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A theory for spiral wave drift 
induced by ac and polarized electric 
fields in chemical excitable media
Teng-Chao Li1, Xiang Gao2,3, Fei-Fei Zheng1, De-Bei Pan1, Bo Zheng1 & Hong Zhang1

Spiral waves are shown to undergo directional drifts in the presence of ac and polarized electric fields 
when their frequencies are twice of the spiral frequencies. Here, we propose a quantitative description 
for the spiral wave drift induced by weak electric fields, and provide the explicit equations for the spiral 
wave drift speed and direction. Numerical simulations are performed to demonstrate the quantitative 
agreement with analytical results in both weakly and highly excitable media.

Excitable media represent a wide class of nonequilibrium systems which play an important role in physical, chem-
ical, and biological applications1, 2. Spiral waves are among the most paradigmatic examples of spatiotemporal 
self-organizing structures in excitable media, such as cardiac tissue3, 4, aggregations of Dictyostelium discoideum 
amoebae5, the oxidation of CO on platinum6, and the Belousov-Zhabotinsky (BZ) reaction7. In cardiology, such 
self-sustained spiral wave activities play an essential role in cardiac arrhythmia and fibrillation8–13. This, with the 
intrinsic interest of those structures, has led to an important research effort in order to understand the dynamic 
of spiral waves.

The BZ reaction is the most extensively studied system which supports spiral waves. The authors in ref. 14 
reported the first experimental observation of a directional drift of the spiral wave along a straight line, during 
the periodic modulation of the excitability of an excitable medium with a frequency close to the nature rotation 
frequency of the spiral. This directional drift phenomenon for spiral waves subjected to the external periodic forc-
ing has been confirmed in numerous experiments as well as numerical simulations. And its mechanism has also 
been studied in refs. 15–28. Based on the case of a weakly excitable medium, an initial mathematical treatment 
of the directional drift for rigidly rotating spiral waves under a periodic forcing was provided23. This approach 
is based on a kinematic model of spiral dynamics in which one disregards the thickness of the excited area, and 
models the spiral as a one-dimensional curve. In ref. 24, the periodic forcing of spiral waves was considered from 
a dynamically systematic view point. It was shown that much of the spiral behavior could be deduced simply from 
the interaction of dynamics with system symmetries. In ref. 25, an asymptotic derivation of a kinematic theory 
for the spiral wave motion in the weakly excitable and free-boundary limit was presented. The mechanism of the 
directional drift of spiral waves subjected to the external periodic forcing was studied and a drift velocity formula 
for spirals was obtained. In refs. 26–28, the directional drift for rigidly rotating spiral waves under the periodic 
forcing was studied by using the response function theory for both weak and high excitabilities.

In the presence of a dc electric field, spiral waves in the BZ reaction drift with a velocity whose two compo-
nents are parallel and perpendicular to the applied field29, 30. The component of the drift perpendicular to the 
electric field changes its sign with chirality of the spiral wave. A numerical study31 showed that depending on the 
parameter regime, the drift direction of the spiral could be either parallel (with small core) or antiparallel (with 
large core) to the dc electric field. The small core corresponds to highly excitable media, and the large core to 
weakly excitable media. The mechanism of the spiral drift by dc electric fields has been studied25, 31–36. However, 
most analytical studies are restricted to the weak or high excitability limit. By using the response function theory 
of spiral waves, the drift of spirals by dc electric fields was studied28, 37, 38. The theoretical results are quantitatively 
consistent with the numerical ones for both weak and high excitabilities. The theory was first proposed for the 
autonomous dynamics of scroll waves in the case of small curvatures and twists39, 40, and then extended to the 
drift of spiral waves in response to small perturbations26. Recently, an efficient numerical method of calculating 
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response functions has been presented in an arbitrary model with differentiable right-hand sides27, 41. By using the 
response function theory, the drift laws for spiral waves on curved anisotropic surfaces were investigated. And an 
asymptotic theory that predicts the drift of spiral waves on general curved surfaces with the anisotropic diffusion 
has been developed42. The response function theory has also been used to study the change of the filament tension 
for scroll waves caused by a circularly polarized electric field43.

