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Abstract 

Objective:  Plant cells detect the presence of potentially pathogenic microorganisms in the apoplast via plasma 
membrane-localized receptors. Activated receptors trigger phosphorylation-mediated signaling cascades that protect 
the cell from infection. It is thought that signaling triggered by the detection of exogenous signals, such as bacterial 
flagellin, can be amplified by endogenous signals, such as hormones or debris caused by cell damage, to potentiate 
robust immune responses. For example, perception of flagellin and other microbial molecules results in increased 
expression of endogenous PROPEP transcripts that give rise to AtPep peptides which also activate immune signaling. 
Phytohormones such as methyl-jasmonate also induce PROPEP expression, suggestive of additional hormone-medi-
ated feedback loops that similarly amplify immune signaling. The current study aimed to determine if perception of 
jasmonate is genetically required for AtPep1-induced immune responses in Arabidopsis thaliana.

Results:  We assessed several AtPep1-induced immune responses in plants expressing a non-functional variant of the 
jasmonate receptor CORONATINE-INSENSITIVE 1 (COI1). We found that coi1-16 mutants are severely compromised in 
some AtPep1-induced immune responses, while other AtPep1-induced responses are maintained but reduced. Our 
findings build on previously published work and suggest that JA perception plays a role in immune responses trig-
gered by AtPep1.
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Introduction
Plants lack a humoral immune system and rely solely on 
the innate ability of each cell to detect potentially harm-
ful pathogens and defend against disease. Plasma mem-
brane-localized pattern recognition receptors (PRRs) 
bind ‘non-self ’ molecules characteristic of entire classes 
of microbes known as pathogen-associated molecular 
patterns (PAMPs), which are typically integral to micro-
bial lifestyles and are thus under strong selection pres-
sure [1]. Examples include bacterial proteins flagellin 
and Elongation Factor Tu (EF-Tu), which are recognized 
in Arabidopsis thaliana by receptor kinases FLAGEL-
LIN SENSING 2 (FLS2) and EF-Tu RECEPTOR (EFR), 

respectively [2–4]. PRRs also bind ‘infectious-self ’ mol-
ecules known as damage-associated molecular patterns 
(DAMPs), such as cell wall fragments or small peptides 
that are thought to be released by the plant cell during 
pathogen invasion and/or wounding [1, 5]. For exam-
ple, the Arabidopsis PRRs AtPEP RECEPTOR KINASE 
1 (PEPR1) and PEPR2 bind endogenous AtPep peptides 
resulting in the activation of immune responses [6–9]. 
Many PRRs function in protein complexes, requiring 
regulatory co-receptors for full activation and subse-
quent signal transduction [1, 10]. Upon ligand bind-
ing, FLS2, EFR, and PEPR1/2 each form a complex with 
the receptor-like kinase BRI1-ASSOCIATED RECEP-
TOR KINASE 1 (BAK1) [11–16]. PRR activation and 
complex formation  lead to pattern-triggered immunity 
(PTI), characterized by an influx of Ca2+, the activation 
of receptor-like cytoplasmic kinases (RLCKs), a rapid 
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and transient apoplastic oxidative burst, the activation 
of mitogen-activated and calcium-dependent protein 
kinases (MAPK and CDPKs), and transcriptional repro-
gramming resulting in a basal immune response that is 
effective against most potential pathogens [1, 17].

Interplay between plant immune and hormone sign-
aling has been observed in several systems [18]. In par-
ticular, the antagonistic roles of salicylate (SA) and 
jasmonate (JA) in defense against biotrophic and necro-
trophic pathogens has been well documented [19], and 
the involvement of these and other phytohormones in 
pattern-triggered signaling has also been observed [20]. 
As one example, perception of several AtPeps causes an 
increase in the classical SA- and JA-triggered marker 
genes PATHOGENESIS RELATED-1 (PR-1) and PLANT 
DEFENSIN 1.2 (PDF1.2), and expression of AtPep pre-
cursor PROPEP genes is induced by treatment with 
methyl-salicylate (MeSA), methyl-jasmonate (MeJA), 
immunogenic peptides, as well as pathogen infection and 
herbivore feeding [7, 8, 21]. These and other observations 
[22, 23] suggest a feedback loop that amplifies immune 
signaling following pathogen infection. Here we present 
data demonstrating that the JA receptor CORONATINE-
INSENSITIVE 1 (COI1) is genetically required for 
AtPep1-induced immune outputs to varying levels. Our 
work builds on earlier observations [24] and supports a 
role for JA signaling in AtPep1-induced responses.

