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Increased activation of the caudate nucleus and 
parahippocampal gyrus in Parkinson’s disease patients 
with dysphagia after repetitive transcranial magnetic 
stimulation: a case-control study 
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Wen-Shan Li3, Meng-Yue Wang2, Meng Lin2, Wei-Jun Gong1, *

Abstract  
Repetitive transcranial magnetic stimulation (rTMS) has been shown to effectively improve impaired swallowing in Parkinson’s disease (PD) 
patients with dysphagia. However, little is known about how rTMS affects the corresponding brain regions in this patient group. In this case-
control study, we examined data from 38 PD patients with dysphagia who received treatment at Beijing Rehabilitation Medicine Academy, 
Capital Medical University. The patients received high-frequency rTMS of the motor cortex once per day for 10 successive days. Changes in 
brain activation were compared via functional magnetic resonance imaging in PD patients with dysphagia and healthy controls. The results 
revealed that before treatment, PD patients with dysphagia showed greater activation in the precentral gyrus, supplementary motor area, and 
cerebellum compared with healthy controls, and this enhanced activation was weakened after treatment. Furthermore, before treatment, 
PD patients with dysphagia exhibited decreased activation in the parahippocampal gyrus, caudate nucleus, and left thalamus compared 
with healthy controls, and this activation increased after treatment. In addition, PD patients with dysphagia reported improved subjective 
swallowing sensations after rTMS. These findings suggest that swallowing function in PD patients with dysphagia improved after rTMS of the 
motor cortex. This may have been due to enhanced activation of the caudate nucleus and parahippocampal gyrus. The study protocol was 
approved by the Ethics Committee of Beijing Rehabilitation Hospital of Capital Medical University (approval No. 2018bkky017) on March 6, 
2018 and was registered with Chinese Clinical Trial Registry (registration No. ChiCTR 1800017207) on July 18, 2018.
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Introduction 
Dysphagia is a common symptom of Parkinson’s disease (PD), 
with an incidence of 82% (Takizawa et al., 2016). The onset is 
insidious, and the severity is progressive in PD with dysphagia 
(PWD). In total, 95–100% of patients with early-stage PD 

exhibit dysphagia, and most develop moderate to severe 
dysphagia and have difficulty swallowing 10–11 years after 
motor symptoms appear (Luchesi et al., 2015; Takizawa et al., 
2016). Abnormal motor patterns, decreased coordination, 
and common oropharynx symptoms are characteristic of 
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Graphical Abstract Brain activation in Parkinson's disease patients with dysphagia during 
the saliva-swallowing task before and after repetitive transcranial 
magnetic stimulation 
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PD-associated dysphagia (PAD), and are known to cause 
malnutrition, social impairment, anxiety and depression, a 
high risk of aspiration/inhalation pneumonia, and a reduction 
in the effects of therapeutic treatments (Kim et al., 2015; 
Matsushima et al., 2016; Suttrup and Warnecke, 2016; van 
Hooren et al., 2016; Chang et al., 2020). Therefore, dysphagia 
seriously reduces the effects of rehabilitation and quality of 
life in PD patients (Lee et al., 2017).

In a double-blind randomized controlled study, 33 patients 
with PWD were randomly chosen to receive sham or real 
repetitive transcranial magnetic stimulation (rTMS; 20 Hz; 90% 
of the resting motor threshold) over the hand area of each 
motor cortex for 3 months. The researchers found that real 
rTMS improved the Arabic-Dysphagia Handicap Index score 
and dysphagia as measured via video-fluoroscopy (Khedr et al., 
2019). Thus, rTMS is a valuable non-invasive technology that 
can be used to effectively treat PAD. It is generally believed 
that rTMS elicits neuroplasticity, which can stimulate neurons 
in different periods, including the refractory period. rTMS 
also excites horizontal connections among neurons, produces 
summation of the excitatory postsynaptic potential, and 
balances excitatory-inhibitory links in the cortex (Martin-Harris 
et al., 2005). High-frequency (> 1 Hz) rTMS may increase the 
local metabolic level, affect long-term facilitation, and produce 
excitatory effects (Troche et al., 2013). Another study found 
that rTMS could induce alterations in neuronal cell plasticity 
by mediating gene expression and neural regulation (Silbergleit 
et al., 2012). As few studies have focused on PAD, little is 
known about how rTMS influences brain activity in individuals 
with PWD. 

