
https://doi.org/10.1177/1177932218821373

Bioinformatics and Biology Insights
Volume 13: 1–19
© The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1177932218821373

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Technological advances have led to a considerable reduction of
costs in DNA sequencing,1,2 rapidly increasing the amount of
genomic data for researchers to process3 and bringing enormous
challenges for its efficient storage and transmission.4 This trend
is expected to continue in the future since sequencing costs are
decreasing faster than storage cost.5

FASTQ6 and sequence alignment map (SAM)7 have
become de-facto standard file formats in the bioinformatics
domain: FASTQ for next generation sequencing (NGS) raw
data and SAM for storing alignment/mapping data.8,9 NGS
machines produce a file containing typically millions of DNA
fragments called reads.10

A FASTQ file represents reads in plain text, as shown in
Figure 1. For every read, the file contains four fields: (1) an
identifier with a specific structure that depends on the sequenc-
ing platform; (2) a read sequence with the actual DNA bases
{A,C,G,T,N}; (3) a separator field (commonly discarded by
compressors); and (4) quality scores as ASCII characters in a
variable range indicating the probability of a sequencing error
in each particular base of the sequence. The range of quality
scores also depends on the sequencing platform used to pro-
duce the FASTQ file. While for short genome species such as
viruses, a FASTQ file can be in the order of tens of megabytes;
for humans, it is in the order of tens of gigabytes, containing
tens of millions of reads.

Some of the most important biological sequence databases
are doubling or tripling its size annually,11 a trend that is
expected to continue. Currently, remarkable sequencing

projects12–15 are set to deliver from terabytes to petabytes of
NGS data. From large research centers to smallers bioinfor-
matics labs, efficient storage for the ever increasing data is one
of their major IT challenges.16

Researchers often turn to using compression tools to lower
the pressure on storage capacity. Given that FASTQ files
are stored as plain text, one can easily rely on traditional gen-
eral-purpose compression tools. Converting characters into bit
streams,17 using static or dynamic dictionaries,18–20 and per-
forming statistical analyses21 are strategies implemented by
many of these tools that alleviate the problem to some extent.
These types of tools have seen widespread use for compressing
biological sequences22,23 due to their compatibility, robustness,
and ease of use, in spite of certain performance limitations.24,25

In the mean time, domain-specific lossless compressors
have been developed during the last decade in an effort to
increase efficiency. However, compressing biological sequences
is an intensive task which demands significant computational
resources.26 Two different approaches have led this trend11:
non-referential and referential compressors. Non-referential

Tackling the Challenges of FASTQ
Referential Compression

Aníbal Guerra1,2 , Jaime Lotero1, José Édinson Aedo1
and Sebastián Isaza1

1Facultad de Ciencias y Tecnología (FaCyT), Universidad de Carabobo (UC), Valencia,
Venezuela. 2Facultad de Ingeniería, Universidad de Antioquia (UdeA), Medellín, Colombia.

ABSTRACT: The exponential growth of genomic data has recently motivated the development of compression algorithms to tackle the storage
capacity limitations in bioinformatics centers. Referential compressors could theoretically achieve a much higher compression than their non-
referential counterparts; however, the latest tools have not been able to harness such potential yet. To reach such goal, an efficient encoding
model to represent the differences between the input and the reference is needed. In this article, we introduce a novel approach for referential
compression of FASTQ files. The core of our compression scheme consists of a referential compressor based on the combination of local
alignments with binary encoding optimized for long reads. Here we present the algorithms and performance tests developed for our reads
compression algorithm, named UdeACompress. Our compressor achieved the best results when compressing long reads and competitive
compression ratios for shorter reads when compared to the best programs in the state of the art. As an added value, it also showed reasonable
execution times and memory consumption, in comparison with similar tools.

KeywoRdS: FASTQ compression, referential compression, read alignment, alignment encoding, bioinformatics

ReCeIVed: November 8, 2018. ACCePTed: November 26, 2018.

TyPe: Original Research

FundIng: The author(s) disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: This research was funded by the
Administrative Department of Science, Technology and Innovation of Colombia
(COLCIENCIAS), Call 757, Grant BEC17-2-27, and by the University of Antioquia through
multiple CODI instruments.

deClARATIon oF ConFlICTIng InTeReSTS: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CoRReSPondIng AuTHoR: Aníbal Guerra, Facultad de Ingeniería, Universidad de
Antioquia (UdeA), Street 67 No. 53 - 108 Office: 19-442, Medellín 050001, Colombia.
Email: ajguerra@uc.edu.ve

821373 BBI0010.1177/1177932218821373Bioinformatics and Biology InsightsGuerra et al
research-article2019

Figure 1. Basic structure of the FASTQ format: identifier, read sequence,

separator, and the quality scores.

https://uk.sagepub.com/en-gb/journals-permissions
mailto:ajguerra@uc.edu.ve

2 Bioinformatics and Biology Insights

compressors16,27–35 are commonly easy to use and produce self-
contained files, but tend to show modest compression ratios.
Referential compressors may demand a more experienced user,
but are able to reach higher compression ratios when one
choses a highly similar reference.

Despite their potential, referential approaches have not been
widely applied to the compression of FASTQ files. One key
factor in the design of such algorithms is the need for an effi-
cient encoding scheme that allows representing efficiently the
differences between the input reads and the so called reference;
to maximize the compression capabilities.

Furthermore, state-of-the-art compressors need to face the
fact that sequencing technologies are rapidly advancing to pro-
vide ever longer reads. Even though today’s databases contain
mostly reads of 100-200 bases of length, the most important
manufacturers of sequencing machines have already released
models able to produce significantly longer reads, for exam-
ple, Illumina MiSeq v3 (https://www.illumina.com/systems
/sequencing-platforms/miseq/specifications.html), Sanger
3730xl,36 and Ion Torrent PGM (https://www.thermofisher.
com/co/en/home/brands/ion-torrent.html).

In this article, we present a referential compressor for FASTQ
files. The core algorithms to achieve compression are based on
sequence alignment and an elaborate binary encoding scheme.
The main contributions of this manuscript are as follows:

•• A multi-technique compression scheme for referential
compression of FASTQ files. That scheme combines
different specific strategies to compress all data streams
present in the FASTQ file to guarantee a fully lossless
compression.

•• UdeACompress: a lossless referential compressor for
reads. Its core algorithms aim at improving the reads
compression ratio for the longer reads of newer sequenc-
ing machines.

•• A comprehensive performance analysis of UdeACompress
in both of the aforementioned scenarios/implementations,
including compression ratio, runtime, memory usage, and
an estimation for a parallel implementation. Furthermore,
we explore the effects of the most relevant involved varia-
bles in the compression capabilities of our proposal.

Related Work
Here we present the basics of genomic data compression and a
brief review of the most relevant tools in the state of the art.
While early compressors for DNA focused on genome com-
pression only,37,38 during the last decade, there have been many
efforts in developing specialized compressors for different
types of DNA data in different file formats. In 2013, the
SequenceSqueeze competition focused on promoting special-
ized compression for FASTQ files due to their relevance.39
Several lossless non-referential compressors for FASTQ have
been released since then16,23,27–35,39–41 and most of them have
been reviewed and tested in detail.9,17,25,42 In our previous tests,
top performers achieved compression ratios in the range

between 4:1 and 8:1, which is still below from what a referen-
tial compressor could theoretically achieve. Also, restrictions
related to input data features (file size, read size, technology of
the sequencing machine), excessive runtime or low compres-
sion ratios, have limited the usage and effectiveness of non-
referential compressors.