Main text
Methods
Arabidopsis thaliana ecotype Columbia (Col-0) and pre-
viously described mutants bak1-5 [25], glabra1 (Col gl1) 
[26], SA-induction deficient 2-2 (sid2-2) [27], and coi1-16 
(in the Col gl1 background) [28] were used in this study. 
These lines have been propagated in lab environments and 
were not collected from the wild; see Acknowledgements 
section for the source of each seed line. For sterile assays, 
seeds were surface-sterilized and sown on half-strength 
Murashige & Skoog (MS) agar plates (0.8%) and stratified 
in the dark at 4 °C for 3 days before being exposed to a 12 h 
photoperiod. For soil assays, seeds were similarly strati-
fied and seedlings were grown on soil in controlled envi-
ronment chambers at 22  °C with 30% humidity in a 10 h 
photoperiod. Immunogenic elicitor peptides flg22, elf18, 

and AtPep1 were synthesized by EZ Biolabs (USA) and 
used in seedling growth inhibition, oxidative burst, and 
MAPK activation assays as described previously [29]. For 
gene expression assays, RNA was extracted from twelve 
2-week-old seedlings grown in sterile liquid culture using 
the Aurum Total RNA Mini Kit (BioRad) and mRNA was 
reverse transcribed using an oligo dT18 primer and Super-
Script III (Invitrogen) following the manufacturer’s direc-
tions. Quantitative real-time PCR was performed using 
SsoAdvanced Universal SYBR Green Supermix (BioRad) 
and measured on a CFX96 Touch Real-Time PCR Detec-
tion System (BioRad). Melting curve analysis confirmed 
that all primer pairs amplify a single product; primer 
sequences are listed in Additional file 1.

Results and discussion
Arabidopsis seedlings constantly exposed to immuno-
genic peptides display severe growth inhibition, presum-
ably due to continual activation of immune signaling 
that diverts resources away from normal growth and 
development. Although cross-talk between immune and 
hormone pathways has been well-demonstrated [18, 
19], how plant hormone signaling influences immune-
induced growth inhibition is largely unknown. While 
performing experiments for other projects in our lab, 
we found that the JA receptor mutant coi1-16 [28] was 
almost as insensitive as the immunodeficient mutant 
bak1-5 [25] to AtPep1-induced seedling inhibition 
(Fig. 1A). We found this to be specific to AtPep1, as sensi-
tivity to the EF-Tu epitope elf18 and the flagellin epitope 
flg22 was comparable to controls (Fig. 1B, C). Compara-
tively, the mutant sid2-2, which cannot synthesize SA due 
to lack of functional isochorismate synthase [27], was not 
affected in these assays (Fig. 1A–C). To account for any 
inherent growth differences between genotypes, total 
fresh weight of seedlings grown in the presence of immu-
nogenic peptides was calculated relative to their growth 
in MS media. All genotypes used in this study grew simi-
larly in MS media as shown in Additional file 2.

As seedling inhibition is considered a late immune 
response, we extended our analysis to test if JA percep-
tion via COI1 is also required for an earlier immune 
response such as the RESPIRATORY BURST OXIDASE 
HOMOLOG D (RBOHD)-mediated burst of reactive 