Functional magnetic resonance imaging (fMRI) has been 
used to observe changes and connections in functional 
activity among brain regions during different physical states. 
The spatial resolution of fMRI (within 2 mm) is much higher 
than that of positron emission tomography (within 6 mm), 
which can facilitate investigations of swallowing activity 
(Hamdy et al., 1999; Lang et al., 2015; Benzagmout et al., 
2019). Considering the low level of movement coordination 
and high risk of aspiration in PWD patients, few studies have 
examined this patient group, and none have used task-state 
fMRI. Accordingly, the characteristic neuronal activation in 
PWD patients and the effect of rTMS on corresponding brain 
regions during swallowing in this population are unknown. To 
address this in the present study, we explored rTMS-induced 
neuroplasticity in PWD patients by comparing activation 
among healthy controls (HCs) and individuals with PWD.
 
Participants and Methods 
Participants
This was a case-control study. Between January 2019 and 
December 2019, the recruitment information was released 
in China through WeChat official accounts, chat groups, 
websites, leaflets, and face-to-face briefings with patients, 
family members, and doctors. A total of 84 PD patients were 
recruited, of whom 7 PD patients without dysphagia were 
excluded. Forty-seven individuals with PWD completed all of 
the examinations and treatments, but nine MRI datasets were 
of poor quality. Finally, the study included 38 PWD patients (23 
men, 15 women, aged 60.32 ± 8.03 years, disease duration 
6.89 ± 2.77 years, Hoehn-Yahr stage 2.13 ± 0.52, Unified 
Parkinson’s Disease Rating Scale Part III (UPDRS-III) 26.76 ± 
11.81, Montreal Cognitive Assessment (MoCA) 23.92 ± 4.40). 
Thirty-three healthy participants aged 40–80 years were 
recruited as controls (HCs). As three MRI datasets were of 
poor quality, we included data from 30 healthy participants (11 
men, 19 women, aged 56.23 ± 9.73 years). The experiment 
was conducted at the Beijing Rehabilitation Hospital of Capital 
Medical University.

The inclusion criteria for PWD were as follows: i) patients 

fulfilled the Movement Disorder Society clinical diagnostic 
criteria for PD (Postuma et al., 2015); ii) patients were 
considered to have dysphagia and met one or more of 
the following criteria via videofluoroscopic swallowing 
examination (VFSE) (Mosier et al., 1999): a) oral transport time 
> 1.5 seconds; b) pharyngeal transport time > 1.0 second; c) 
pharyngeal delay time: under 60 years > 0.36 second, over 
and equal to 60 years > 0.24 second; d) upper esophageal 
sphincter opening time > 0.51 second; e) pharyngeal cavity 
residue (epiglottis valley, piriform sinus) > 25%; and f) Leakage 
Aspiration Scale score > 2; iii) patients were aged between 40 
and 80 years. The inclusion criteria for HCs were good health 
and age between 40 and 80 years. 

The study exclusion criteria were: i) a history of other diseases 
affecting swallowing function (e.g., gastrointestinal diseases 
after radiotherapy for head and neck tumors); ii) severe 
pneumonia, renal or cardiac dysfunction; iii) current indwelling 
nasogastric tube or gastrostomy; iv) cardiac pacemaker, nerve 
stimulator, metal artery clamp, and other magnetic resonance 
examination or rTMS contraindications found in vivo; and v) 
cognitive impairment (a Mini-mental State Examination score 
≤ 17 reflects illiteracy, ≤ 20 reflects a primary school level, ≤ 
24 reflects a middle school and secondary school level; MoCA 
score < 26). 

Withdrawal was defined using the following criteria: i) 
incomplete rTMS treatment or lack of cooperation with 
fMRI examination; ii) incomplete fMRI data or unmet data 
processing requirements; and iii) lack of informed consent or 
incomplete experiments. The study protocol was approved 
by the Ethics Committee of Beijing Rehabilitation Hospital 
of Capital Medical University (approval No. 2018bkky017) 
on March 6, 2018 (Additional file 1). All participants were 
volunteers and provided written informed consent (Additional 
file 2) prior to engaging in the study. All study protocols were 
in accordance with the Declaration of Helsinki of 1975 and 
the applicable revisions at the time of the investigation. This 
study was registered with the Chinese Clinical Trial Registry 
(registration No. ChiCTR 1800017207) on July 18, 2018.

