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T-cell identity is established by the expression of a clonotypic T-cell receptor

(TCR), generated by somatic rearrangement of TCRa and b genes. The prop-

erties of the TCR determine both the degree of self-reactivity and the

repertoire of antigens that can be recognized. For CD8 T cells, the relation-

ship between TCR identity—hence reactivity to self—and effector

function(s) remains to be fully understood and has rarely been explored out-

side of the H-2b haplotype. We measured the affinity of three structurally

distinct CD8 T-cell-derived TCRs that recognize the identical H-2 Ld-

restricted epitope, derived from the Rop7 protein of Toxoplasma gondii. We

used CD8 T cells obtained from mice generated by somatic cell nuclear trans-

fer as the closest approximation of primary T cells with physiological TCR

rearrangements and TCR expression levels. First, we demonstrate the

common occurrence of secondary rearrangements in endogenously

rearranged loci. Furthermore, we characterized and compared the response

of Rop7-specific CD8 T-cell clones upon Toxoplasma gondii infection as well

as effector function and TCR signalling upon antigenic stimulation in vitro.

Antigen-independent TCR cross-linking in vitro uncovered profound intrin-

sic differences in the effector functions between T-cell clones. Finally, by

assessing the degree of self-reactivity and comparing the transcriptomes of

naive Rop7 CD8 T cells, we show that lower self-reactivity correlates with

lower effector capacity, whereas higher self-reactivity is associated with

enhanced effector function as well as cell cycle entry under physiological

conditions. Altogether, our data show that potential effector functions and

basal proliferation of CD8 T cells are set by self-reactivity thresholds.
1. Introduction
T cells play a key role in the immune response by assisting B cells in antibody

production, activation of phagocytic cells or killing of infected cells. The stochas-

tic assembly of an MHC-restricted ab T-cell receptor (TCR) during thymic

development [1] requires positive and negative selection steps that ensure mini-

mal affinity for the complex of self-peptide and MHC molecules, without causing

overt and deleterious response against self [2–5]. Survival of mature naive T cells

in the periphery likewise relies on constant tonic signalling through the TCR,

which of necessity involves self-MHC–peptide combinations [6].

Activation of antigen-specific T cells leads to clonal expansion and—in the

case of CD4 T cells—functional polarization [7]. The characterization of Th1 and
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Th2 CD4 cells has been expanded upon by the description of

additional CD4 T-cell subsets [8–11]. Each of these subsets

occupies a functional niche during the immune response,

allowing countermeasures tailored to a variety of pathogens.

Furthermore, investigation of the variegated expression of

nine different phenotypic markers, cytokines and cytotoxic

proteins, has suggested considerable functional diversity in

CD8 T-cell response [12]. Unlike CD4 T cells, this diversity

might represent a continuum of distributed properties,

rather than truly discrete CD8 T-cell subsets. The full extent

of heterogeneity of effector CD8 T cells and the functional

mechanism(s) that underlie it remain to be uncovered.

For CD8 T cells, the affinity of the TCR for the antigen–

MHC complex dictates the extent of the primary and

memory immune response [13]. CD8 T cells can execute

their effector functions even upon in vivo stimulation with

ligands that are relatively poor agonists [13]. For a given

CD8 T-cell clone, the strength of TCR ligation positively

correlates with IFNg production, proliferation and memory

formation [13]. Whether differences in TCR affinity for anti-

gen between CD8 T-cell clones of identical specificity

necessarily correlate with their respective effector functions

remains to be investigated.

All ab T cells require continuous interactions of the TCR

with a complex set of self-peptide–MHC complexes not only

in the course of development, but also in the periphery to

ensure their survival. Affinity for self-peptide–MHC is

intrinsic to each T-cell clone. Consequently, the intensity of

such tonic signalling will presumably leave an imprint that

may influence T-cell function upon TCR ligation with a

foreign peptide–MHC complex. Levels of CD5 expression

correlate with TCR self-reactivity for self-peptide MHC

[14–16]. Recent studies have established a correlation

between self-reactivity and T-cell effector functions, although

with some contradictory findings [15–18]. Possible mechan-

isms underlying functional differences between CD5low and

CD5high T cells include enhanced basal TCR signalling, as

inferred from increased CD3z phosphorylation at rest

[15,17], or greater sensitivity to inflammatory signals [16].

There are no comparisons for CD8 T-cell clones that share

the same TCR specificity to explore whether the affinity of the

TCR for antigen–MHC and/or affinity for self correlates with

effector functions. It also remains to be determined whether

there are functional differences between CD8 T-cell clones

equipped with TCRs of similar specificity and, if so, what fac-

tors shape such differences. Here, we measured the affinity of

the TCR for antigen–MHC for CD8 T cells from three differ-

ent lines of transnuclear (TN) mice, all of which recognize the

identical epitope, derived from the Rop7 protein of Toxo-
plasma gondii in complex with H-2 Ld [19]. We characterized

Rop7 CD8 T-cell activation in vivo upon Toxoplasma gondii
infection as well as antigen-dependent and -independent

stimulation in vitro. Our data highlight major intrinsic differ-

ences in effector capacity between Rop7 clones regardless of

the stimulation. We also demonstrate that self-reactivity

thresholds determine effector functions: lower self-reactivity

correlated with decreased functionality, whereas increased

self-reactivity was associated with enhanced effector functions.