Recently, some non-referential tools for the compression of
reads sequences in FASTQ files have been presented with very
good results. For the sake of completeness, they will be included
in the comparisons of the “Results and discussion” section:
ORCOM,43 HARC,44 and Assembltrie.45

Referential compression

DNA sequences from the same species exhibit extremely high
levels of similarity. This fact is exploited by referential com-
pression schemes, whose key idea is to encode sequences with
respect to another reference sequence(s), achieving very high
compression ratios.17,46 Figure 2 shows an example of a basic
referential scheme.

One of the biggest challenges in referential compression
algorithms is to efficiently find long matches between the ref-
erence and the read sequence to be compressed. Current
approaches use heuristics based on index structures, hash-
based structures, graphs, suffix trees, alignment data among
others.16,47–50 Once matches and mismatches are determined,
another challenge is to find a space-efficient encoding scheme.

A wide range of compression ratios has been reported9,17,51
for reference-based compression. If computational resources
and a good reference are available, this approach is ideal for the
compression of long sequences or collections of sequences,
since very high ratios can be achieved (eg, 400:1).17 However, it
should be noted that decompression requires exactly the same
reference used for compression.23 This is why a referential
approach makes sense as long as one reference is used to com-
press multiple sequences.

Referential compressors for DNA sequences can be divided
into different categories. Due to the scope of this article, we

Figure 2. Referential compression. A sub-sequence is represented as

the pair (x, y), where “x” is the start position on the reference sequence

and “y” expresses how many symbols of the sub-sequence are

represented. Short differences may be encoded as raw strings.

https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html
https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html
http://454.com/products/gs-flx-system/), Sanger 3730xl
http://454.com/products/gs-flx-system/), Sanger 3730xl
https://www.thermofisher.com/co/en/home/brands/ion-torrent.html
https://www.thermofisher.com/co/en/home/brands/ion-torrent.html

Guerra et al 3

will group them according to the characteristics of the data to
be compressed.

Genome compression. Two approaches are considered here: the
first one is focused on compressing a unique long sequence (a
genome)22,24,52–56 and the second approach involves the com-
pression of highly similar collections of genomes.57–62 The level
of redundancy in data implies applying different strategies in
both cases.

Compression of read sequences along with alignment/mapping
information. It refers to compressing file formats that put
together reads along with read-to-reference alignment data.
This approach commonly takes the input from SAM/BAM
files7 and requires a specific compression approach to target the
alignment information. Finally, file formats such as SAM/
BAM have a significant amount of additional fields that
should be compressed too. Examples of tools that work this
was can be found in the references.8,46,63–68

Encoding alignment information is a field of our interest
since we selected this approach for the referential compression,
but with a FASTQ file as input. We found a very important
antecedent in the work of Kozanitis et al47 in 2011, as they
introduced a set of domain-specific referential lossless com-
pression schemes for reads and alignment data that, according
to its authors, compressed the read sequences over 40× .

Compression of NGS raw data. In this category, we either find
(1) multi-file compressors for large datasets of highly related
reads or (2) single-file compressors for reads. In both cases, this
implies handling short raw redundant sequences, and some-
times the compressor also processes the identifiers and quality
scores, although using different approaches. Examples of such
compressors include Yanovsky,69 Daily et al,70 and Zhu et al.71

In Kpath,49 authors combined path encoding, De Bruijn
graphs and context-dependent arithmetic coding to offer refer-
ence-based compression without the need of a previous align-
ment. Authors claimed that a high compression could be achieved
even if the reference was poorly matched to the reads. Reported
results showed that the compression ratio was up to twice better
than the best specialized non-referential compressors tested.

Leon48 proposed the use of a probabilistic De Bruijn graph
based on a Bloom filter, representing reads and quality scores as
paths mapped in the graph using arithmetic encoding. Reported
results showed that the compression ratio of the tool crucially
depended on the quality of the reference, which is built from
the reads. In overall, that compression ratio was up to 10% higher
than the non-referential methods presented in that report.

Even though compressing the three data streams in FASTQ
files (namely read sequences, identifiers, and quality scores) is
required for a truly lossless compression, few tools offer such
capability. The well-known non-referential compressors
Quip,23 Fastqz,39 and Fqzcomp39 are able to compress the
whole FASTQ and allow to perform the compression in refer-
ential mode. However, the achieved compression ratio is not

better that their own non-referential counterparts. Recent ver-
sions of Leon compress all of the data in a FASTQ file. In
2015, FQZip72 was presented as a reference-based method to
compress the whole FASTQ file, which evolved to a second
version of a light-weight mapping model (LWFQZip273),
achieving compression ratios comparable to those of non-ref-
erential programs.

In spite of the promising results reported by some FASTQ
referential compressors,48,73 we consider there is ample room
for improvement given the great potential to achieve higher
compression ratios when using a referential approach. Naturally,
these expectations are limited by the difficulty of (1) finding
the most similarities between the input and the reference, (2)
devising an efficient encoding scheme to compress differences
that takes into account the trend for longer reads, and (3) inte-
grating in a single tool efficient compressors for the three
streams of data in a FASTQ file. The work presented in this
article aims at advancing the state of the art of referential com-
pression for FASTQ files considering the aforementioned
challenges.

Multi-technique Compression Scheme
We have built a FASTQ compressor that uses multiple tech-
niques to deal with each of the three data streams as shown in
Figure 3. Since quality scores play a role in the compression of
reads, they are also fed to UdeACompress. After reorder-
ing the reads, UdeACompress sends the sorted position of
each read to the blocks in charge of compressing the qual-
ity scores and the identifiers; to keep the compressed file
consistent.

Packing and unpacking

Since the three data streams in a FASTQ file are very different
in content, length, alphabet, and the level of similarity among
reads; differentiated compression strategies need to be applied.
To set things up for the separate processing of data streams,
two blocks are placed at the beginning and at the end of the
compression process. The unpacking block reads the FASTQ
file and creates three data streams for further processing.
Conversely, the three compressed data streams are put together
in a single file by the packing block.

Reads compression. Read sequences are processed with UdeA-
Compress, the referential compression algorithm we devel-
oped, and the core of the multi-technique compression scheme.
Details about the development of UdeACompress will be pre-
sented in section “Reads compression with UdeACompress.”

Identif iers and quality scores compression. Identifiers have a for-
mat that depends on the sequencing platform. They use a wider
alphabet and account for less data than the other two streams
in the FASTQ file. Usually, they have little variation between
reads of the same file, which is is usually exploited using delta
encoding approaches.74

4 Bioinformatics and Biology Insights

Quality scores are more difficult to compress. They have the
same length of the read sequences but use a much larger alpha-
bet that also depends on the configuration of the sequencing
platform. There is currently research concerned specifically on
quality scores compression.75,76

Since this article is focused on developing a referential com-
pressor for the read sequences stream, the compression of iden-
tifiers and quality scores is performed using third-party
software. Considering the compression ratio, running times,
and software dependencies as reported in a previous study,25 we
selected QUIP 1.1.8. It compresses consecutive identifiers
using delta encoding and quality scores with Markov chains.23

Reads Compression With UdeACompress
UdeACompress performs a referential compression of the read
sequences as the core of the multi-techique compression
scheme. Our approach is based on the hypothesis that encod-
ing the differences in the alignment between each read and the
reference is a powerful strategy for referential compression.
The algorithms are aimed at increasing (1) the quality of the
alignment according to our specific compression goals and (2)
the encoding efficiency.