Assessment
Patients with PWD were evaluated using the UPDRS-III, 
Hoehn-Yahr stage and VFSE while in their best condition after 
taking medicine (“ON” period). The PWD patients underwent 
the dysphagia handicap index (DHI), Mr. Tengdao’s swallowing 
curative effect evaluation of swallowing (MTSCEEOS), and 
a complete fMRI examination before and after treatment. 
The HCs underwent a task state fMRI examination. All 
examinations were conducted by two experienced doctors. 
The UPDRS-III is the third part of the Movement Disorder 
Society-sponsored revision of the UPDRS (MDS-UPDRS), 
published in 2008 (Goetz et al., 2008). It is used to evaluate 
movement function and contains 33 items with 0–4 points 
each for a total score of 132. A higher score indicates worse 
function. The Hoehn-Yahr Scale, which comprises levels 0–5, 
was used to record the degree of motor dysfunction in the 
PD patients (Goetz et al., 2008). A higher level on the scale 
was associated with a greater degree of dysfunction. The 
DHI includes three components with a total of 25 items. The 
items comprise nine physiological and functional aspects, 
respectively, and seven emotional aspects, for a total score of 
0–100 (Khedr et al., 2019). A higher score was associated with 
a worse subjective evaluation. The MTSCEEOS scores were 
divided into 10 grades, ranging from 1–10 to indicate more 
severe to less severe swallowing difficulty (Wang et al., 2012). 

rTMS intervention
The PWD patients received high frequency rTMS (OSF-6/T; OSF 
Medical Technology Limited Company, Wuhan, China). The 
rTMS protocol was as follows: intensity = 90% motion threshold, 
frequency = 10 Hz, train duration = 2.00 seconds, interval time 
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= 8 seconds, train pulse = 20 pulses, number of trains = 60, 
total pulses per session = 1200, total length of session = 10 
minutes, figure-of-eight coil TMS device, alternately over the 
left or right M1 region once a day for 10 days. The levodopa 
equivalent daily doses were adjusted to the best conditions and 
remained the same throughout the experimental process. No 
intervention was delivered in the HC group.

Task state fMRI
We used a block design to test brain activation related to the 
saliva-swallowing task. Five task blocks and five rest blocks 
were alternately carried out (Figure 1). Each block lasted 
30 seconds. Chinese sentences and words were presented 
in red on a black background on a paper screen. During the 
scanning task, when “repeat swallowing, press the button 
after each swallow” appeared on the screen, the subjects 
swallowed saliva (lip closure, flat tongue at the bottom of 
the mouth, upper hyoid lift and circumpharyngeal muscle 
contraction). After each swallowing action, the subjects were 
required to press the button. Once they pressed the button, 
“stop” appeared on the screen, and the subjects rested for 
30 seconds. During the task, the subjects kept their head 
motionless to concentrate on completing the swallowing task. 
Stimuli were presented using an image projector and a paper 
screen located in front of the subjects’ feet. The subjects 
viewed the screen through a 45° angled mirror attached to the 
head coil of the MRI setup. The subjects were trained before 
scanning to ensure their cooperation and ability to complete 
the task. We used a General Electric signal 3.0T magnetic 
resonance scanner (General Electric Company, Boston, 
MA, USA) with an 8-channel head coil with foam filling and 
earplugs to limit patient head movements and reduce noise. 
All subjects underwent a routine scan to identify unrelated 
intracranial organic lesions. The whole brain was scanned 
using three-dimensional T1 bravo sequences. The scanning 
line was consistent with the T2 fluid attenuated inversion 
recovery sequence. The scanning parameters were as follows: 
repetition time = 8.1 ms, echo time = 3.1 ms, flip angle = 
90°, field of view = 30 cm × 30 cm, matrix = 300 × 300, slices 
= 164, thickness = 1 mm. For task state fMRI, we adopted a 
gradient echo planar imaging sequence. The scanning line 
was consistent with the T2 fluid attenuated inversion recovery 
sequence, and the scanning parameters were as follows: 
repetition time = 2000 ms, repetition time = 30 ms, flip angle 
= 90°, field of view = 28 cm × 28 cm, matrix = 94 × 32, slices = 
40, thickness = 4 mm, space = 1 mm.

Data analysis 
Preprocessing 
The imaging data were analyzed using statistical parametric 
mapping software (SPM12; Wellcome Department of Cognitive 
Neurology, London, UK) in the Matlab environment (version 
7.8; The MathWorks Inc., Natick, MA, USA). Preprocessing of 
functional scans consisted of slice timing (sinc interpolation-
reference slice 20, i.e., middle of the repetition time). 
Subsequently, the images were spatially realigned to the 
mean image due to head motion. Participants whose head 
movements exceeded 6 mm on any axis or rotations greater 
than 6° were withdrawn. After the correction, coregistration was 
conducted of the T1 image to the mean echo planar imaging 
(normalized mutual information), and of these images to the 
SPM average T1 image. Then, normalization was performed 
in East Asian brains of the international consortium for brain 
mapping space template to reduce morphing errors (Zhang et 
al., 2017). Finally, the normalized images were smoothed with a 
Gaussian kernel of 8-mm full-width half-maximum. 