Transcriptome-wide analysis of Rop7 CD8 T-cell clones

showed major differences in expression of cell cycle-associated

genes. In this manner, the identity of the clonotypic TCR con-

tributes to the function of T cells beyond antigen recognition,

by setting the degree of self-reactivity through basal TCR
signalling as well as through mitotic status at rest and prior

to activation.
2. Results
2.1. T-cell development and endogenous T-cell receptor

rearrangements in Rop7-I, -II and -III transnuclear
mice

We reported the generation, using somatic cell nuclear trans-

fer (SCNT) [20–22], of three lines of CD8 T-cell TN mice,

all of which bear an ab TCR specific for the peptide

IPAAAGRFF derived from the Rop7 protein of Toxoplasma
gondii [19]. The CD8 T cells that served as SCNT donors

were obtained by cell sorting, using H-2 Ld tetramers

loaded with the Rop7 epitope. We refer to these lines of

mice as Rop7-I, -II and -III (R7-I, -II and -III in figures). Thy-

mocyte development in Rop7-I, -II and -III mice heterozygous

for the TN TCRa and b chain progressed normally, with a

slight increase in CD8 single-positive cells (CD8SP) due

to the expression of the class I MHC-restricted TCR

(figure 1a(i)). The majority but not all CD8SP cells expressed

a Rop7-specific TCR (figure 1a(ii)). We observed a skewed

ratio of mature CD8 T cells in the spleen of all Rop7 mice

compared to WT mice and significant differences in the per-

centage of CD8 T cells between Rop7-I versus Rop7-II and -III

(figure 1b). The percentage of CD8 T cells that expressed a

Rop7-specific TCR was different for Rop7-II versus Rop7-I

and -III CD8 cells. Indeed, whereas the fraction of tetramer-

negative cells was moderate in Rop7-I and -III mice, up to

30% of CD8 T cells did not stain for H2-Ld Rop7 in Rop7-II

mice (figure 1b). This could be due to rearrangements of a

TCRa V-J combination on the endogenous germline allele

or to secondary rearrangements at the original TN TCRa

locus. To distinguish between both possibilities, we bred

Rop7 mice to homozygosity for the TN TCRa and b chain.

Thymocyte development from double-negative to single-

positive cells in TCRa and b homozygous mice occurred

was comparable to T-cell development observed in the

respective heterozygous mice (figure 1c). Most importantly,

we observed not only the presence of CD8þ tetramer-

negative cells in all Rop7 mice, although at different

percentages, but also CD4 T cells in readily detectable

numbers (figure 1c,d), all of which were tetramer-negative

(electronic supplementary material, figure S1). Both findings

demonstrate the occurrence of secondary rearrangements at

the TCRa, possibly TCRb locus. The percentages of mature

H2-Ld Rop7þ CD8 T cells were different for the different

Rop7 mice but altogether similar to percentages in the hetero-

zygotes (figure 1d ). Altogether, T-cell development occurred

normally in Rop7 mice. Furthermore, our data show that

secondary TCR rearrangements are common for the TN

rearranged loci.

2.2. Rop7-I, -II and -III T-cell receptor recognize Rop7
cognate antigen in a quantitatively and
qualitatively different manner

The TCRs of the three Rop7 lines comprise distinct V, (D) and

J elements for their rearranged TCR a and b genes, resulting
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in CDR3 regions unrelated in sequence, suggesting differ-

ences in the details of recognition of the Rop7-H-2 Ld

complex [19]. We already noted subtle differences in dis-

sociation rates of their TCRs from Rop7-H-2 Ld tetramers

[19]. To determine whether the TCRs used by CD8 T cells

from Rop7-I, -II and -III mice recognize the Rop7 epitope in

a qualitatively different manner, we designed a set of altered

peptide ligands and monitored the ability of CD8 T cells to

recognize such ligands in the context of H-2 Ld, using the

caged tetramer approach [23–25]. Indeed, single amino acid

substitutions differentially affected tetramer binding to CD8

T cells from Rop7-I, -II and -III (figure 2a). CD8 T cells

from all three lines of Rop7 mice bound tetramers loaded

with the nominal antigen (IPAAAGRFF), with little quantitat-

ive variation. Binding of H-2 Ld-IPAAAGRFF to Rop7-II T

cells was slightly less avid than binding to Rop7-I or -III,

suggesting a lower affinity. Rop7-I and -II, but not Rop7-III

T cells bound IPANAGRFF-loaded tetramers, whereas only

Rop7-II T cells bound IPAFAGRFF-loaded tetramers. We

expressed recombinant Rop7-I, -II and -III TCRs to measure

their affinity for epitope-loaded H-2 Ld molecules by surface

plasmon resonance (figure 2b). The calculated dissociation

constants of Rop7-I, -II and -III TCRs for H-2 Ld-IPAAAGRFF

were 4 mM, 105 mM and 30 mM, respectively (figure 2b).