UdeACompress first performs a specialized alignment
between the input reads and the reference and then sorts the
reads according to their mapping position. These positions are
encoded into a binary map and the alignment data are binary
encoded. Finally, as some reads do not align to the reference,
they are compressed separately using a low-level compressor.
The inner structure of this module is presented in Figure 4.

Read-to-reference alignment

Sequence alignment is a very common procedure in bioinfor-
matics. It aims at finding an approximate matching to maximize
a similarity score based on some criteria that varies according to
the goal. In UdeACompress, every read is aligned against the
reference genome to find the region that is most similar to the
read sequence, which allows for an efficient compression.

The aligner is based on the seed-and-extend strategy,77
which provides noticeable performance and accurate results.

Multiple substrings are extracted from the read as potential
seeds for the alignment. After an exact match is found through
an FM-index78,79 that privileges bases with high-quality scores,
an alignment is extended in both left and right directions using
a modified Needleman-Wunsch algorithm.80

The aligner outputs a set of instructions describing the trans-
formations needed to obtain the original read from a spe-
cific position in the reference. Those transformations (named
mutations) are represented with several alphanumeric fields in
SAM notation style, commonly used to express alignments. In
such abstract notation, data are distributed among several fields
which spans over a wide alphabet, containing positions for
every mapping, the direction of the matchings and details

Figure 3. The multi-technique compression scheme: referential compressor for reads sequences, identifiers (IDs) compressor, quality scores (QSs)

compressor. Currently, black boxes are implemented using third-party software.

Figure 4. UdeACompress block diagram. (1) Specialized read-to-

reference alignment, (2) reads sorting, (3) reads encoding, and (4)

low-level compression for encoded data and unmapped reads. The

sorted positions resulting from the sorting step are used for the

compression of identifiers and quality scores as well, to guarantee a

correct decompression. Currently, black boxes are implemented using

third-party software.

Guerra et al 5

about each of the mutations to be performed: offsets (displace-
ment between changes), the type of operation that must be
executed, and the corresponding target base. In certain cases,
those fields must be analyzed together to get unambiguous and
precise information.

The few reads that cannot be aligned to the reference are
passed as they are, and we call them unmapped reads. Specific
details on the design, implementation, and optimization of the
aligner can be found in Lotero et al.81

Reads sorting

Sorting reads is a strategy that many programs have applied to
increase effectiveness in sequence compression,9,41,43–45 by put-
ting together reads that are more similar. Although the original
order is lost, other works have already discussed how this does
not affect most post-processing tasks of the uncompressed
FASTQ file, given that their originally placement is anyway
arbitrary.9 After the alignment, UdeACompress sorts the reads
according to their mapping positions, as a pre-requisite to build
the map required for encoding.

For the sorting we implemented and tested different
algorithms, which led us to use a least significant digit radix-
sort, since it performed significantly faster than other strate-
gies. UdeACompress sorts the indexes that represent each read,
which is used not only for encoding the alignment instructions,
but for compressing the identifiers and quality scores as well.

The sorting algorithm performs three main steps iteratively:
building a histogram, exclusive prefixing, and placing indexes
into a sorting location. The histogram and the placing steps
depend on the amount of reads in the input (n), and the process
is repeated according to the maximum number of digits of the
biggest index (k), which leads us to a complexity of O n k(*) ,
tending more precisely to O n() . This method is simple and
intrinsically parallel, which is useful for future optimizing goals.

After this process, mapped and unmapped reads are
separated, the alignment instructions are binary encoded,
and the unmapped reads are compressed with a low-level
compressor.

Encoding

The encoder in UdeACompress produces a space efficient
binary coding of the alignments and was inspired by the
work of Kozanitis et al.47 Two data structures form the code:
a binary map of the alignment positions and the instructions
array. This approach is conceived for files with fixed length
reads, which is a trend in sequencing machines. The code is
also designed to be further compressed in the so called low-
level compressor block.

The code format is shown in Figure 5 and the algorithm to
produce it in 1. The next sections explain the details.

Figure 5. Instruction encoding. (I) A single map with as many bits (n)

as bases in the reference to indicate the matching positions. (II) A

three-field instruction for each read: (a) a mandatory 4 bits PRELUDE

for describing the matching types, (b) a 10 bits OFFSET to position

each mutation, and (c) the description of the MUTATION itself (6 bits).

The OFFSET and MUTATION fields are not required for exact

matching types.

Algorithm 1. Instruction encoder.

1: Procedure InstructIon2BInary AlignmentInstructions n[],()
▷ n : number of reads
▷ output binary arrays: : alignment map, : preludMap Preludes ees, : encoded offsets and mutationsBinInst

2: Indexp ← 0
3: Indexj ← 0
4: Indexm ← 0
5: for everyReadi do
6: UpdateMap Map MappingPositionRead Indexi m(, ,)
7: MoreFrags MappingPositionRead MappingPositionRead ani i← +((=)1 dd i n(<))
8: Preludes Index p PRELUDE MoreFrags AlignmentInstructions i[] (, [←]])
9: Index p + +
10: for everyMutation Readk i in do
11: BinInst Index j OFFSET AlignmentInstructions i k[] ([],)←
12: Index j + +
13: BinInst Index j MUTATION AlignmentInstructions i k[] ([],)←
14: Index j + +
15: end for
16: end for
17: end procedure

6 Bioinformatics and Biology Insights

Map builder. The map, shown in Figure 5 with an example ref-
erence above, is a binary array with as many bits as the refer-
ence. It only has 1’s in the positions where one or more reads
map (the start of an alignment). This map definition aims to
reduce the cost of representing the mapping positions of the
reads in the reference and is the reason why the reads must be
previously sorted. No matter how many reads there are in the
input, the map size only depends on the reference length and is
shared by all reads.

Alignment instructions encoding. It is focused on generating a
succinct representation of the alignment instructions in a
binary space, while also producing a uniform distribution of
bits to benefit more from the low-level compression.

The first of three fields is a mandatory and fixed sized
PRELUDE, as shown in Figure 5. It uses 4 bits for storing
the matching information per read and it is the minimal rep-
resentation for a read matching in this model. The first bit of
the PRELUDE (called MoreR) indicates whether the next
read maps to this position as well, or not. The next 3 bits
encode eight different kinds of matchings according to Table
1 (Match). The basic matchings (forward and reverse) could
be exact or approximate (with at least one mutation), for a
total of four cases. Since exact matchings are the cheapest to
store, our strategy to increase its probability of occurrence was
using an extra bit to incorporate two additional types of
matchings well known in bioinformatics, but not commonly
used in alignment: complement and reverse complement.
This will also help increasing the amount of mapped reads,
which are compressed more efficiently than the unmapped
ones.

In complement matchings, each of the bases in the reference
sequence must be substituted by its biological complementary
base (see Table 2), with N’s not having a complement.

The prelude is enough for storing the exact matches, but
efficiently storing the mismatches in the approximate match-
ings is the tricky part. The other two fields in the instruction
coding are used for that purpose: OFFSET and MUTATION.

These two fields only appear in the coding of reads that present
mutations.