Task activation and regions of interest 
Statistical parametric maps were calculated in the first-
level analysis for each subject with a general linear model, 
and parameters for the swallowing fMRI paradigm model 

specification (http://www.fil. ion.ucl.ac.uk/spm) were 
introduced. After model estimation, a matrix was obtained 
for each subject showing higher brain activation conditions 
compared to the control condition (activation > control). 
These resulting ‘combined’ images from each group were 
entered into second-level one-sample t-tests to yield group-
level activation. These resulting ‘combined’ images from each 
group were entered into the second-level to yield group-level 
activation. One-way analysis of variance test (P < 0.05, family 
wise error corrected for multiple comparisons) were used 
to assess the average fMRI activity during task in each group 
with SPM12 (Díez-Cirarda et al., 2017). Furthermore, a two-
sample t-test was carried out to explore the differences in 
activation between HCs and PWD or before and after rTMS 
treatment in PWD (Díez-Cirarda et al., 2017). Finally, on the 
basis of a statistical parametric map for an F-test with three 
groups, regions of interest were created with a radius of 8 mm 
centered at the voxels with the local maxima of T values with 
SPM12. The signal change was analyzed for each group.

Statistical analysis 
Demographic and clinical variables were analyzed using 
SPSS 22.0 (IBM, Armonk, NY, USA). Differences in DHI and 
MTSCEEOS scores before versus after treatment in the PWD 
group were tested using the Wilcoxon rank-sum test. We 
tested differences in the average frequency of button presses 
during the 30 seconds among HCs, and before and after 
treatment in the PWD group using a one-way analysis of 
variance. The least significant difference (LSD) test was used 
to compare inter-group variables. The significance level was 
defined as α = 0.05 with P < 0.05.

Results
Sociodemographic, clinical, and behavioral characteristics of 
the PWD group relative to rTMS treatment
The sociodemographic characteristics of the subjects are 
shown in Table 1. After treatment, those in the PWD group 
had a lower DHI (z = –5.38, P < 0.05) and a higher MTSCEEOS 
score (z = –3.31, P < 0.05) compared with before treatment 
(Table 2).

Table 1 ｜ Demographic data from Parkinson’s disease with dysphagia 
patients and healthy controls

Item
Parkinson's disease with 
dysphagia patients (n = 38)

Healthy controls 
(n = 30)

Gender (male/female) 23/15 11/19
Age (yr) 60.32±8.03 56.23±9.73
Disease duration (yr) 6.89±2.77 NA
Hoehn-Yahr stage 2.13±0.52 NA
UPDRS-III 26.76±11.81 NA
MoCA 23.92±4.40 NA

Data are expressed as mean ± SD, except for gender, which are expressed as 
number. MoCA: Montreal Cognitive Assessment; NA: not applicable; UPDRS-
III: Unified Parkinson’s Disease Rating Scale-III.

Table 2 ｜ Comparison of DHI and MTSCEEOS scores before and after 
repetitive transcranial magnetic stimulation in Parkinson’s disease with 
dysphagia patients

Item Before After d z P

DHI 25.39±10.86 16.87±6.20 8.53±6.18 –5.38 0.00
Physiology 8.71±5.01 4.79±2.85 3.92±3.39 –5.18 0.00
Function 10.34±3.74 7.37±2.34 2.97±2.32 –5.12 0.00
Emotion 6.50±3.03 4.71±1.97 1.79±1.56 –4.92 0.00
MTSCEEOS score 8.89±1.25 9.76±0.49 0.87±1.30 –3.31 0.00