Rop7-I TCR had greater affinity for H-2 Ld-IPANAGRFF

compared with the Rop7-II TCR (figure 2b, Rop7-I: 24 mM

versus Rop7-II: 46 mM), whereas Rop7-II TCR had greater

affinity for H-2 Ld-IPAFAGRFF (figure 2b, Rop7-I: 230 mM

versus Rop7-II: 94 mM). We conclude that each of the Rop7-

specific CD8 T cells recognizes the epitope-H-2 Ld complex

differently, as established by this substitution analysis.

2.3. Proliferation and activation of Rop7-I, -II and -III
T cells upon infection with Toxoplasma gondii

To explore whether Rop7 CD8 T cells were equally capable of

participating in an immune response, we transferred 1 � 105

sorted CD8þ tetramerþ T cells from Rop7-I, -II or -III mice

into congenic BALB/c CD45.1 mice and monitored their

expansion upon infection with Toxoplasma gondii. Cells from

Rop7-I and -III mice had proliferated at day 9 after infection

(figure 3a,b). By contrast, Rop7-II CD8 T cells expanded less

in response to Toxoplasma (figure 3a,b). Nevertheless, Rop7-

II T cells expressed similar proportions of CD25, CD44 and

CD62 L compared to Rop7-I and -III T cells, suggesting that

all T cells were antigen-experienced and activated

(figure 3c–e). Rop7-II T cells produced similar amounts of

IFNg compared to Rop7-I and -III T cells upon in vitro
re-stimulation (figure 3f ). Unlike our experience with T57-

specific CD8 T cells [19], the transfer of Rop7 T cells specific

for the Toxoplasma late antigen Rop7 [23] had no appreciable

impact on pathogen load at day 9 after infection (electronic

supplementary material, figure S2).

2.4. Rop7-I, -II and -III CD8 T-cell activation upon
antigenic stimulation in vitro

The decreased ability of Rop7-II cells to robustly proliferate

upon Toxoplasma infection might be due to several cell-

intrinsic or cell-extrinsic factors that are challenging to

investigate in the context of an infection. To compare the func-

tion of Rop7 CD8 T cell upon antigenic stimulation under
defined conditions, we incubated sorted CD8þ H-2 Ld-Rop7þ

cells with bone marrow-derived dendritic cells (BMDC)

loaded with different amounts of IPAAAGRFF peptide.

Rop7-I, -II and -III T cells were able to proliferate upon anti-

genic stimulation in a dose-dependent manner (figure 4a).

We observed sizable differences in the production of cytokines

upon stimulation. Rop7-II CD8 T cells produced overall less

IL-2, TNFa and IFNg, whereas Rop7-III CD8 T cells secreted

increased amounts of IL-2 and IFNg but not TNFa when com-

pared with Rop7-I (figure 4b). By contrast, all Rop7 CD8 T cells

were cytotoxic, albeit with subtle but notable differences (elec-

tronic supplementary material, figure S3). Differences in in vivo
expansion upon infection (figure 3a,b) might be due to T-cell

apoptosis caused by insufficient or too much stimulation. To

investigate how antigen affinity and therefore signal strength

might influence T-cell survival following activation, we moni-

tored cell viability following stimulation. Rop7-II T cells

showed a significantly increased tendency to cell death at a

lower degree of stimulation (figure 4c). The decreased ability

to secrete cytokines and worse survival of Rop7-II cells

might be a cell-intrinsic feature or due to a lower affinity for

IPAAAGRFF peptide. As TCR of Rop7-I and -II CD8 T cells

has comparable affinity for IPANAGRFF peptide (figure 2),

we stimulated Rop7-I and -II CD8 T cells with BMDC

loaded with different doses of IPANAGRFF peptide. Both

Rop7-I and -II CD8 T cells were able to proliferate upon stimu-

lation (figure 4d). Nevertheless, Rop7-II T cells produced

significantly fewer cytokines (figure 4e) and were more

prone to cell death at both peptide concentrations further

suggesting this is an intrinsic trait (figure 4f ). Our data

show that upon antigenic stimulation, Rop7-III CD8 T cells

secreted more IL-2 and IFNg but not TNFa than Rop7-I,

whereas Rop7-II produced fewer cytokines and were more

prone to dying, regardless of the peptide used for stimulation.

2.5. Differences in T-cell receptor signalling in CD8
T cells from Rop7 mice

The antigenic stimulation of Rop7 CD8 T cells in vitro high-

lighted major differences in the outcome of activation

(cytokine secretion and cell survival). To investigate whether

observed differences are due to changes in TCR signalling

upon antigen recognition for each Rop7 T-cell lines, we

stimulated equal numbers of tetramerþ cells with H-2 Ld-

Rop7 for 2 or 20 min and followed protein phosphorylation

by immunoblotting. We observed marked qualitative differ-

ences in the kinetics of tyrosine phosphorylation including

differential phosphorylation of a 37 kDa protein, possibly

LAT (figure 5a,b, arrow). Monitoring of the phosphorylation

of both ERK (figure 5c,d) and S6 (figure 5e,f ) revealed further

decreased level of phosphorylation at 20 min in Rop7-II CD8

T cells compared with Rop7-I and -III T cells. In brief, these

data demonstrate that TCR signalling occurs in a unique

and distinct manner in all three Rop7 CD8 T cells.