(See figure on next page.)
Fig. 1  AtPep1-induced seedling growth inhibition and oxidative burst in coi1-16 mutants. A–C Seedling inhibition after 10 days of continual 
growth in sterile liquid MS media containing 500 nM AtPep1 (A), 100 nM elf18 (B), or 100 nM flg22 (C) in the indicated genotypes. Values are  % 
means of seedling fresh weight + standard deviation (n = 6 seedlings), relative to average fresh weight in MS media alone. D–F Oxidative burst on 
5-week-old soil-grown plants following treatment with 500 nM AtPep1 (D), 100 nM elf18 (E), or 100 nM flg22 (F) in the indicated genotypes. Relative 
light units were recorded using the LUM module on a SpectraMax Paradigm plate reader for 40 min at 2 min intervals using an integration time 
of 1000 ms. Values are means + standard deviation (n = 6 plants). Experiments were performed independently on three sets of plants with similar 
results; a single representative experiment is shown for each assay. Statistically significant groups (p < 0.05) are indicated with lower-case letters 
based on a one-way ANOVA followed by Tukey’s post-test
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oxygen species (ROS). We found that while elf18- and 
flg22-induced ROS was unaffected in coi1-16 compared 
to controls, AtPep1-induced ROS was as severely inhib-
ited as in bak1-5 mutants (Fig. 1D–F), indicating that JA 
perception is required quite early in AtPep1-triggered 
signaling. It was previously shown that coi1-1 mutants are 
compromised in AtPep1-induced seedling growth inhibi-
tion, ROS, and ethylene production, while flg22-triggered 
responses were not affected [24]. Thus, our study using 
the independent coi1-16 allele, which is in the Col gl1 
background [28], corroborates previous work. The same 
phenomenon was observed in the allene oxide synthase 
(aos) mutant which cannot synthesize JA [24], suggesting 
that both JA biosynthesis and perception are genetically 
required for AtPep1-mediated immune signaling.

While some PTI responses are directly linked via phos-
phorylation cascades, genetic evidence supports parallel 
activation of other outputs downstream of PRR activa-
tion [1]. For example, elicitor-induced MAPK activation 

and RBOHD-dependent ROS are rapid and transient 
responses that occur simultaneously, both peaking at 
around 10 min following PRR activation [30]. While acti-
vation of RBOHD has been directly linked to phospho-
rylation by CDPKs and RLCKs [31–34], evidence from 
several studies [35–37] has suggested that the NADPH 
oxidase RBOHD and MAPKs are independently acti-
vated. For example, flg22-induced activation of MPK6, 
MPK3, and MPK4/11 is unaffected in rbohD mutants, 
and flg22-induced oxidative burst is maintained in mpk3 
mpk6 mutants [36].

We were thus interested to assess if other AtPep1-trig-
gered responses, such as MAPK activation, were also genet-
ically dependent on JA perception. To test this, we treated 
Col gl1 and coi1-16 plants with flg22, elf18, or AtPep1 for 
10 min and compared the activation of MPK6, MPK3, and 
MPK4/11 using immunoblot analysis. While flg22-induced 
MAPK activation was comparable between coi1-16 and 
control Col gl1 plants, we observed slightly reduced MAPK 
activation in coi1-16 mutants following treatment with 
elf18 and AtPep1 (Fig. 2). Although reduced, MAPKs were 
still activated by all three immunogenic elicitors in coi1-16, 
suggesting that JA perception is only partially required for 
AtPep1-induced MAPK activation.

Activated MAPKs are known to regulate transcrip-
tional changes via phosphorylation of WRKY and other 
transcription factors [38], as are CDPKs [39, 40]. Tran-
script profiling experiments have delineated sets of genes 
that are dependent on MAPKs, CDPKs, or both, to vary-
ing levels [34]. Because we observed a slight reduction in 
MAPK activation in coi1-16 mutants we were interested to 
test if MAPK-regulated gene expression was also affected. 
We found that although the MAPK-specific gene FRK1 
[34] and the MAPK-dominant genes CYP81F2 and WAK2 
[34] were clearly induced in coi1-16 mutants after AtPep1 
treatment, they were expressed to significantly lower lev-
els than in control Col gl1 plants (Fig.  3A–C). A similar 
trend was observed when we compared AtPep1-induced 
expression of the MAPK-CDPK synergistic genes NHL10, 
CYP82C2 and PER4 [34] and the CDPK-specific gene 
PHI-1 [34] (Fig. 3D–G). Induction of At1g51890 [41] was 
also reduced in coi1-16 mutants, however, interestingly, 
AtPep1-induced expression of FMO1 [42] was similar in 
coi1-16 and Col gl1 (Fig. 3H–I).