Data are expressed as mean ± SD (n = 38), and were analyzed by Wilcoxon 
rank-sum test. DHI: Dysphagia handicap index; MTSCEEOS: Mr. Tengdao’s 
swallowing curative effect evaluation of swallowing.
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Figure 1 ｜ Task-state functional magnetic resonance imaging procedure.
Five task blocks and rest blocks were presented alternately. The Chinese 
sentences in each task block said “repeat swallowing, press the button after 
each swallowing action” and the Chinese word in each rest block said “stop”. 
In each task block, the subjects swallowed saliva repeatedly. After each 
swallowing action, the subjects were prompted to press the button. Then, 
“stop” appeared on the screen, and the subjects rested until the next trial. 
The experiment lasted 5 minutes.
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Figure 2 ｜ Functional magnetic resonance imaging showing changes 
in activation in individuals with Parkinson’s disease with dysphagia and 
healthy controls during the saliva-swallowing task.
(A) Healthy controls. (B, C) Parkinson’s disease with dysphagia patients before 
(B) and after (C) repetitive transcranial magnetic stimulation treatment. 
Regions in which brain activation changed are shown in red or yellow. Results 
are corrected at the cluster level of P < 0.05 with family wise error. L: Left; R: 
right.
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Figure 3 ｜ Functional magnetic resonance imaging of brain activation 
changes in patients with Parkinson’s disease with dysphagia and healthy 
controls during a saliva-swallowing task.
Regions in which brain activation changed are shown in red and yellow. 
Results show significant activation (uncorrected, P < 0.001, k > 10). (A) 
Enhanced activation in the precentral gyrus (left BA6, right BA4) between 
the HCs and bPWD group. (B) Enhanced activation in the precentral gyrus 
(right BA4), postcentral gyrus (left BA1), and lingual gyrus (left BA19) between 
HCs and the aPWD group. (C) Enhanced activation in the right caudate and 
left parahippocampal gyrus between the bPWD and aPWD groups. aPWD: 
Parkinson’s disease with dysphagia after treatment; bPWD: Parkinson’s 
disease with dysphagia before treatment; HCs: healthy controls; L; left; R: 
right.
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Figure 4 ｜ Effect of repetitive transcranial magnetic stimulation on the 
brain regions activated during the saliva-swallowing task in individuals with 
Parkinson’s disease with dysphagia.
Regions in which the brain activation changed after treatment are shown in 
red and yellow. Results were corrected at the cluster level of P < 0.05 with 
family wise error. aPWD: Parkinson’s disease with dysphagia after treatment; 
bPWD: Parkinson’s disease with dysphagia before treatment; HCs: healthy 
controls; L; left; R: right.
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Figure 5 ｜ Effect of repetitive transcranial magnetic stimulation on the 
signal intensities of activated brain regions in individuals with Parkinson’s 
disease with dysphagia.
aPWD: Parkinson’s disease with dysphagia after treatment; bPWD: Parkinson’s 
disease with dysphagia before treatment; Cereb: cerebellum; HCs: healthy 
controls; ParadeG: parahippocampal gyrus; PreG_L: precentral gyrus left; 
PreG_R: precentral gyrus right; SMA: Supplementary motor area; Tha_L: 
thalamus left; Tha_R: thalamus right.

Behavioral performance during the fMRI in the PWD group 
relative to rTMS treatment
The average button press frequencies among HCs during the 
30 seconds, and those before and after rTMS treatment in the 
PWD group were 5.93 ± 1.66, 5.94 ± 2.43, and 6.02 ± 2.09, 
respectively. No significant differences were found among the 
HCs or the PWD before and after rTMS treatment (P > 0.05).

Activated brain regions in the PWD group relative to rTMS 
treatment
The activated brain regions in the HCs, as well as in the PWD 
group before versus after rTMS treatment are shown in Table 
3 and Figure 2 (corrected at the cluster level of P < 0.05 
with family wise error). Compared with the HCs, the PWD 
group had enhanced activation in the precentral gyrus (PCG; 
left BA6, right BA4) before rTMS treatment and enhanced 
activation in the PCG (right BA4), postcentral gyrus (left BA1), 
and lingual gyrus (left BA19) after rTMS treatment, as shown 
in Table 4 and Figure 3 (uncorrected, P < 0.001, k > 10).

Activation in the right caudate and left parahippocampal gyrus 
(PHG; left BA19) was enhanced after rTMS in the PWD group, 
as shown in Figure 3 (uncorrected, P < 0.001, k > 10).
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For the PWD group, activation intensity of the bilateral PCG, 
supplementary motor area (SMA), and cerebellum was higher 
after versus before rTMS, and higher than that in the HCs 
at both time points. The opposite was observed in the PHG, 
caudate, and left thalamus. Moreover, the activation intensity 
of the right thalamus in the PWD group was lower after rTMS 
versus before rTMS (Figures 4 and 5).
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Discussion
Only two previous studies have used fMRI to examine 
PAD (Suntrup et al., 2013; Gao et al., 2019): one used 
magnetoencephalography and the other used resting-state 
fMRI. To the best of our knowledge, the present study is the 
first to use task-state fMRI to study rTMS-induced changes 
in activation in PAD patients using the saliva-swallowing task 

and not the autonomous water-swallowing task or the reflex 
water-swallowing task (Perry et al., 2018; Kober et al., 2019). 
The latter two tasks are difficult to accomplish in PWD patients 
who are restricted by recumbency. In addition, considering 
that decreased coordination between the oral and pharyngeal 
phases causes salivation (Pfeiffer, 2018), saliva swallowing was 
safer and closer to the pathological state of PWD patients. Our 