2.6. Antigen-independent stimulation reveals
differences in Rop7 CD8 T-cell-intrinsic properties

In vivo and in vitro antigenic stimulation demonstrate under-

lying differences between Rop7-I and -III CD8 T cells, and

overall decreased effector functions for Rop7-II CD8 T cells.

To distinguish between the effect of antigen affinity and
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cell-intrinsic properties, we stimulated Rop7 CD8 T cells with

plate-bound anti-CD3 and anti-CD28. Upon activation, Rop7-

III CD8 T cells proliferated strongly. By contrast, Rop7-I CD8

T cells proliferated moderately, whereas Rop7-II T cells barely

proliferated at all (figure 6a). Rop7-III CD8 T cells secreted IL-

2, TNFa and IFNg, whereas Rop7-I and -II T cells produced

an only just detectable amount of IL-2 (figure 6b). Moreover,

we observed drastic differences in survival of stimulated T

cells that correlated with proliferation (figure 6c). There were

no differences in the levels of expression of TCRb, CD3e,

CD8a and CD28 among the different naive Rop7 CD8 T cells

(figure 6d). Thus, observed differences cannot be due to

changes in TCR complex expression. In order to exclude non-

specific defects in lymphocyte biology of Rop7 mice, we

measured proliferation of sorted CD4 T cells, as well as IgM

(T-independent) and IgG (T-dependent) titres in Rop7 mice.

There were no differences in the ability of CD4 cells to prolifer-

ate upon anti-CD3/anti-CD28 stimulation (figure 6e). Likewise,

IgM and IgG titers were similar for the various Rop7 and WT

mice. Altogether, our results show intrinsic differences in effec-

tor function of Rop7 CD8 T cells upon antigen-independent

CD3/CD28 stimulation in the following hierarchy in terms of
strength of response: Rop7-III . Rop7-I . Rop7-II. Importantly,

those differences were specific to CD8 T cells as CD4 T-cell

proliferation and antibody secretion was indistinguishable for

the different Rop7 mice.
2.7. The response of Rop7-II T cells correlates with
decreased affinity for self-antigen(s)

The integration of signals received during thymic selection and

through tonic engagement of the TCR in the periphery may

set the responsiveness of mature CD8 T cells [15,17]. For

example, T cells that barely pass the criteria for positive selec-

tion in the thymus may put in place qualitatively different

signalling machinery to ensure peripheral survival, in a

manner distinct from T cells that are close to the threshold

for thymic deletion. The latter type of T cell presumably experi-

ences signals of a different quality in the periphery as well,

with possible consequences for the specification of function.

To investigate whether the phenotype of Rop7-II T cells

correlates with differences in tonic signalling (affinity for

self-peptide–MHC complexes), we crossed Rop7 TN mice
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with Nur77-GFP BAC transgenic mice [26]. In these mice, the

level of GFP expression correlates with the strength of TCR

signalling, which, in the absence of the nominal peptide anti-

gen, depends on endogenous peptide–MHC complexes, and

is therefore a proxy for self-reactivity, together with the

expression level of CD5 [14]. Thymic CD8SP cells from both

Rop7-I and -II mice expressed lower levels of Nur77-GFP

and CD5 compared with CD8SP cells from WT or Rop7-III

mice (figure 7a). Mature Rop7-II T cells expressed less

Nur77-GFP than polyclonal CD8 T cells and than Rop7-I

and -III T cells (figure 7b). Moreover, Rop7-II expressed less

CD5 compared with polyclonal CD8 T cells (figure 7b).

Rop7-III T cells had increased levels of Nur77-GFP when

compared with Rop7-I, as well as increased CD5 levels

(figure 7b). Altogether, reduced cytokine production and

proliferation of Rop7-II T cells correlate with altered distal

signalling and decreased self-reactivity.
2.8. Increased self-affinity is associated with cell
proliferation under physiological conditions

In order to investigate mechanisms that may account for

differences in effector functions of Rop7 CD8 T cells at
steady state, we performed a transcriptome-wide analysis of

unstimulated Rop7 CD8 T cells. As Rop7-III T cells had the

highest affinity for self-antigen and Rop7-II the lowest

(figure 7b), the transcriptional profile of Rop7-III was com-

pared with that of Rop7-II. One hundred and fifteen genes

were identified to be significantly expressed with at least a

twofold difference (figure 8a; electronic supplementary

material, table S1). Gene ontology analysis between these

two Rop7 lines uncovered major differences in cell-cycle

and proliferation-related pathways (electronic supplementary

material, table S2). As expected, based on differential TCR–

MHC binding strength between Rop7-III and -II, we also

observed differences in expression of genes related to TCR

signalling (electronic supplementary material, table S2). In

the unstimulated state, Rop7-I showed a less active signature

than Rop7-III for genes associated with cell cycle progression

(figure 8b). In this regard, Rop7-II CD8 T cells are more simi-

lar to Rop7-I than to Rop7-III (electronic supplementary

material, figure S4). A global comparison of expressed tran-

scripts between the three unstimulated Rop7 CD8 T cells

clones showed that Rop7-I and -III are more similar to each

other than to Rop7-II (figure 8c). To investigate whether our

findings could be extended to a polyclonal CD8 T-cell popu-

lation, we monitored cell cycle status under physiological
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conditions through expression of the proliferation-associated