Fig. 2  Elicitor-induced MAPK activation in coi1-16 mutants. 
Phosphorylation of MPK6, MPK3, and MPK4/11 in 14-day-old 
seedlings treated with 200 nM flg22, 200 nM elf18, or 1 µM AtPep1 for 
10 min compared to a mock control. Total protein was extracted from 
twelve seedlings and analyzed by immunoblot using anti-p42/p44 
MAPK (Cell Signaling) and anti-rabbit-HRP (Sigma Aldrich) antibodies. 
The membrane was stained with Coomassie Brilliant Blue (CBB) as 
a measure of sample loading. Three experimental replicates were 
performed with similar results

(See figure on next page.)
Fig. 3  Analysis of AtPep1-induced gene expression in coi1-16 mutants. Twelve 14-day-old Col gl1 and coi1-16 seedlings were treated with water (−) 
or 1 µM AtPep1 (+) for 120 min prior to RNA extraction. Quantitative real-time PCR was used to assess expression levels of the MAPK specific gene 
FRK1 (A), the MAPK dominant genes CYP81F2 (B) and WAK2 (C), the MAPK-CDPK synergistic genes NHL10 (D), CYP82C2 (E), and PER4 (F), the CDPK 
specific gene PHI-1 (G), the PAMP-induced genes FMO1 (H) and At1g51890 (i), and the AtPep precursor genes PROPEP1 (J), PROPEP2 (K), and PROPEP3 
(L). Values are means + standard deviations (n = 3 technical replicates from the same cDNA), normalized against the relative average expression 
of UBOX from the same sample. A total of three independent experimental replicates were performed with similar results. Statistically significant 
groups (p < 0.05) are indicated with lower-case letters based on a one-way ANOVA followed by Tukey’s post-test
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AtPep1 is a 23-amino acid peptide processed from a 
precursor peptide encoded by PROPEP1 [7]. PROPEP1 is 
part of a six-member gene family in Arabidopsis [7], sev-
eral members of which are induced by immune-related 
phytohormones such as MeSA and MeJA [8]. Treat-
ment of Arabidopsis plants with AtPeps differentially 
induces expression of several precursor PROPEPs [8] and 
PEPR1/2 [9], indicative of positive feedback that is often 
observed in signaling pathways. We found that AtPep1-
induced expression of PROPEP1, PROPEP2, PROPEP3, 
and PEPR1 was strongly reduced in coi1-16 compared to 
Col gl1 (Fig. 3J–L; Additional file 3), further supporting a 
role for JA perception in AtPep1-mediated signaling.

Conclusions
Here we show that AtPep1-induced seedling growth inhi-
bition and oxidative burst are strongly compromised in 
coi1-16 mutants, which is in full agreement with results 
obtained in a previous study using the coi1-1 allele [24]. 
We additionally show that AtPep1-induced MAPK acti-
vation and gene expression are maintained but reduced 
in coi1-16 mutants. Together, our data suggest that JA 
perception via the COI1 receptor is involved in AtPep1-
triggered responses. Future work is needed to decipher 
the mechanistic interplay between JA and AtPep signal-
ing in the plant immune response.

Limitations
• • Immunological assays were conducted with saturat-

ing concentrations of eliciting peptides flg22, elf18, or 
AtPep1.

• • Global transcript profiling was not conducted; only 
a panel of representative elicitor-induced genes was 
analyzed.

Additional files

Additional file 1:  Primers used in this study. A list of primers used for 
qPCR.

Additional file 2: Fresh weight of seedlings grown in MS media. Fresh 
weight of seedlings 10 days after continual growth in sterile MS liquid 
media. Values are means + standard deviation (n=6 plants). Three biologi-
cal replicates were performed with similar results. Statistically significant 
groups (p < 0.05) are indicated with lower-case letters based on a one-way 
ANOVA followed by Tukey’s post-test.

Additional file 3:  AtPep1-induced PEPR1 expression in coi1-16 mutants. 
Twelve 14-day-old Col gl1 and coi1-16 seedlings were treated with water 
(-) or 1 µM AtPep1 (+) for 120 minutes prior to RNA extraction. Quantita-
tive real-time PCR was used to assess expression level of PEPR1. Values 
are means + standard deviations (n=3 technical replicates from the 
same cDNA), normalized against the relative average expression of UBOX 
from the same sample. Three independent biological replicates were 
performed with similar results. Statistically significant groups (p < 0.05) are 
indicated with lower-case letters based on a one-way ANOVA followed by 
Tukey’s post-test.
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