [CrossRef]

7. Deng, M.; Tang, J.; Liu, Q.; Wu, F. Recognizing building groups for generalization: A comparative study.
Cartogr. Geogr. Inf. Sci. 2018, 45, 187–204. [CrossRef]

8. Gonzalez-Abraham, C.E.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Building
patterns and landscape fragmentation in northern Wisconsin, USA. Landsc. Ecol. 2007, 22, 217–230. [CrossRef]

9. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 13–16 December 2015; pp. 1440–1448.

10. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. In Advances in Neural Information Processing Systems 28; Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Montreal, QC, Canada, 2015; pp. 91–99.

11. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 26 June 2016; pp. 779–788.

12. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

13. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969.

14. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 91–99.

15. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016,
arXiv:1609.02907.

16. Fout, A.; Byrd, J.; Shariat, B.; Ben-Hur, A. Protein Interface Prediction using Graph Convolutional Networks.
In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Long Beach, CA, USA, 2017;
pp. 6530–6539.

17. Parisot, S.; Ktena, S.I.; Ferrante, E.; Lee, M.; Guerrero, R.; Glocker, B.; Rueckert, D. Disease prediction
using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease.
Med. Image Anal. 2018, 48, 117–130. [CrossRef]

18. Ping, X.; Shuxiang, P.; Tiangang, Z.; Yong, L.; Hao, S. Graph Convolutional Network and Convolutional
Neural Network Based Method for Predicting lncRNA-Disease Associations. Cells 2019, 8, 1012.

19. Fei, M.; Fei, G.; Jinping, S.; Huiyu, Z.; Amir, H. Attention Graph Convolution Network for Image Segmentation
in Big SAR Imagery Data. Remote Sens. 2019, 11, 2586.

20. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
21. Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46,

234–240. [CrossRef]
22. Zhang, X.; Ai, T.; Stoter, J.; Kraak, M.; Molenaar, M. Building pattern recognition in topographic data:

Examples on collinear and curvilinear alignments. Geoinformatica 2013, 17, 1–33. [CrossRef]
23. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Advances

in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Long Beach, CA, USA, 2017; pp. 1024–1034.

24. Gou, J.; Qiu, W.; Yi, Z.; Xu, Y.; Mao, Q.; Zhan, Y. A Local Mean Representation-based K-Nearest Neighbor
Classifier. ACM Trans. Intell. Syst. Technol. 2019, 10, 21–29. [CrossRef]

25. Gou, J.; Wang, L.; Hou, B.; Lv, J.; Yuan, Y.; Mao, Q. Two-phase probabilistic collaborative representation-based
classification. Expert Syst. Appl. 2019, 133, 9–20. [CrossRef]

26. Gou, J.; Hou, B.; Yuan, Y.; Ou, W.; Zeng, S. A new discriminative collaborative representation-based
classification method via l2 regularizations. Neural Comput. Appl. 2019, 1–15. [CrossRef]

27. Chen, Y.N. Multiple Kernel Feature Line Embedding for Hyperspectral Image Classification. Remote Sens.
2019, 11, 2892. [CrossRef]

http://dx.doi.org/10.1080/13658810410001702021
http://dx.doi.org/10.1080/15230406.2017.1302821
http://dx.doi.org/10.1007/s10980-006-9016-z
http://dx.doi.org/10.1016/j.media.2018.06.001
http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://dx.doi.org/10.2307/143141
http://dx.doi.org/10.1007/s10707-011-0146-3
http://dx.doi.org/10.1145/3319532
http://dx.doi.org/10.1016/j.eswa.2019.05.009
http://dx.doi.org/10.1007/s00521-019-04460-x
http://dx.doi.org/10.3390/rs11242892

Sensors 2019, 19, 5518 25 of 25

28. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY,
USA, 24–27 August 2014; pp. 701–710.

29. Grover, A.; Leskovec, J. Node2Vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August 2016; pp. 855–864.

30. Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. LINE: Large-scale Information Network Embedding.
In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015;
pp. 1067–1077.

31. Wang, D.; Cui, P.; Zhu, W. Structural Deep Network Embedding. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, CA, USA, 13–17
August 2016; pp. 1225–1234.

32. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering. In Advances in Neural Information Processing Systems 29; Lee, D.D., Sugiyama, M.,
Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Barcelona, Spain, 2016; pp. 3844–3852.

33. Babyak, M.A. What you see may not be what you get: A brief, nontechnical introduction to overfitting in
regression-type models. Psychosom. Med. 2004, 66, 411–421.

34. Hammond, D.K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl.
Comput. Harmon. A 2011, 30, 129–150. [CrossRef]

35. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE
Trans. Neural Netw. 2009, 20, 61–80. [CrossRef] [PubMed]

36. Duvenaud, D.K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P.
Convolutional Networks on Graphs for Learning Molecular Fingerprints. In Advances in Neural Information
Processing Systems 28; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran
Associates, Inc.: Montreal, QC, Canada, 2015; pp. 2224–2232.

37. Basaraner, M.; Cetinkaya, S. Performance of shape indices and classification schemes for characterising
perceptual shape complexity of building footprints in GIS. Int. J. Geogr. Inf. Sci. 2017, 31, 1952–1977.
[CrossRef]

38. Peura, M.; Iivarinen, J. Efficiency of Simple Shape Descriptors. In Advances in Visual form Analysis: Proceedings
of the 3rd International Workshop on Visual Form; World Scientific: Capri, Italy, 1997; pp. 443–451.

39. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

40. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry.
In Proceedings of the 34th International Conference on Machine Learning, JMLR.org, Sydney, NSW, Australia,
6–11 August 2017; pp. 1263–1272.

41. Jones, C.B.; Bundy, G.L.; Ware, M.J. Map Generalization with a Triangulated Data Structure. Am. Cartogr.
1999, 22, 317–331.

42. Touya, G.; Coupé, A.; Jollec, J.L.; Dorie, O.; Fuchs, F. Conflation Optimized by Least Squares to Maintain
Geographic Shapes. ISPRS Int. J. Geo-Inf. 2013, 2, 621–644. [CrossRef]

43. Zhang, X.; Ai, T.; Stoter, J. Characterization and Detection of Building Patterns in Cartographic Data: Two
Algorithms. In Advances in Spatial Data Handling and GIS; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 93–107.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.acha.2010.04.005
http://dx.doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
http://dx.doi.org/10.1080/13658816.2017.1346257
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3390/ijgi2030621
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Study Materials
	Methodology
	Building Node State Identification
	Definition of Three Building Node States
	Descriptive Methods for Building Features
	Graph Convolutional Network

	Building Group Partition Algorithm
	Fine-Grained Partition for Building Blocks
	Building Pattern Recognition

	Framework for Building Pattern Recognition
	Experiments and Results
	Building Node State Recognition
	Fine-Grained Partition
	Building Group Pattern Recognition and Comparative Analysis
	Parameter Descriptive Ability Analysis
	Model Structure Exploration Results

	Discussion
	Spatial Adaptive Algorithm Framework Using GCNs
	Remaining Issues

	Conclusions and Future Works
	Conclusions
	Future Works

	References