Table 3 ｜ Summarized activation in Parkinson’s disease patients with dysphagia and healthy controls

Cluster size 
(voxels) Hemisphere Anatomical region

Brodmann 
area t score

Montreal Neurological Institute Coordinates

x y z

Healthy controls 1388 Left Precentral gyrus 4 7.25 –40 –12 46
226 Right Culmen * 6.18 8 –66 –10

Left Culmen of vermis * 6.08 –2 –64 –6
609 Right Precentral gyrus 6 5.99 54 –4 32

Right Postcentral gyrus 43 5.31 60 –10 18
384 Left Medial frontal gyrus 32 5.67 –2 8 46

Right Superior frontal gyrus 6 5.47 8 12 48
39 Right Cingulate gyrus 32 5.31 10 20 34
46 Left Thalamus * 4.92 –10 –8 16

Parkinson’s disease patients with 
dysphagia
Before repetitive transcranial 
magnetic stimulation treatment 

2884 Left Precentral gyrus 6 9.84 –44 –8 34

Left Middle frontal gyrus 6 7.51 –44 0 52
Left Postcentral gyrus 43 7.44 –60 –8 20

1946 Right Precentral gyrus 4 9.37 58 –4 20
Right Insula 13 5.83 38 –2 10
Right Postcentral gyrus 40 5.37 56 –24 18

1543 Right Superior frontal gyrus 6 9.32 2 8 54
Right Cingulate gyrus 32 7.37 12 20 34
Left Cingulate gyrus 32 5.96 –8 16 34

1368 Right Culmen * 8.54 16 –64 -10
Left Cuneus 30 6.38 –8 –70 10

55 Left Insula 13 5.45 –32 16 10
31 Left Thalamus * 5.01 –12 –18 2
28 Right Insula 13 4.85 36 16 4

After repetitive transcranial 
magnetic stimulation treatment

6214 Left Precentral gyrus 6 9.04 –50 –8 32

Left Postcentral gyrus 3 8.31 –60 –10 24
Left Superior frontal gyrus 6 8.2 0 10 54

3261 Right Precentral gyrus 6 8.32 52 –4 32
1673 Right Culmen of Vermis * 7.37 4 –62 –6

Left Culmen * 7.31 –12 –52 –2
870 Left Thalamus * 7.15 –12 –16 4

Left Insula 13 6.34 –32 14 10
Right Insula 13 5.75 32 –10 16

74 Right Thalamus * 5.73 12 –16 0
21 Right Caudate * 5.13 12 –6 16

Data were analyzed by one-way analysis of variance test followed by the least significant difference test and all results were corrected at the cluster level of P < 
0.05 family wise error. * Indicates the brain area is not noted in the way of Brodmann area.

Table 4 ｜ Comparison of activated brain regions between groups

Cluster size 
(voxels) Hemisphere Anatomical region

Brodmann 
area t score

Montreal Neurological Institute Coordinates

x y z

bPWD-aPWD 13 Left Parahippocampal gyrus 19 3.63 –36 –42 –4
11 Right Caudate * 3.58 32 –42 8

bPWD-HCs 26 Left Precentral gyrus 6 3.58 –44 –6 32
15 Right Precentral gyrus 4 3.55 58 –6 22

aPWD-HCs 18 Right Precentral gyrus 4 3.92 40 –22 62
30 Left Lingual gyrus 19 3.92 –12 –54 0
20 Left Postcentral gyrus 1 3.84 –44 –28 60

aPWD: PWD after treatment; bPWD: PWD before treatment; HCs: healthy controls. * indicates the brain area is not noted in the way of Brodmann area.
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data indicate that brain region activation was more consistent 
between the HCs and PWD group before rTMS treatment, 
and that it was roughly the same as that observed in previous 
autonomous water-swallowing and water-swallowing reflex 
tests in healthy participants (Perry et al., 2018; Kober et al., 
2019). Brain activation was mostly concentrated in the cortical 
sensory motor area (CSMA), premotor area, SMA, basal 
ganglia, insula, cerebellum, and other brain regions, indicating 
that saliva swallowing can be used as a task paradigm for PWD 
patients (Perry et al., 2018; Kober et al., 2019).