protein Ki-67. Ki-67þ proliferating cells were almost exclu-

sively found among CD5high CD8 T cells (figure 8d ). In

conclusion, our transcriptomic analysis reveals that Rop7-III

clone, like polyclonal CD5high T cells, demonstrates enhanced

proliferation or readiness for cell cycle entry, when compared

with both Rop7-I and -II clones. Transcriptomic analysis

showed Rop7-II to be clearly different from the other Rop7-

specific CD8 T-cell clones, a trait that must be imposed by

identity of its clonotypic TCR.
3. Discussion
We used three lines of mice, created by SCNT, as a source of

clonotypically distinct, but homogeneous CD8 T cells, all of

which recognize the identical Rop7-H-2 Ld peptide–MHC

complex. A comparison of these CD8 T cells should allow

us to assess the impact of the TCR’s identity on the functional

characteristics T cells as revealed also by the status of their

transcriptome. This is important not only because it extends

this type of analysis to an MHC haplotype other than H-2b,

but also because no such comparison has been made

for independently generated lines of mice bearing Class I

MHC-restricted receptors of the same specificity on a geneti-

cally homogeneous background. We first analysed T-cell

development in Rop7 mice heterozygous or homozygous
for the TN TCRa and b chain and report the presence of

appreciable percentage of CD8 cells that fail to stain with

Rop7 tetramers, as well as the presence of a reduced, but

important percentage of mature CD4 T cells. In heterozygous

mice, the expression of a TCR other than the original TN

receptor requires the endogenous rearrangement of the WT

TCRa (or b) locus or secondary rearrangements at the TN

TCRa (or b) locus. In homozygous mice however—because

both alleles are rearranged—only productive secondary

rearrangements at the TN TCRa (or b) locus can produce a

TCR that is not specific for H-2 Ld-Rop7. Therefore, our

results demonstrate unambiguously that secondary

rearrangements can occur at otherwise genetically unmani-

pulated loci and that these events are not rare considering

the percentage of CD4 cells and tetramer2 CD8 T cells. The

investigation of receptor editing and secondary rearrange-

ment events have, until very recently, only been possible

though knock-in of rearranged TCR segments in the a locus

[27–29], a procedure bypassed by the TN approach in the

present study.

We have measured the affinity of Rop7 TCR for H-2 Ld-

IPAAAGRFF antigen and its variants, and investigated the

outcome of antigenic (Rop7 and variant) and (antigen-

independent) anti-CD3/anti-CD28 stimulation. In vitro
stimulation with IPAAAGRFF-loaded BMDC demonstrates

that Rop7-III CD8 T cells produced significantly more IL-2

and IFNg, but not TNFa, compared with Rop7-I CD8
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T cells. Furthermore, Rop7-II cells secreted significantly fewer

cytokines compared with Rop7-I and -III CD8 T cells and an

increased proportion of cells died as the strength of stimulus

decreased. Because the Rop7-II TCR has a significantly lower

affinity for H-2 Ld-IPAAAGRFF than the TCR of Rop7-I and

-III (25- and 3-fold less, respectively), such differences could

have been explained by differences in affinity. However,

Rop7-II CD8 T cells showed an equally poor ability to secrete

cytokines and enhanced cell death compared with Rop7-I

CD8 T cells when stimulated with IPANAGRFF-loaded

BMDC. In these conditions, the difference in affinity was

less (approx. twofold), whereas differences in cytokine pro-

duction remained large, suggesting inherent impairment of

Rop7-II effector function. Stimulation of Rop7 CD8 T cells

with anti-CD3/anti-CD28 (i.e. independently of antigen affi-

nity) confirmed that Rop7-II CD8 T cells had lower intrinsic

effector capacities as well as a marked propensity to cell

death. Moreover, we observed differences between Rop7-I

and -III T cells in proliferation, cytokine production and cell

viability. Both inferior and superior effector functions might

be intrinsically set by thresholds of self-reactivity. Indeed,

for the CD8 clonal variants characterized here, self-reactivity

positively correlates with effector capacities as demonstrated

for several CD4 transgenic T cells [15,17] or a CD8 T cell poly-

clonal population [16]. In the context of a Toxoplasma
infection, all three Rop7 CD8 T cells clonal variants prolifer-

ated and secreted cytokines. Nevertheless, we observed

marked differences in the accumulation in the spleen and

notably an increased number of Rop7-I versus -III (and -II)

CD8 T cells. We propose the following hypothesis to explain
differences between these in vivo and in vitro experiments.

First, accumulation in the spleen might not faithfully reflect

global clonal expansion, for example, due to changes in cell

migration behaviour. Second, discrepancies might be

explained by quantitative (antigen dose) and qualitative

(cytokines, co-stimulation) differences in stimulation as well

as other cell-extrinsic factors (e.g. nutrients) between both

conditions. Third, although we have no indication of

increased apoptosis, Rop7-III CD8 T cells may be unable to

sustain long-lasting expansion.