Spiral waves in the BZ reaction undergo a directional drift when the frequency of an ac electric field is twice 
that of the spiral frequency44. The direction of the spiral drift changes continuously between 0 and 2π when the 
initial rotation phase of the spiral varies from 0 to π. A kinematical model for spirals subjected to a strong ac elec-
tric field was proposed on a phenomenological basis45. This kinematical model has succeeded in capturing many 
aspects of the drift of spiral waves induced by strong ac electric fields. However, it has not been derived from the 
underlying reaction-diffusion equations. Thus, its parameters need to be adjusted, and cannot be obtained from 
the underlying reaction-diffusion equation. And the drift of spiral waves induced by weak ac electric fields has 
been studied from a theoretical point of view25, 46. But an analytical and quantitative explanation for this mecha-
nism is needed.

Recently, a polarized electric field that possesses chirality was theoretically proposed47 and has been imple-
mented in the BZ experiment48. It allows us to study the response of spiral waves to a chiral electric field. The drift 
behavior of spiral waves under the influence of a polarized electric field was investigated numerically. An analyti-
cal derivation which neglects the deformation of the spiral is consistent with the numerical results qualitatively47. 
However, an analytical derivation which takes account of the deformation for this mechanism is still lacking. 
Analytical results directly from the reaction diffusion equation are of importance, for a deeper understanding of 
the mechanism of the drift and a wider application of the spiral wave control.

In this paper, we derive the drift velocities of spiral waves due to weak ac and polarized electric fields using 
the response function theory, and compare the analytical results with the velocities obtained in direct numerical 
simulations for both weak and high excitabilities. The detailed forms of electric fields are shown in Table 1.

Results
The theory of wave propagation in excitable media in the presence of an electric field → =E E E( , )x y  can be 
described by reaction diffusion equations,

∂ = + ∇
→

−
→

⋅ ∇
→

 Eu F u D u M u( ) (1)t
2

where u = [u, v]T, = f u v g u vF u( ) [ ( , ), ( , )]T , and D and M are constant matrices. In this paper, we use the 
FitzHugh-Nagumo kinetics49, 50, i.e., ε= − −f u v u u v( , ) ( /3 )/3  and ε β γ= + −g u v u v( , ) ( ). D and M are 
both set to be ( )1 0

0 0
. Throughout this work, we choose a set of parameter values as ε = 0.22, β = 0.58, and γ = 0.8, 

such that the medium is highly excitable (see Fig. 1(a)). In the weakly excitable one, parameters are chosen as 
ε = 0.22, β = 0.78, and γ = 0.8 (see Fig. 1(b)). The spiral tip is defined as the intersections of two isolines of u = 0 
and v = 0.

In the absence of electric fields, a rigidly rotating spiral wave solution to Eq. (1) is in the form of

ρ σϑ ω σ→ = → −
→

− → −
→

+ + Φr t r R r R tU U( , ) ( ( ), ( ) ) (2)

where 
→
R  is the center of rotation, Φ is the initial rotation phase, ω > 0 is the angular frequency, and ρ → −

→
r R( ) 

and ϑ → −
→

r R( ) are polar coordinates centered at 
→
R . The spiral tip whose position vector is ζ

→
t( )tip  rotates in a circle 

centered at 
→
R . Without loss of generality, we choose the angle between ζ

→
=t( 0)tip  and the positive x axis as the 

initial rotation phase Φ, which is measured counterclockwise from the positive x axis. The rotation direction is 
determined by the chirality σ, i.e. σ = +1 for the counterclockwise rotating spiral and σ = −1 for the clockwise 
one51, 52.

Derivation of the drift equations.  In the following, without loss of generality, we only consider the drift 
of the clockwise rotating spiral, which can be easily extended to study the drift of the counterclockwise rotating 
spiral. It is convenient that the drift velocity of the spiral is analyzed in the system of reference of the spiral, i.e. the 
system of reference corotating with the spiral’s initial phase and angular velocity ω around the spiral’s center of 
rotation. In this system of reference, the polar angle is given by θ ϑ ω= + − Φt , with ′

→
=R 0  and Φ′ = 0. 