The 10 bits OFFSET represents the shift between the last
mutation (or the beginning of the read sequence if there is
no previous mutation) and the place where the current muta-
tion starts. The 10 bits reserved for the offset guarantees the
capability of UdeACompress to support reads of up to 1024
bases, given the current trends in sequencing technology.82 In
consequence, this field has the highest storage cost.

The third field of the instruction is called MUTATION as
it describes in detail the type of transformation required to
obtain the read. We use the first bit of this field to indicate
whether this is the last MUTATION of the read (LastM).
The next three bits describe the operation (Oper) to be
applied. We defined eight different types of operations (see
Table 3) based on the mismatches and gaps commonly used
in bioinformatics: substitutions, deletions, and insertions.
Finally, we use the last two bits to express the base required to
perform the operation (Base). Since we only had two bits to
express five possible base values (A, C, G, T, N), we store the
distance (to be precise, the distance—1) between the base in
the reference and the target base in the read, according to the
scheme in Figure 6.

Bases are needed only for single insertions and for substitu-
tions, but in some cases of insertions the target base may not

Table 2. Bases complement.

BASE COMPLEMENTARy BASE

A T

T A

C G

G C

Table 3. Probability of mutations occurrence.

TyPE OF OPERATION PROBABILITy

Single substitution 0.63

Single deletion 0.15

Insertion (any base but N) 0.071

Contiguous deletion 0.065

N insertion (N’s only) 0.049

Triple contiguous deletion 0.006

Contiguous repeated substitution 0.0009

Quadruple contiguous deletion 0.0001

Table 1. Matching codes.

CODE TyPE DIRECTION

000 Exact Forward: A matching from left to right

100 Approximate

001 Exact Reverse: The matching string is
inverted

101 Approximate

010 Exact Complement: Forward, with each base
complemented

110 Approximate

011 Exact Reverse complement: Each base is
complemented in a reverse match

111 Approximate

Guerra et al 7

correspond to a base in the reference (eg, in insertions at the
beginning or at the end of the reference), hence representing
base distances is not possible. To overcome this issue, we sepa-
rated the regular bases insertions (with target bases: A, C, G, T)
from the case of N insertions (which are more common) as
different operations. In this scheme, for regular bases (from
now on, insertions), the number in the base field represents
directly the letter of the target base to be inserted, and for
insertions of N (from now on, N insertions), both bits can be
omitted or be set to zero.

Clearly, the more mutations per read, the lower the
compression ratio. Therefore, we applied the following
strategies:

1. Selecting the least possible number of mutations in the
alignment: We influenced the aligner so that an exact
matching is always selected if possible. If there are several
different matchings, the one with least mutations is
selected. Additional matchings previously introduced
aim to achieve this goal as well.

2. Reducing the number of instructions required to express
consecutive mutations: After statistically analyzing the
most common operations in the alignments of our
dataset, we defined a set of additional operations to
describe contiguous mutations through a single opera-
tion (see Table 3). We complemented the four operations
already considered (substitutions, deletion, insertion,
and N insertion) with four proposed contiguous opera-
tions based on the two most common biological
mutations (substitutions and deletions). The four “con-
tiguous mutations” most likely to happen were: Double,
Triple, and Quadruple Contiguous deletions, and the
Contiguous Repeated Substitutions (substitutions in
consecutive positions with same target base). In addition,
based on those probabilities (Table 3), we assigned the
most efficient binary representation to the most common
operations.

3. Preferring operations that required fewer bits: We
defined categories of operations according to the gain in
storage saving, to skew our specialized alignment and get
optimal results (see Table 4). If there are several align-
ments with the same amount of mutations for a read, the
one using less bits is chosen.

An example of instruction encoding. In Figure 7, we present an
example of representing three reads using our encoding model.

At the top of the figure, we observe the original input reads,
and below we see them sorted according to the mapping position.
The map has 1’s in positions one and three because those are the
only locations where reads map. The first mapping position cor-
responds to Read1 , represented in the first field: in this
PRELUDE, we see that this is the only read mapping in this
position (0XXX) followed by the code describing an exact reverse
matching (001); as the matching is exact, the instruction is com-
pletely described through the PRELUDE. The next three fields
correspond to Read2 : The map says it matches in position 3. The
PRELUDE says the next read will map in this same position
(1XXX), and this read matches approximately in forward mode
(100). The following position is the OFFSET: 0000000001
because the mutation is in the second position of the read. In the
MUTATION field, the bits express: this is the last mutation in
this read (1), and the operation (Oper) is a single substitution
(000) of distance 5 (4 + 1, from C to A). Finally, the next field is
for Read3 : In the PRELUDE, we see that no more reads map in
this position, and that it matches exactly through a complement
transformation (011).

Implementation issues. UdeACompress was implemented in
ANSI C. The map, which could require from tens of thousands
to hundreds of millions of bits, is stored as an array of 64 bits
integers to minimize memory access. For the instructions, we

Figure 6. Circular base distances scheme.

Table 4. Penalty categories.

CATEGORy OPERATION STORAGE SAvING

1 Single insertion,
single substitution

No saving (these operations
are stored using 16 bits)

2 Single deletion, N
insertion

Allows storing 1 mutation
using 14 bits

3 Contiguous
repeated
substitution

Allows storing 2 mutations
using 16 bits

4 Contiguous
deletion

Allows storing 2 mutations
using 14 bits

5 Triple contiguous
deletion

Allows storing 3 mutations
using 14 bits

6 Quadruple
contiguous
deletion

Allows storing 4 mutations
using 14 bits

Figure 7. Example of instruction encoding to represent the three reads

shown.

8 Bioinformatics and Biology Insights

use instead an array of 8 bit integers to provide a finer granular-
ity that facilitates future parallel versions of the algorithm. For
this reason, we use the 8 bits of the OFFSET field to store the
8 least significant bits (the offset suffix) of the whole offset.
The two most significant bits from the third field are used to
store the two most significant bits of the OFFSET (the offset
prefix). This division lies in the fact that most of the times the
bits of the offset prefix will be zero so there is no need to use
them. This also brings a more uniform bit distribution.

The exact cost of representing an instruction will depend on
the implementation approach and the hardware restrictions.
Common hardware forces fixed size definition for data types,
but specific hardware could allow particular sizes for user-
defined types, with a great impact in the cost of storage of an
instruction.

If the encoder is implemented in a fixed data type size
environment, grouping together all the preludes in the same
array allows for storing two preludes in a single byte, and for
every OFFSET-MUTATION pair 16 bits are needed. The
implemented strategies were oriented to require the mini-
mal possible of bits to store each mutation, but in this current
implementation saving less than 8 bits in the encoding does
not result in a direct reduction of the storage space. However,
the resulting padding zeros will benefit the low-level
compression.

Low-level compression

The low-level compression block is meant to compress the
unmapped reads and to further compress the encoded instruc-
tions of the rest of the reads. For the unmapped reads, we chose
to use bzip2, the best performing tool for the task according to
a previous thorough study.25 For the compression of the binary
instructions, we tested many options but concluded again that
bzip2 provides the best balance between speed and compres-
sion capabilities.

Bzip283 is based on the Burrows-Wheeler transform
(BWT)84 combined with Huffman coding compression.21 This

means that the symbols within the sequence are permuted to
increase the repetition of certain sub-chains, which are repre-
sented more efficiently according to their probability of occur-
rence. The BWT transformation improves the compression
with a simple reversible method, which is convenient for prob-
lems with reduced alphabets but huge amounts of data. We
used the low-level interface of the library libbzip2 which is the
current API of the bzip2 compressor.