Our analysis of protein phosphorylation upon antigenic

stimulation has uncovered interesting differences in signal

transduction as well. Although we observed a decreased level

of ERK and S6 phosphorylation in Rop7-II T cells, differences

between the various Rop7 T cells seemed qualitative rather

than merely quantitative. In fact, accumulated data suggest

that signalling might occur in a different manner for every

single clone depending not only on signal strength, but also

on cell state as determined by tonic signalling experienced in

the periphery [15,17]. Differences in signal integration [30] are

likely to explain heterogeneity in effector functions [12].

Our work and that of others [15–17] show a correlation

between effector function of T cells and self-reactivity. How,

then, does self-reactivity dictate future effector functions?

Self-reactivity, hence tonic signalling, might impact the phos-

pho-proteome of each T-cell clone in a different manner.

Indeed, evidence of changes in protein phosphorylation at

rest has been provided in two independent studies [15,17].

Self-reactivity might also imprint the trancriptome of each

clone in physiological conditions. Data presented above as
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well as results from others [16] support this hypothesis. Our

transcriptome-wide analysis showed that differences between

unstimulated Rop7-II and -III CD8 T cells in cell cycle-

associated genes were highly significant, even more so than

TCR signalling-associated genes when considering adjusted

p-values (electronic supplementary material, table S2). We con-

firmed these findings in a polyclonal CD8 T cell population.

Indeed, the vast majority of cycling, Ki-67þ cells were

CD5high. This correlation suggests a threshold of self-reactivity

(and CD5 levels) beyond which cells enter the cell cycle under

physiological conditions and in the absence of the Rop7

epitope. Homeostatic expansion, a process linked to CD5

expression level [31,32], is assumed to be driven by ‘self’ anti-

gen when resources (e.g. IL-7) are abundant, as is the case in

lymphopenia [33]. However, it is local rather than global cyto-

kine excess that will be sensed by T cells. Of note, the IL-7

receptor (IL7r) gene itself was upregulated in Rop7-III T cells

(figure 6a).

In conclusion, the concept of a ‘naive’ T cell as a fixed

entity may need revision. Effector capacities of T-cell clones

are shaped by the prior experience of self-reactivity. Future

investigations focusing on signalling or transcriptomic analy-

sis at the single-cell level in antigen-inexperienced T cells may

very well uncover an even greater heterogeneity. In the very

same way, the definition of ‘self’ in the context of these recent

studies is worth reconsidering. ‘Homeostatic peptidome’ may

be a more appropriate term than ‘genome-encoded self’.
4. Experimental procedures
4.1. Mice
BALB/c and BALB/c CD45.1 mice were purchased from the

Jackson laboratory and bred in the animal facility of the

Whitehead Institute for Biomedical Research (Cambridge,

MA) or in the animal facility of the Francis Crick Institute,

Mill Hill Laboratory (London, UK). Nur77-GFP transgenic

mice were described in [26,34]. The generation of Rop7-I, -II
and -III was described elsewhere [19]. Heterozygous and

homozygous Rop7 mice were backcrossed for six generations

or more on a BALB/c background.
4.2. Antibodies and reagents
Purified anti-CD3 (clone 17A2) and anti-CD28 (clone 37.51)

antibodies, fluorescently labelled Granzyme B (clone 16G6),

CD31 (clone 145-2C11), CD4 (clone GK1.5), CD8 (clone 53-

6.7), CD45.1 (clone A20) specific antibodies were purchased

from eBioscience. Biotinylated anti-CD4 (clone GK1.5), anti-

CD19 (clone 1D3), fluorescently labelled CD25 (clone 7D4),

CD44 (clone 1M7), CD69 (clone H1.2F3), TNFa (clone

MP6-XT22) and actin (clone ab-5) specific antibodies were

purchased from BD Biosciences. Fluorescently labelled CD5

(clone 53-7.3), CD28 (clone E18), CD62 L (clone mel-14),

Ki-67 (clone 16A8) specific antibodies and Zombie Aqua

(cat. no. 423101) were purchased from Biolegend. Fluores-

cently labelled anti-IFNgclone 9004) was purchased from

Sigma. Anti-phospho-tyrosine residue (clone 4G10) was pur-

chased from Millipore. Anti-phopho-ERK (Thr202/Tyr204)

(D13.14.4E, cat. no. 4370) and anti-phospho-S6 (Ser235/236)

(D57.2.2E, cat. no. 4858) were purchased from Cell Signalling

Technology. Horseradish peroxidase-conjugated anti-mouse

antibody was purchased from GE Healthcare (cat. no.