According to the response function theory26, a small perturbation −
→

⋅ ∇
→

EM u acts on a rigidly rotating spiral by 

dc electric fields Ex = E0, Ey = 0

ac electric fields Ex = E0 cos(ωet + φe), Ey = 0

polarized electric fields Ex = E0 cos(ωet + φ), Ey = E0 cos(ωet + φe + φxy)

Table 1.  Three forms of external electric fields. For ac electric fields, φe is the initial phase. For polarized electric 
fields, φe is the initial phase of Ex, φe + φxy the initial phase of Ey, and φxy the phase difference. The mode of the 
polarized electric field is characterized by φxy. For examples, the polarized electric field is circularly polarized 
and rotates clockwise for φxy = 0.5π, or anticlockwise for φxy = 1.5π. See ref. 47 for more details. A small electric 
strength E0 = 0.005 is chosen throughout this paper.
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causing translational and rotational shifts. In particular, a solvability condition leads to the following equation for 
the drift velocity of the spiral:

= Φ′ = −
→

⋅ ∇
→

Φ′ =ωτΦ −� �R t e e EW M U( ) ( 0), ( 0) (3a)i i (1)

where = +R t X iY( )  is the complex coordinate of the instant spiral center, and R t( ) is the drift velocity. The inner 
product 〈w, v〉 stands for the scalar product in the functional space in the system of reference of the spiral (Φ′ = 0)

∫ ρ θ ρ θ ρ ρ θ= + d dw v w v, ( , ) ( , ) ,

and W(1) is one of the response functions of the spiral. Mathematically, it is the eigenfunction of the adjoint line-
arized operator corresponding to the critical eigenvalue −iω.

To study the directional drift of spirals, it is convenient to average the motion of the spiral over the rotation 
period. After the central moving average over the spiral wave rotation period, the drift velocity can be expressed 
as

∫
ω
π

τ= Φ′ = −
→

⋅ ∇
→
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π ω
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−
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2
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R can also be written as = Θ
 R R ei , where R  is the drift speed, and Θ the drift direction. In Eq. (3b), 

→
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Figure 1.  Top row: Tip trajectories of clockwise rotating spiral waves without electric field. Bottom row: Tip 
trajectories in the presence of a dc electric field. Left column: Highly excitable medium. Right column: Weakly 
excitable medium.
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are two of the Goldstone modes of the spiral, i.e. the eigenfunctions of the linearized operator corresponding to 
the critical eigenvalues iω and −iω, respectively. Substituting Eq. (4) into Eq. (3b), we obtain finally
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Thus a drift velocity formula in terms of the electric fields, the response functions, the Goldstone modes, and 
the initial rotation phase of the spiral is given.

For simplicity, we write the resultant as

µΦ′ = Φ′ = = υ
 eW MV( 0), ( 0) , (6)

i(1) (1)
1

1

µΦ′ = Φ′ = = υ−
 eW MV( 0), ( 0) , (7)

i(1) ( 1)
2

2

such that R  and Θ can be explicitly written. In Table 2, we compute the drift coefficients μ1, v1, μ2, and v2 for both 
weak and high excitabilities using the open source software “DXSpiral”41.

DC electric fields.  From the general drift velocity formula in Eq. (5), we first discuss the case of dc electric 
fields. When a dc electric field is applied, only the first component in Eq. (5) contributes to the directional drift of 
the spiral. And the drift velocity reads as

Φ Φ= ′ = ′ = .� �R E W MV( 0), ( 0) (8)0
(1) (1)

Substitution of Eq. (6) into Eq. (8) gives the drift speed and direction as

µ υ= Θ = .R E , (9)1 0 1

From Table 2, one can calculate the theoretical predictions in two excitabilities as  = .R 0 008413,weak
 

Θ = .3 999weak  and = . Θ = .R 0 004284, 6 211high high , respectively. And from the direct numerical simulations 
(see Fig. 1(c) and (d)), we get = . Θ = .R 0 008415, 4 004weak weak  and = . Θ = .R 0 004276, 6 209high high  for the 
two excitabilities, respectively. Quantitative differences between theoretical predictions and numerical simula-
tions are relatively small. The relative differences are less than 0.2% for both weak and high excitabilities. Equation 
(9) shows that both R  and Θ are independent of the initial rotation phase Φ. This is also observed in numerical 
simulations. Note that the drift equations of spirals by dc electric fields in Eqs (8) and (9) are identical to the 
results obtained in refs. 28, 37, 38.