Results and Discussion
In this section, we present the results of multiple perfor-
mance tests applied to the implementation of UdeACompress
and its integration with other modules of the multi-tech-
nique compression scheme. We used six different datasets to
compare our algorithms in terms of compression ratio and
speed against the best specialized compressors in the state of
the art.

Datasets and tested programs

We selected six FASTQ files: three plants and three bacteria;
details about each dataset can be found in Table 5. This dataset
was chosen to have a variety of species, amount of reads, reads
length (Illumina style), and reference file size. We have used
the formal reference of each FASTQ as provided by the
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra).
In some of the files, the ID field was originally replicated in the
comment field of each read. It was removed to achieve more
accurate compression ratio results.

In addition, an extensive set of additional tests was per-
formed using simulated data, whose characteristics are described
in detail in section “Simulated datasets tests”.

We reviewed tens of algorithms and tools for FASTQ com-
pression from the state of the art, but decided to include in the
performance study presented in this article, only those that
showed the best results. In Table 6, we summarize relevant
information about each of the selected programs: the approach
used for the compression, the target data, and the number of

Table 5. Dataset description.

DATASET FILE SIzE (MB) NO OF READS READ LENGTh ORGANISM

SRR1282409 19119.61 57572520 151 Manihot esculenta (Plant)

SRR3141946 15755.74 67066956 100 Marchantia polymorpha (Plant)

DRR000604 14837.45 51732064 110 Oryza officinalis (Plant)

SRR892505 7040.81 21466082 150 Oxalobacteraceae bacterium

SRR892403 6668.85 28606666 100 Firmicutes bacterium

SRR892407 6104.16 18619528 150 Chitinophagaceae bacterium

https://www.ncbi.nlm.nih.gov/sra

Guerra et al 9

threads used by default. All of the programs were configured in
lossless compression mode and the remaining configuration
parameters were left at their default values. Even when Quip
and FASTQZ allowed enabling a referential compression
mode, in our previous tests, it was evident that such option did
not improve significantly the compression ratio while increas-
ing the execution time considerably; for that reason, we dis-
carded such configuration.

All the tested programs had default multi-threaded execu-
tion with different levels of parallelism as shown in Table 6.
When necessary, we configured the evaluated applications to
force them not to keep the original order in the input reads.

The only program in the literature that is directly compa-
rable to UdeACompress is LWFQZIP2, since it performs an
alignment-based referential compression of FASTQ. It is
therefore the only possible fair comparison of quantitative
results. We present comparisons with the other approaches, as
mere reference points and to provide a wider perspective for
the reader. In addition, we must make clear that ORCOM is
not directly comparable to any of the tested programs since it
is a reference free compressor designed for large collections of
FASTQ files, instead of compressing a single FASTQ file.
However, given its relevance in the state of the art and its
impressive performance, we decided to include it here. In the
case of Kpath, which generates a file to preserve the reads
original order, this size was excluded of the reported compres-
sion ratio. We experienced some problems executing
Assembltrie, which compressed only two of the six files in our
dataset.

Tests were performed on a server with two Intel(R) Xeon(R)
CPU E5-2620, 2.10 GHz, 15 360 K cache, for a total of 12
cores and 24 threads, 40 GB of RAM in a shared memory
architecture, a 1 TB SATA disk at 7200 RPM, and using Centos
7 OS (64 bits). We report the minimum of the execution time
of three replicas performed.

Parallelism

Since the current implementation of UdeACompress runs in
single thread mode, we decided to develop a parallel model that
allowed us to estimate more comparable speed metrics with
respect to the other tools that all support multithread execu-
tion. In such a model, we only considered the straightforward
parallelization of the most compute intensive tasks that are
known to be parallelizable.

Figure 8 shows a simplified block diagram of UdeACompress
with profiling information. The profiling data were obtained as
an average of testing all the FASTQ files in our dataset. We
used gettimeofday() which has microsecond precision, observ-
ing no significant variation among the replica tests. Since there
are only memory and disk operations in the packing/unpacking
steps, we did not not include such functions in this profiling.
The decompression task was not considered because the struc-
ture of our array of encoded instructions demands that decom-
pression has to be performed sequentially.

There were three blocks consuming 80% of the total time of
UdeACompress: (1) the seed calculation performed during the
alignment, (2) the compression of quality scores, and (3) the
encoding of the instructions. Since quality scores compression

Table 6. Compression software description.

TOOL APPROACh DATA OBJECT USED ThREADS

DSRC 2.040 Non-referential FASTQ Maximum available

QUIP23 Non-referential FASTQ 1-2

SCALCE (+PIGz)41 Non-referential FASTQ 4

FASTQz39 Non-referential FASTQ 3-4

LEON48 Referential FASTQ Maximum available

LWFQzIP273 Referential FASTQ 10

KPATh49 Referential Read sequences 10

ORCOM43 Non-referential Read sequences 8

hARC44 Non-referential Read sequences 8

ASSEMBLTRIE45 Non-referential Read sequences 8

Figure 8. Profiling of the sequential version of UdeACompress. Boxes

show the percentage of time consumed by each function. Black boxes

correspond to third-party software. IDs Comp indicates identifiers

compression; LLC EMR, low-level compression of the encoded mapped

reads; LLC UR, low-level compression of unmapped reads; QSs Comp,

quality scores compression.

10 Bioinformatics and Biology Insights

was performed by a third-party software, we did not consider it
as an immediate choice for parallelization. Equation (1) pre-
sents an analytical model to estimate the speedups resulting
from parallelizing the seed and encode processes. In the fol-
lowing figures of performance, the blue dashed line bar (named
UdeACompressP) right next to the UdeACompress blue bar
represents this estimation

T
T

N
T

T

N
max T T T TUdeACP

S
Ext

Enc
Id Qs LLCE LLCU= (, , ,)+ + + (1)

TUdeACP is the estimated time of the parallel implementation of
UdeACompress during compression, TS is the time corre-
sponding to the sequential execution of the seed phase per-
formed during alignment, N is the number of available threads
in the architecture (24 threads in our setup), TExt is the time
corresponding to the sequential execution of the extend phase
performed during alignment, TEnc is the time spent in encod-
ing sequentially the alignment instructions, TId is the time
spent compressing the identifiers, TQs is the time spent com-
pressing the quality scores, TLLCE is the time consumed by the
low-level compression of the encoded mapped reads, and
TLLCU is the time consumed by the low-level compression of
the unmapped reads. The last four steps can be performed in
parallel since there is no dependency among them.

Compression ratio

In Figure 9, we show the compression ratio, that is, the ratio
between the FASTQ file size and the compressed file size,
achieved for the six FASTQ files in our dataset.

Results show UdeACompress achieves similar or better
compression ratios than the best state of the art programs, with
an improvement between 4% and 27% respect to the second
best program for three of the input file tests. In the rest of the
datasets, the maximum difference between UdeACompress
and the highest compression ratio is only 14%. In five of the six

datasets, we achieved higher compression ratios than the rest of
referential FASTQ compressors, and in the case of the excep-
tion, the best compressor is only 2% above.

Figure 10 shows the compression ratio corresponding to the
read sequences only, without taking into account the identifiers
and quality scores. This experiment allows us to evaluate in
more detail the capabilities of the algorithm developed, given
that identifiers and quality scores are compressed using third-
party software.