NXA931). Horseradish peroxidase-conjugated goat anti-

rabbit antibody was purchased from Southern Biotech (cat.

no. 4041-05). CD8 T cells isolation kit (130-095-236) and

anti-biotin beads (130-090-485) were purchased from Miltenyi

and used according to the manufacturer’s instructions. ELISA

kits for the detection of mouse IL-2 (cat. no. 431001), IFNg

(cat. no. 430801) and TNFa (cat. no. 430901) were purchased

from BioLegend. ELISA for mouse IgM (cat. no. 88-50470-22)

and IgG (cat. no. 88-50400-22) were purchased from

Ebioscience. Recombinant mouse GM-CSF (cat. no. 315-03),

IL-2 (212-12) and IL-4 (cat. no. 214-14) were purchased from

Peprotech. Carboxyfluorescein succinimidyl ester (CFSE)

was purchased from Sigma (cat. no. 21888). Protease inhibitor
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cocktail was purchased from Roche (cat. no. 11836153001).

H-2 Ld tetramers were produced and used as described

elsewhere [23] or obtained from the NIH tetramer facility.

All peptides were produced by the MIT biopolymer facility

through standard solid-phase peptide synthesis or purchased

from Pepceuticals, UK.

4.3. Toxoplasma gondii infection
A measure of 1 � 105 sorted CD8þ tetramerþ cells from

pooled spleen and lymph nodes of Rop7-I, -II or -III

CD45.2 BALBC/c mice were transferred intravenously into

CD45.1 BALB/c recipient. Twenty-four hours after transfer,

mice were infected intraperitoneally with 2 � 104 Toxoplasma
Prugniaud tachyzoites and spleens were harvested 9 days

after infection. For in vitro re-stimulation, 2 � 106 erythro-

cytes-depleted splenocytes were incubated for 6 h in the

presence of Rop7 peptide (final concentration 1 mg ml21)

and a protein transport inhibitor (GolgiPlug, BD Biosciences,

cat. no. 555029) in round bottom 96 wells plate in complete

RPMI. Intracellular cytokine staining for cytokine was

performed after fixation and permeabilization according to

the manufacturer’s instructions (BD Cytofix/Cytoperm, cat.

no. 554722; BD Perm/Wash, cat. no. 554723).

4.4. T-cell receptor expression, refolding and affinity
measurement

For the Rop7-I, -II and -III TCRs, the a and b chains were

cloned individually in the bacterial expression vector

pET28a. Residues threonine 46 of the a chain’s and serine

57 of the b chain’s constant regions were mutated to cysteine

to enable non-native disulfide bridge formation within the

heterodimer complex [35]. A biotinylation sequence was

introduced at the C terminus of the b chain. The chains

were separately expressed in Escherichia coli. BL21-DE3

(pLysS) and obtained as inclusion bodies and dissolved in

8 M urea, 25 mM MES, 1 mM EDTA, 1 mM DTT at pH 6.0.

The proteins were refolded via flash dilution of a mixture

of both a and b chains into 1 l refolding buffer composed

of 400 mM L-Arginine, 100 mM Tris, 2 mM EDTA, 5 mM

reduced glutathione, 0.5 mM oxidized glutathione, pH 8.0

at 48C to a final protein concentration of 60 mg l21 [36]. The

solution was then dialysed with 20 mM Tris, 50 mM NaCl,

pH 8.0 to remove denaturants. The resulting TCRs were pur-

ified in two steps, first via a size exclusion column (Superdex

200 16/60) and subsequently bound to an anion exchange

column (MonoQ 5/50 GL) and eluted with a linear gradient

of 0–400 mM NaCl in 20 mM Tris, pH 8.0. The purified

TCRs were stored in 20 mM Tris, 50 mM NaCl at 2808C.

IPAAAGRFF-, IPAFAGRFF- and IPANAGRFF-loaded

H-2 Ld complexes were similarly obtained by established

refolding methods [37]. All SPR experiments were conducted

on a BIAcore 3000 instrument at 258C. Soluble streptavidin

was first coupled to a CM5 chip (GE Healthcare Life Sciences)

by amine coupling following the manufacturer’s instructions.

For each experiment, approximately 500 resonance units

of biotinylated TCR monomers were subsequently immobi-

lized. A flow cell without any TCRs bound served as

control for each experiment. The H-2 Ld peptide-loaded com-

plexes were directed towards both cells at a flow rate of

20 ml min21, with concentrations ranging from 1 to 200 mM.
The final response was calculated after subtracting the control

cell response. All experiments were conducted at least in

duplicates. Equilibrium Kd values were calculated by

nonlinear curve fitting of background-subtracted data using

PRISM software.

4.5. In vitro stimulation assay
A measure of 1–2 � 105 sorted CD4þ or CD8þ tetramerþ cells

from pooled spleen and lymph nodes of Rop7-I, -II or -III

mice were stimulated in complete RPMI in 96-well flat

bottom plates in the following conditions. Anti-CD3/28:

plate-bound anti-CD3 (clone 17A2) and anti-CD28 (clone

37.51) at indicated concentrations in flat bottom 96-well

plates in the presence of 10 ng ml– 1 recombinant mouse

IL-2 when specified. BMDC: dendritic cells differentiated

from bone marrow progenitors for 5–7 days in GM-CSF

and IL-4 containing medium loaded with Rop7 peptide

(final concentration 1 or 0.01 mg ml21). When indicated,

10–20 � 106 cells per millilitre were labelled in PBS 2.5 mM

CFSE for 2 min at room temperature.