AC electric fields.  The spiral wave undergoes a directional drift in the presence of an ac electric field when 
ωe = 2ω (see Fig. 2(a) and (b)). In this resonant case, the drift velocity in Eq. (5) becomes

Φ Φ= . ′ = ′ = .Φ φ+ −� �R E e W MV0 5 ( 0), ( 0) (10)i
0

(2 ) (1) ( 1)e

Using Eq. (7), one obtains

µ φ υ= . Θ = Φ + + .R E0 5 , 2 (11)e2 0 2

From above equations, we can draw following conclusions about the resonant drift induced by ac electric 
fields, which are independent of the special models. Firstly, the drift speed R  is independent of the initial rotation 

μ1 υ1 μ2 υ2

high excitability 0.85671 6.2106 1.4897 0.60486

weak excitability 1.6826 3.9989 2.8027 5.5371

Table 2.  Values of the drift coefficients.
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phase Φ of the spiral and the initial phase φe of the ac electric field, which are confirmed by direct numerical sim-
ulations in Figs 2(c),(d) and 3(a) and (b). The analytically obtained values R  agree well with the ones obtained by 
simulations in both weakly and highly excitable media. Secondly, for the fixed φe, the drift direction Θ changes 
continuously when the initial rotation phase Φ varies. And Θ is linear in Φ. The change of Θ is twice as much as 
that of Φ, i.e., ΔΘ = 2ΔΦ. Thus ΔΘ = 2π if ΔΦ = π. This means that the drift direction Θ keeps invariant when 
the change of Φ is π. The analytical values Θ are quantitatively consistent with the numerical simulations, as 
shown in Fig. 2(e) and (f). Thirdly, for the fixed Φ, the spiral drifts in different directions when we change φe, but 
the change of Θ is equal to that of φe, i.e., ΔΘ = Δφe. Numerical simulations are performed to demonstrate the 
quantitative agreement with the analytically obtained values Θ in both weakly and highly excitable media, as 

Figure 2.  First row: Trajectories of spiral tips movement under the influence of an ac electric field with ωe = 2ω, 
φe = 0, and Φ = 0. Second row: Drift speed as a function of Φ with φe = 0. Third row: Drift angle as a function 
of Φ with φe = 0. In the second and the third rows, the circles represent numerical simulations and the lines 
represent theoretical predictions. Left column: Highly excitable medium. Right column: Weakly excitable 
medium.
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shown in Fig. 3(c) and (d). Note that the numerical and theoretical results of the spiral drift induced by strong ac 
electric fields in refs. 44 and 45 showed that R  does depend on Φ, and Θ is not linear in Φ. The reason is clear. 
Since in refs. 44 and 45 E0 is equal to 2.0, but in our case E0 is 0.005. According to the response function theory, 
the analytical results obtained in this paper are valid for weak electric fields. On the other hand, the relation 
between Θ and φe was not studied in refs. 44 and 45. Thus, further laboratory works on the spiral drift induced by 
weak ac electric fields are expected. We note that spiral wave fronts may break above some electric field 
threshold53.

Polarized electric fields.  The general drift velocity formula in Eq. (5) can also be applied to the case of 
polarized electric fields. In the resonant case (ωe = 2ω), the spiral drifts along a straight line, and the drift velocity 
reads as

= . − Φ′ = Φ′ = .Φ φ φ+ −� �R E ie W MV0 5 e (1 ) ( 0), ( 0) (12)i i
0

(2 ) (1) ( 1)e xy

Substituting Eq. (7) into Eq. (12), one can obtain

µ φ

φ φ υ π φ π π

= . +

Θ = Φ + + . + + . − . ∈ .