In such tests, UdeACompress achieved a high compression
ratio for two of the largest inputs. In the other cases, its com-
pression ratio was lower. Our compressor gets closer to the
average compression ratio with bigger inputs. Exploring the
files content, we found that the main reason for the good per-
formance of UdeACompress for the third input is that it con-
tains a higher amount of consecutive N’s, which is effectively
harnessed by our encoding scheme.

The inclined lines bar in Figure 10 shows the compression
ratio of UdeACompress when processing mapped reads only,
which naturally reflects a much better performance of our
method in such scenario. The negative impact in our design
becomes evident when comparing both UdeACompress bars.
Our compressor is significantly affected by the compression of
unmapped reads, which is done using a general-purpose com-
pressor (bzip2). It decreased the compression ratio (in average)
up to 50%, respect to the compression of mapped reads only.
The other programs in this experiments use methods that are
not affected by the phenomenon of the so called unmapped
reads. The efficient compression of unmapped reads requires a
very different approach that is to be included in future versions
of UdeACompress.

We can analytically determine some of the factors that may
affect UdeACompress performance:

•• The amount of unmapped reads,
•• Read lengths, since at least 2 bits in the offset are perma-

nently underused in each mutation when reads are short,
•• The amount of mutations per read,

Figure 9. Compression ratio for FASTQ files.

Guerra et al 11

•• The fixed sizes for the software data types which limits
the benefits of bit encodings that do not match the
established sizes and,

•• The referential method used, as it is, does not fully har-
ness possible inter-reads redundancies since it focuses on
read-to-reference encoding.

It must be noted that the performance of UdeACompress
was always above the performance of all referential compres-
sors for FASTQ files.

Throughput

It is expected that high compression ratios and fast perfor-
mance are conflicting goals. Even though we were focused on
compression ratio, we also wanted to compare the execution
time considering that it is a very important usability factor. We

present the following results in terms of throughput, defined
as the amount of megabytes per second (MB/s) processed for
each program during the compression and decompression.

Figure 11 shows throughput during compression of the
FASTQ files. Although the sequential version is outperformed
by most of the others, the parallel estimation tell us UdeACompress
throughput would be similar to the fastest programs available.
Our algorithm is sensitive not only to the size of the input file
(length and number of reads) but also to the size of the reference,
increasing significantly the amount of memory and CPU
required. On average, our sequential and parallel algorithms pro-
cesses data at around 3-4 and 10-20 MB/s, respectively.

Figure 12 shows the results of compressing the read
sequences only. UdeACompress was faster than Kpath but
slower than the other applications tested, at a variable rate. This
is explained mainly by the fact that as the input and the

Figure 10. Compression ratio for the read sequences. The bar filled with inclined lines (UdeACompress MR) represents the compression ratio of

UdeACompress when discarding the unmapped reads.

Figure 11. Throughput during compression of FASTQ files. The dashed line bar (UdeACompressP) represents the estimated throughput of a parallel

implementation of UdeACompress using the 24 threads available in our setup.

12 Bioinformatics and Biology Insights

references increase their size, the alignment process takes
longer and UdeACompress speed decreases significantly.
Furthermore, the main goal of this version of UdeACompress
was to achieve high compression ratios.

In the two compression scenarios presented, a parallel ver-
sion put us in a competitive position with the fastest programs
available. Limitations in the performance improvement of
UdeACompressP in Figure 12 show the impact of the low-
level compression which is also performed sequentially since
there is no parallel version for the bzip2 API yet.

Decompression results corresponding to all of the streams
inside the FASTQ file are presented in Figure 13. UdeACompress
shows an average throughput of 11.5 MB/s being faster than
the other alignment-based compressor (LWFQZIP2).

Throughput during decompression of the read sequences
only is in Figure 14. UdeACompress behaves consistently, with
no big variation at an approximate rate of around 11 MB/s, in
overall 5× faster than Kpath and below the other applications.

In Table 7, we summarize the measurements related to the
results presented in this section.

Figure 13. Throughput during decompression of FASTQ files.

Figure 12. Throughput during compression of the read sequences. The dashed line (UdeACompressP) represents the estimated throughput of a parallel

implementation of UdeACompress using the 24 threads available in our setup.

Guerra et al 13

Peak memory usage

Although not part of our main goals, we present here
experiments to measure the memory consumption of
UdeACompress and the other applications for the sake of
completeness. Table 8 presents the peak memory usage as
part of the analysis commonly carried out in this field.

To measure the peak memory consumption (in MB), all
programs were executed using their default configuration,
both during compression and decompression. In terms of
memory usage, UdeACompress is not as thrifty as the other
compressors for the whole FASTQ file. However, in the field
of read sequences compression, it is common to expect much
higher memory requirements, due to the complexity of the
techniques and data structures involved. Both during com-
pression and decompression, UdeACompress could be classi-
fied among the most memory demanding tools, along with
Kpath and Assembltrie.

The amount of memory required by UdeACompress during
compression is almost proportional to the input of the
FASTQ file. In overall, during decompression, UdeACompress
demanded around 25% less memory. One of the issues to be
tackled in future versions of UdeACompress is finding efficient
ways of handling the data structures related to the alignment
and the reads encoding, where the most memory is consumed.
Particularly, the biggest data structures are required during the
seeding and extend phase of the alignment, and in the process
of encoding the alignment data to generate the binary instruc-
tions. Despite exhibiting high memory usage compared to
other tools, the absolute values measured are within the mem-
ory capacity of high-performance machines commonly availa-
ble in bioinformatics research centers.

Simulated datasets tests

Since UdeACompress encoding scheme is designed to be more
efficient when handling longer reads than what is commonly
found today in public databases (a few hundred bases), we
decided to analyze its compression potential over inputs with
longer reads and varying the amount of mutations per read.
Since these experiments are only related to changes in the read
sequences properties, we only report the compression ratio of
the read sequences, and we only compare with the applications
compressing such stream only.

Subsequently, a set of simulated data files was created to test
the performance of UdeACompress under different scenarios.
The goal of these experiments was to test compression capabili-
ties of UdeACompress measuring: (1) the effect of the read
lengths variation, since this was the main factor considered in
our instruction design; and (2) the effect of the number of muta-
tions per read, as the instruction sizes grow when the number of
mutations increases. For such dataset, we built files with up to
6 GB of read sequences only, generated from a human reference
to expand the range of species included in our evaluation.

Experimental setup. We built a tool using ANSI C to create
simulated FASTQ files in Illumina style, considering a set of
relevant parameters: read length and maximum number of
mutations per read (see Table 9). Also, we defined probability
functions to calculate the matchings, mutations, bases, offsets
and to calculate the maximum number of mutations per read.
Outputs include the required identifiers and quality scores, but
we used empirical values for the generation of such fields since
they are meant to be discarded by all the compressors in these
tests. To make a fairer comparison, only classical matchings

Figure 14. Throughput during decompression of the read sequences.

14 Bioinformatics and Biology Insights

Ta
b

le
 7

.
S

um
m

ar
y

of
 p

er
fo

rm
an

ce
 r

es
ul

ts
.

T
S

R
R

12
82

40
9

S
R

R
31

41
94

6
D

R
R

00
06

04
S

R
R

89
25

05
S

R
R

89
24

03
S

R
R

89
24

07

C

R
C

T
D

T
C

R
C

T
D

T
C

R
C

T
D

T
C

R
C

T
D

T
C

R
C

T
D

T
C

R
C

T
D

T

FA
S

T
Q

 c
om

pr
es

so
rs

N
on

-r
ef

er
en

tia
l

Q
ui

p
2

7.
71

24
.1

14
.2

4.
8

8
20

.9
13

.0
5.