4.6. Cytokine secretion measurements
A measure of 1–2 � 105 sorted CD4þ or CD8þ tetramersþ cells

from pooled spleen and lymph nodes of Rop7-I, -II or -III

mice were stimulated in complete RPMI in 96-well round

bottom plates together with 0.1–0.5 � 105 Rop7 peptide-

loaded BMDC (final concentration 1 or 0.01 mg ml21).

Cytokine concentrations were measured by ELISA according

to the manufacturer’s instructions or by multiplex assay

(Eve Technologies, Calgary, Alberta, Canada).

4.7. In vitro cytotoxicity assay
A measure of 1–2 � 105 sorted CD4þ or CD8þ tetramersþ

cells from pooled spleen and lymph nodes of Rop7-I, -II or

-III mice were stimulated in complete RPMI in 96-well

round bottom plates together with 0.5 � 105 Rop7 peptide-

loaded BMDC (final concentration 1 mg ml21). After 72 h,

cells were harvested and incubated with 105 total cells of a

1 to 1 mixture of CFSE-labelled, Rop7 peptide-loaded

CD45.1 BALB/c splenocytes (final concentration 1 mg ml21)

and control, CFSE-labelled, DMSO-treated CD45.2 BALB/c

splenocytes in 96-well round bottom plates. After 16–20 h

the ratio of living (propidium iodide negative) CD45.1

versus CD45.2 cells was determined by flow cytometry.

4.8. In vitro tetramer stimulation
Total CD8 T cells were purified from pooled lymph nodes

and erythrocytes-depleted spleens of Rop7-I, -II or -III mice,

homozygous for a and b chain by negative selection using

magnetic beads according to the manufacturer’s instructions.

Two to five million tetramerþ cells were stimulated with

13 mg Rop7 peptide-loaded H-2 Ld tetramers in 50 ml com-

plete RPMI at 378C. Cells were then washed with ice cold

PBS and lysed in 20 mM Tris–HCl, pH 7, 150 mM NaCl,

5 mM MgCl2, 5 mM Na3VO4, 10 mM NaF, 0.5% NP40 sup-

plemented with protease inhibitor cocktail (Roche). Total

lysates were run on a 12% acrylamide SDS-PAGE gel. After

transfer to a nitrocellulose membrane, phosphorylation
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events were monitored by blotting using phospho-tyrosine,

phospho-ERK or phospho-S6 specific antibodies.

4.9. In vivo luminescence measurement
An amount of 8 � 104 sorted CD8þ tetramerþ cells from

pooled spleens and lymph nodes of Rop7-I, -II or -III mice

were transferred intravenously into BALB/c recipients.

Twenty-four hours after transfer, mice were infected intraperi-

toneally with 5� 104 Toxoplasma Prugniaud tachyzoites. For

in vivo imaging, mice were injected i.p. with 3 mg firefly

D-luciferin (Perkin Elmer, Waltham, MA, USA), left for

10 min and imaged with an IVIS Spectrum-bioluminescent

and fluorescent imaging system (Xenogen Corporation, Caliper

Life Sciences, Hopkinton, MA, USA) under isoflurane anaes-

thesia (Abbott, Chicago, IL, USA) on day 4–7 post-infection.

4.10. RNA-sequencing analysis
Single-cell suspensions of unstimulated splenocytes from

Rop7-I, -II or -III mice were incubated in RPMI medium

1640 supplemented with 10% fetal bovine serum, L-glutamine,

penicillin/streptomycin, b-mercaptoethanol and recombinant

mouse IL-2 (10 ng ml21). Cells were incubated overnight at

378C and 5% CO2. CD3þ CD8þ H-2 Ld-Rop7þ cells were

sorted, maintained at 48C and purity determined to be

90–95%. RNA was isolated using Trizol and the RNeasy

Micro-Kit (Qiagen). A total of 200 ng of RNA was used to pre-

pare the RNA library using TruSeq mRNA Library Prep Kit v2

(Illumina) according to the manufacturer’s recommendations.

RNA sequencing was performed on the Illumina HiSeq 2500

and typically generated approximately 25 million 100 bp

non-strand-specific single-end reads per sample. The RSEM

package (v. 1.2.11) [38] was used for the alignment and sub-

sequent gene-level counting of the sequenced reads relative

to mm10 RefSeq genes downloaded from the UCSC

Table Browser [39] on 27 May 2015. Differential expression

analysis between the triplicate groups was performed with

DESeq2 (v. 1.8.1) [40] after removal of genes with a maximum

transcript per million (TPM) value of 1 across all samples in
the experiment. Significant expression differences were ident-

ified at an FDR threshold of 0.01. Gene set enrichment

analysis was performed by Gene Ontology Biological processes

using GeneGo MetaCore (https://portal.genego.com/).

Pathway analysis was performed using IPA software to

demonstrate the biological effect of differentially expressed

genes on cell cycle progression. All raw RNASeq sequence

data and per sample TPM counts generated by RSEM can be

accessed with GEO accession GSE88996.

Ethics. All mice were maintained according to protocols approved by
the MIT Committee on Animal Care. All animal experiments were
approved by the local Ethical Review panel at the Francis Crick Insti-
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