R E0 5 2(1 sin ) ,

2 0 5 0 75 , 1 5 (0, 2 ) (13)

xy

e xy xy

2 0

2

A significant feature predicted in Eq. (13) is that when the electric field is circularly polarized and its rotation 
follows that of the spiral (φxy = 0.5π), the drift speed R  reaches its maximal value. On the contrary, opposite 
rotation between the spiral and electric field (φxy = 1.5π) locks the spiral. This prediction is confirmed by numer-
ical simulations, and the analytically obtained values R  are quantitatively consistent with the ones obtained by 
simulations, as shown in Fig. 4(a–d). And the drift direction Θ changes continuously when Φ or φe varies. Their 
relations are ΔΘ = 2ΔΦ and ΔΘ = Δφe, which are the same results as in ac electric fields. Moreover, the spirals 
drift in different directions when we change the phase difference φxy, and the change of the drift direction is half 

Figure 3.  Drift velocity as a function of φe in the presence of an ac electric field with ωe = 2ω and Φ = 0. Top 
row: Theoretical (lines) and numerical (circles) drift speed vs φe. Bottom row: Theoretical (lines) and numerical 
(circles) drift angle vs φe. Left column: Highly excitable medium. Right column: Weakly excitable medium.



www.nature.com/scientificreports/

7SCientifiC REPOrTs | 7: 8657  | DOI:10.1038/s41598-017-09092-6

as much as that of the phase difference, i.e., ΔΘ = 0.5Δφxy. This unexpected prediction is also confirmed by direct 
numerical simulations, and the analytical values Θ agree well with the numerical ones, as shown in Fig. 4(e,f).

In conclusion, we have studied the drift of spiral waves induced by weak electric fields analytically, since ana-
lytical results are of crucial importance for a deeper and more comprehensive understanding to the mechanism 
of the spiral wave drift. Using the response function theory, we propose a theory of the spiral wave drift due to 
weak ac and polarized electric fields. Explicit equations for the spiral wave drift speed and direction in terms of Φ, 
E0, φe, and φxy are obtained directly from the reaction diffusion equations, which are independent of the special 

Figure 4.  First row: Drifting behaviors of spirals under the influence of a clockwise (φxy = 0.5π) and a 
counterclockwise (φxy = 1.5π) circularly polarized electric fields with ωe = 2ω, φe = 0, and Φ = 0. Second row: 
Dependence of theoretical (lines) and numerical (circles) drift speed on φxy with φe = 0 and Φ = 0. Third row: 
Dependence of theoretical (lines) and numerical (circles) drift angle on φxy with φe = 0 and Φ = 0. When the 
drift speed is 0 (φxy = 1.5π), the drift angle cannot be defined. Left column: Highly excitable medium. Right 
column: Weakly excitable medium.
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models and should be of general significance. These analytical results are quantitatively confirmed by numerical 
simulations in both weakly and highly excitable media. Although ac electric fields44 and polarized electric fields48 
have been realized in the BZ system, laboratory works on the spiral drift induced by weak ac and polarized elec-
tric fields have not been investigated. We hope that the theoretical results in Eqs (11) and (13) can be verified in 
experiments.

Methods
In direct numerical simulations of the FitzHugh-Nagumo model in Eq. (1), we use an explicit Euler method and 
no-flux boundary conditions with the space step at Δx = Δy = 0.05 and time step at Δt = 0.0005 for the grids 
500 × 500 in Cartesian coordinate system.

We compute V(1)(Φ′ = 0), V(−1)(Φ′ = 0), and W(1)(Φ′ = 0) using the open source software “DXSpiral”41. Since 
“DXSpiral” is dealing with spiral waves on a polar grid in a disk, to get a similar precision with Δx = 0.05 in direct 
numerical simulations, we use a disk of radius at 12.5 with 250 radial and 124 circumferential grid cells. Note that 
in the computation, the initial rotation phase of the spiral in the system of reference of the spiral should be set to 
be 0, i.e. Φ′ = 0. In our computations, we find that Φ′ Φ′−

W MV( ), ( )(1) ( 1)  is dependent on Φ′, but 
Φ′ Φ′W MV( ), ( )(1) (1)  is not. This is related to the fact that the drift velocity of the spiral induced by the dc electric 

field does not depend on the initial rotation phase of the spiral, while the drift velocity induced by the ac electric 
field depends on the initial rotation phase.
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