No previous studies have published rTMS protocol for 
dysphagia in PD patients. The rTMS protocols used in clinical 
settings are generally based on existing protocols (such as 
those for dysphagia in stroke patients) and are designed on 
an individualized basis. However, unlike stroke, the brain 
sites involved in PDW are often bilateral, unfixed, extensive, 
and progressive (Kober et al., 2019). Kikuchi et al. (2013) 
and Gao et al. (2019) suggested that there was hemispheric 
imbalance in PDW. During autonomous swallowing, the CSMA 
is the largest and most stable activated area, and it exhibits 
the strongest signal (Hamdy et al., 1999; Mosier et al., 1999; 
Suntrup et al., 2013; Maidan et al., 2017). This was in line with 
the present results. Thus, stimulation of the bilateral cortex 
could help to improve the observed imbalance, and this would 
be consistent with the pathological changes observed in PDW. 
The CSMA (including the PCG) was activated in the HC, pre-
rTMS PDW, and post-rTMS PDW groups, which coincided 
with previous results (Hamdy et al., 1999; Mosier et al., 1999; 
Suntrup et al., 2013; Maidan et al., 2017). This is supported 
by previous studies that identified sensory and motor neurons 
related to facial, oral, and throat muscles in this region, as 
these were activated when saliva entered the throat from the 
mouth during our study. Furthermore, the CSMA participates 
in autonomous action (e.g., autonomous swallowing), and 
might be the highest center for initiating swallowing. 

The front part of the premotor area, which stores motor 
memory, is an advanced center for planning and selecting 
motor programs, as well as guiding and regulating the 
swallowing process. The posterior part of the premotor 
area, which is located near the primary motor area, has 
two-way connections and overlapping functions (Hamdy 
et al., 1999; Mosier et al., 1999). The primary motor area 
accepts movement planning information (e.g., swallowing) 
from the front part of the premotor area, and implements 
the movement plan (e.g., swallowing) through the fiber 
connections from the posterior part of the premotor area. 
Together, the SMA and the premotor area form Brodmann 
area 6 (Hamdy et al., 1999; Mosier et al., 1999). The SMA 
plays an important role in complex temporal movement and 
in movement initiation and execution (Hamdy et al., 1999; 
Mosier et al., 1999). The insula, which is the main taste 
cortex, is associated with the ventral posterolateral thalamus 
(the sensory representative area of the face and mouth, and 
the termination replacement relay station of first stage taste 
afferent neurons) through the anterior thalamus (Hamdy et 
al., 1999; Mosier et al., 1999).

Through positron emission tomography technology, Kikuchi 
et al. (2013) found that glucose metabolism was reduced in 
the SMA (BA6) and anterior cingulate gyrus in PWD patients 
compared with normal controls. Furthermore, they found 
that the bilateral medial frontal lobe, medial cingulate cortex, 
thalamus, and upper, middle, and lower orbital frontal lobe 
were hypometabolic 3 years after a PWD diagnosis. Compared 
with HCs, they observed enhanced activation in PWD patients 
before and after rTMS in the PCG (BA4, 6) and lingual gyrus 
(BA19). This indicates that swallowing function was weakened 
in these patients such that an increased activation volume and 
intensity were needed to maintain swallowing function. These 

results are consistent with the findings of the present study. 
Gao et al. (2019) found that PWD patients (n = 13) exhibited 
enhanced functional connectivity in the left cerebellar tonsil, 
cerebellum (BA8, 9), and fusiform compared with a normal 
control group (n = 10). According to these two studies, PWD 
patients maintain a baseline swallowing state by enhancing 
connections of the left cerebellar tonsil, cerebellum (BA8, 9), 
and fusiform gyrus in the quiet state (i.e., when no swallowing 
action is performed). Enhanced activation of the PCG, lingual 
gyrus, and other brain regions occurs in a compensatory 
manner after initiating a swallowing action.