58
18

.2
13

.4
7.

29
17

.0
12

.6
5.

3
4

21
.0

12
.0

7.
73

23
.2

13
.2

S
C

A
LC

E
4

7.
02

22
.4

3
9.

3
5.

12
23

.2
37

.1
5.

6
8

13
.1

3
5.

3
6.

87
7.

9
26

.5
5.

9
9

23
.2

42
.7

7.
0

3
18

.3
41

.2

D
S

R
C

 2
.0

24
4.

13
29

4
24

2
3.

8
4

19
9

21
3

4.
37

15
6

15
0

3.
9

9
20

0
24

3
3.

93
17

4
36

8
4.

0
10

5
27

3

F
as

tq
z

4
8.

48
2.

9
4.

5
5.

3
9

2.
5

4
5.

8
6

4.
3

3.
6

7.
87

2.
6

3.
4

6.
8

3
2.

7
3.

9
8.

01
1.

9
3.

2

R
ef

er
en

tia
l

U
de

A
C

1
7.

29
2.

8
10

.9
6.

6
3.

0
11

.5
8

2.
7

11
.8

6.
8

1.
5

11
.1

7.
07

4.
7

11
.7

7.
3

4.
6

11
.1

U
de

A
C

P
24

–
9.

9
–

–
10

.8
–

–
13

.1
–

–
22

.4
–

–
19

.7
–

–
18

.0
–

LW
F

Q
z

IP
 2

10
6.

76
4.

0
9.

9
4.

9
9

4.
4

10
.0

6.
4

3
10

.2
14

.4
6.

9
8

6.
7

7.
2

6.
3

6
8.

3
7.

0
6.

91
7.

6
9.

7

Le
on

24
4.

62
21

.2
52

.4
4.

3
0

19
.1

4
8.

6
4.

6
9

15
.8

28
.8

5.
3

8
15

.7
29

.7
5.

26
23

.8
52

.9
4.

21
27

.0
57

.0

R
ea

d
se

qu
en

ce
s

co
m

pr
es

so
rs

K
P

at
h

10
38

1.
2

2
19

0.
9

1.
7

–
–

–
57

1.
7

2.
4

31
.4

1.
9

2.
4

70
.9

2.
6

2.
2

O
R

C
O

M
8

3
3.

9
26

.6
21

6
14

.3
27

.2
15

3
7.

9
13

.8
12

1
50

.5
21

32
5

28
24

.6
12

0
59

.7
29

.1
19

2

h
A

R
C

8
3

3.
4

6.
8

58
13

.4
7.

5
4

6.
7

6.
8

4.
5

26
.8

60
.5

15
.3

14
1

35
.5

12
62

.6
72

.4
18

.8
74

.5

A
ss

em
bl

et
ri

e
8

–
–

–
–

–
–

–
–

–
–

–
–

22
.4

5.
8

4
6.

5
3

3
4.

8
4

8.
6

U
de

aC
1

14
.9

1.
4

10
.5

15
.8

1.
4

10
.1

14
.9

1.
1

10
.3

14
.5

2.
8

10
.3

17
.8

2.
7

9.
9

19
.3

2.
7

10
.0

U
de

A
C

P
24

–
5.

5
–

–
6.

3
–

–
7.

6
–

–
17

.6
–

–
15

.6
–

–
15

.1
–

U
de

A
C

 M
r

–
28

.8
–

–
27

.1
–

–
37

.8
–

–
3

6.
5

–
–

4
0.

1
–

–
3

6.
4

–
–

A
bb

re
vi

at
io

ns
: C

R
, c

om
pr

es
si

on
 r

at
io

; C
T,

 c
om

pr
es

si
on

 th
ro

ug
hp

ut
; D

T,
 d

ec
om

pr
es

si
on

 th
ro

ug
hp

ut
; T

, m
ax

 n
um

be
r

of
 u

se
d

th
re

ad
s;

 U
de

aC
, U

de
A

C
om

pr
es

s;
 U

de
A

C
M

r,
U

de
A

C
om

pr
es

s
pe

rf
or

m
an

ce
 o

n
m

ap
pe

d
re

ad
s

on
ly

; U
de

A
C

P,
 U

de
A

C
om

pr
es

sP
 (

es
tim

at
io

n
of

 p
er

fo
rm

an
ce

s
of

 a
 p

ar
al

le
l v

er
si

on
).

B
ol

d
nu

m
be

rs
 r

ep
re

se
nt

 th
e

re
sp

ec
tiv

e
m

ax
im

um
.

Guerra et al 15

(forward and reverse) were used to generate the simulated data
files and not skew the results to our benefit. All the simulated
datasets were generated using a human reference, the Homo

sapiens chromosome 6, GRCh38.p12, primary assembly
(https://www.ncbi.nlm.nih.gov/nuccore/NC_000006.12?report
=fasta), downloaded on June 14, 2018.

Table 8. Peak memory consumption during compression and decompression (MB).

SRR1282409 SRR3141946 DRR000604 SRR892505 SRR892403 SRR892407

FASTQ (19 119 MB) (15 755 MB) (14 837 MB) (7040 MB) (6668 MB) (6104 MB)

Reads only (8346 MB) (6459 MB) (5477 MB) (3092 MB) (2756 MB) (2682 MB)

 COMP DEC COMP DEC COMP DEC COMP DEC COMP DEC COMP DEC

 FASTQ compressors

 Non-referential

Quip 384 383 385 383 392 391 384 369 384 369 384 369

SCALCE 5226 1036 5242 1038 5319 1037 5220 1036 5220 1036 5220 1036

DSRC 2.0 229 1107 239 1104 226 1028 238 1122 225 1128 237 969

Fastqz 1528 1528 1528 1528 1528 1528 1460 1460 1460 1460 1460 1460

 Referential

UdeAC 10 639 9691 7578 7030 7162 7098 3449 3680 3414 3791 3328 3419

LWFQzIP2 1847 1843 1835 1835 1956 1956 662 662 678 678 1729 1728

Leon 5625 2839 5361 2875 5191 2895 5654 2713 4901 2197 5673 2713

 Read sequences compressors

Kpath 30 886 14 975 25 412 12 981 – – 11 345 6611 13 058 9443 9830 5745

ORCOM 9416 2345 9365 2312 7296 1631 6573 1345 2440 639 5871 1631

UdeAC 10 639 9691 7578 7030 7162 7098 3449 3680 3414 3791 3328 3419

hARC 2890 1257 3269 1465 2554 2547 1159 95 1378 224 2985 99

Assembltrie – – – – – – – – 16 201 4193 9286 3629

Below each dataset identifier, we show the total size of the full FASTQ input file and the size of the read sequences only.

Table 9. Simulated tests configuration.