Previous neuroimaging and pathophysiological studies on 
dopamine loss in the striatum have suggested that the pattern 
of dopamine loss in the basal ganglia is inhomogeneous 
(Winogrodzka et al., 2003; Pasquini et al., 2019). In other 
words, the dopaminergic neurotransmitters binding with 
the striatal neurons in the shell nucleus were asymmetrically 
reduced, and that in comparison, the ones in the head of the 
caudate body were retained. The gradient of dopaminergic 
loss is largely preserved in all PD patients (Pasquini et al., 
2019). Im et al. (2018) and Kim et al. (2019) showed that 
caudate damage can increase the risk of aspiration and 
prolong the recovery time of swallowing. Hence, caudate 
injury is likely involved in the occurrence of dysphagia in PD 
patients and is potentially associated with gradient changes in 
dopaminergic loss. In this study, we found no significant pre-
rTMS caudate activation in the PWD group compared with the 
HCs, while the PWD group exhibited post-rTMS improvements 
in swallowing quality and enhanced caudate activation 
compared with the HCs. This confirmed the previous 
hypothesis that the caudate is associated with the occurrence 
of dysphagia in PWD patients. High-frequency rTMS can 
stimulate the release of neurotransmitters in the caudate 
of healthy persons and PWD patients, leading to enhanced 
neuroplasticity (Strafella et al., 2001; Sacheli et al., 2019). 
Therefore, it is possible that a caudate-associated abnormal 
dopaminergic damage gradient could inhibit the ability of the 
caudate to perform normal compensatory functions, and thus 
participates in the pathophysiological processes that underlie 
impaired swallowing in PAD patients. High-frequency rTMS 
may promote homeostasis in caudate-associated dopamine 
levels by altering neurotransmitter release, which in turn 
could improve swallowing function.

The DHI assesses swallowing function using three aspects 
and can be greatly affected by the subjective feelings of 
patients. The PHG is part of the limbic system and is closely 
related to emotion. Activation of the PHG has been found 
to increase with exercise and positive events (Loeffler et al., 
2018; Loprinzi, 2019). In this study, transient saliva swallowing 
activity did not enhance PHG activation. However, rTMS might 
have enhanced pleasure by promoting PHG activation, which 
in turn improved subjective feelings of swallowing.

Differences in the intensity of brain activation among the three 
groups might be related to the degree of injury in each region, 
compensatory ability, and the selectivity of the rTMS effect 
on specific brain regions. Braak proposed that pathological 
changes spread from the peripheral to the central nervous 
system, but not all types of PD patients conform to this 
hypothesis (Jellinger, 2019). The diversity of symptoms in PWD 
reflects the complexity of location, extent, and compensatory 
capacity in PD. All patients included in this study had a 
Hoehn-Yahr stage below 3. Thus, their condition may not 
have developed to the point of involving the substantia nigra, 
midbrain, or deep anterior cerebral nuclei. According to 
Braak’s hypothesis, the neocortex was also not likely to be 
involved in these patients. Hulme et al. (2013) found that the 
ability or mechanism of neurons to express plasticity might be 
recruited in non-specific ways under pathological conditions, 
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which could explain the compensatory enhancement of the 
PCG, SMA, and cerebellar activation intensity in the PWD 
patients before and after rTMS treatment. 

The activation intensity of the PHG and caudate was 
significantly reduced in the PWD group before rTMS 
treatment, indicating that the PHG and caudate were not 
the main compensatory mechanisms, but that they might be 
related to the occurrence and progression of dysphagia in 
PD. After treatment, the activation intensity of the PHG and 
caudate increased. This was associated with rTMS-induced 
reduction in the inhibition state of the PHG and caudate, likely 
via neurotransmitter regulation. Dysphagia is associated with 
thalamic injury (Kooshkabadi et al., 2013). However, deep 
brain stimulation of the subthalamic nucleus restored some 
motor patterns in the pharyngeal phase to performance 
levels approximating those of “normal” swallowing but did 
not improve the degree of hyoid bone excursion or oral 
phase measures in PD patients (Ciucci et al., 2008). Thalamus 
metabolism in PWD patients gradually decreased as onset 
time increased (Kikuchi et al., 2013). The changes in the 
thalamic activation intensity observed in the three groups in 
this study might be related to the short duration of disease 
in the PWD patients and relative functional retention of the 
thalamus.

There were three limitations in this study. First, the sample 
was relatively small. Second, PD patients without dysphagia 
were not included. Finally, we did not use objective evaluation 
methods such as VFSE after treatment. However, that 
activation of the right caudate and left parahippocampal 
gyrus was enhanced in PD patients with dysphagia reflects 
that neuroplasticity was induced by high-frequency rTMS. 
Thus, these regions may be potential therapeutic targets for 
precise treatment. Finally, our data indicate that the task 
paradigm was safe and effective for patients with a high risk of 
aspiration.

In conclusion, the saliva-swallowing task appears to be a safe 
and effective experimental paradigm for assessing patients 
with a high risk of aspiration such as those with PWD. 
Enhanced activation of the PCG, postcentral gyrus, and lingual 
gyrus functions in a compensatory manner after initiating 
swallowing action in PWD. rTMS treatment led to improved 
subjective swallowing sensations and enhanced activation of 
the caudate and PHG in PAD patients, providing evidence for 
rTMS-induced neuroplasticity and a potential treatment for 
PWD.
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