PARAMETER vARIATION

Reference Homo sapiens GRCh38, chromosome 6

Read length 128, 256, 512, 1024; default 1024

Amount of reads 6 000 000

Coverage 70×

Maximum percentage of mutations per read [0%, 10%], 25%; default: 10%

Number of mutations distribution Exponential

Offsets distribution Uniform

Mutation probabilities According to Table 3

Matching probabilities Uniform for: forward and reverse

Base probabilities (substitutions) Uniform for: A, C, T, G; for N = 0.08

Base probabilities (insertions) Uniform for: A, C, T, G

https://www.ncbi.nlm.nih.gov/nuccore/NC_000006.12?report=fasta
https://www.ncbi.nlm.nih.gov/nuccore/NC_000006.12?report=fasta

16 Bioinformatics and Biology Insights

Mutations were adjusted to an exponential distribution.47
After a previous statistical analysis of FASTQ files, we found
that a typical upper bound for the quantity of mutations per
read is below 10% of the read size, so we generated a maxi-
mum number of mutations between 0% and approximately
10% of the read length in order to test the performance of
UdeACompress in situations of non-optimal alignment
between the reads and the reference. Probabilities of occur-
rences for bases and mutations were established according to
the values presented in Table 3.

By default, the maximum of number of mutations per read
was set to 10% of the read length; read length was set by default
to 1024 bases, and the calculated coverage of the simulated data
was approximately 70×, according to recommendations
(https://www.illumina.com/science/education/sequencing-
coverage.html).85 Unmapped reads were not considered in
these tests since their processing corresponds to a third-party
software.

Although we intended to test the same compressors for read
sequences presented in section “Compression ratio”, our tests
revealed that ORCOM was not able to compress any of the
files with large reads. Also, the documentation of HARC and
Assembltrie states they cannot handle large reads either. Only
Kpath matched the requirements to compress the simulated
data, which highlights the contribution of our approach.

Read lengths effect. The first factor to impact UdeACompress
performance is the read length. Its effect on the compression
ratio was measured while varying the maximum number of
mutations per read, as shown in Figure 15. The maximum per-
centage of mutations was restricted considering only 10% and
25% mutations per read. Results are presented in Figure 15.

The compression capability of UdeACompress significantly
increases as the reads get longer and the percentage of muta-
tions decreases. This is expected since with longer reads, our
instructions encode more information using the same amount

of bits, and the impact of storing the map is reduced because
the same structure is used to represent more data.

Figure 15 also shows a scenario where shorter reads (128,
256) have a very high percentage of mutations (25%), which
impacts negatively our referential compression. Even in such
cases, the performance UdeACompress is still acceptable com-
pared to the other evaluated application. Considering a signifi-
cantly high maximum percentage of mutations (as 25%) and
reads of length equal or superior to 512, UdeACompress
achieves a compression ratio between 36× and 44× , while all
but one of the applications in the state of the art cannot even
process reads of such length.

Effect of the maximum number of mutations. For this test, we
generated reads with a maximum amount of mutations between
0% and 25%. It must be noted that because of the exponential
distribution, the percentage of reads with exact matchings (zero
mutations) is always higher than any other number of muta-
tions probability. Also, since contiguous mutations are repre-
sented as single mutations in our instruction design, the exact
amount of mutations in each read could be a few mutations
more than what the percentage expresses. Figure 16 shows the
behavior of UdeAcompress compression ratio as the maximum
amount of mutations per read is increased.

As expected, the best performance is achieved with fewer
mutations per read. The difference between both compressors
tends to decrease as the number of mutations is increased. A
very small percentage of mutations [0%–2%] could be consid-
ered unrealistic in practice, since it refers to almost exacts align-
ments which are not likely to happen when handling reads of
length 1024. But, even in the very unfavorable scenario of a
maximum 25% of mutations per read, UdeACompress com-
presses over 6× more than Kpath. Finally, it can be noted that
the range of the compression ratio for a 70× coverage and
typical percentages of mutations (8%-10%) can be estimated
between 70× and 100×.

Figure 15. Compression ratio of the read sequences through the variation of the read length and the percentage of mutations per read.

https://www.illumina.com/science/education/sequencing-coverage.html
https://www.illumina.com/science/education/sequencing-coverage.html

Guerra et al 17

In a scenario that included unmapped reads, UdeACompress
would still compress better than the rest of available software.
When sequencing technologies for longer reads arrive, it must
be studied the real impact that longer reads could have in the
amount distribution of mutations.

Conclusions
The amount and importance of genomic data will continue to
increase in the near future, hence the need to create strategies
for its efficient compression and later storage or transmission.
A multi-technique scheme for referential compression of
FASTQ files has been proposed here. The core algorithms of
the referential compressor (alignment and encoding) have
been implemented and tested against the best programs avail-
able in the state of the art, evaluating its performance in the
compression of FASTQ files and in the compression of read
sequences only.

When compared to the other available alignment-based ref-
erential compressor, UdeACompress had similar or better
compression ratios, producing files 14% smaller and decom-
pressing 1.3× faster, on average. At compression, throughput
was shown to be similar to most other programs when includ-
ing the parallel estimation, despite being lower for the sequen-
tial version. Although memory requirements of UdeACompress
were high, it can be considered as acceptable in comparison to
the other evaluated software. Furthermore, current results of
UdeACompress show that it can be competitive when com-
pared to the most relevant tools in the state of the art for

FASTQ compression. As many of the other algorithms in the
state of the art, UdeACompress changes the order of the input
reads to improve compression, which should be considered by
the user.

Most of the current tools have been designed for the com-
pression of FASTQ files with short reads, a common property
of the dataset used for the tests presented here. Nevertheless, in
UdeACompress, we envisioned a scenario where reads are
longer, which is a clear trend in sequencing technology. Using
simulated data, we evaluated many scenarios of long reads
compression. In all of such tests, UdeACompress achieved high
compression ratios, even under unfavorable conditions. The
additional mutations and matchings introduced in
UdeACompress seemed to have a positive impact in the final
compression, but this still needs to be explored as well.

Compression of quality scores and unmapped reads has a
great impact in the compression of a FASTQ file, so special-
ized strategies for their compression need to be developed as
well if high compression ratios are to be achieved. In addition,
different strategies for compressing the identifiers must be
tested, since the re-arrangement of the reads performed by
UdeACompress could handicap the delta encoding that was
used to compress them. It should be explored if combining the
current low-level compressor with another compression strat-
egy as delta encoding or Markovian models could result in a
better harnessing of the redundancy among the read sequences.

The speed of UdeACompress is sensitive not only to the
length and number of reads in the FASTQ input file, but also to

Figure 16. Compression ratio of the read sequences through the variation of the maximum percentage of mutations per read.

18 Bioinformatics and Biology Insights

the size of the reference, increasing the amount of CPU and
memory required. Even when the execution times of
UdeACompress were acceptable in comparison to relevant soft-
ware in the state of the art, our model allowed us to estimate a
noticeable superior performance if parallelizing the seeding and
encoding functions of UdeACompress. Heterogeneous hard-
ware and mixed approaches like coarse and fine grain parallel-
ism must be considered in this extent. Finally, UdeACompress
stands out as an effective alternative for compressing not only
FASTQ files, but also the genomic alignment data.

Author Contributions
AG and SI conceived and designed the study and experiments,
analyzed the results and wrote the manuscript. AG designed
and implemented the encoding algorithm and put together all
the blocks of UdeACompress, and run the experiments. JL
designed and implemented the alignment algorithm. SI and
JEA did a critical review of the manuscript and provided guid-
ance throughout the study.

ORCID iDs
Aníbal Guerra https://orcid.org/0000-0001-6842-5273
Sebastián Isaza https://orcid.org/0000-0003-4487-7624

RefeRenCeS
 1. Loh PR, Baym M, Berger B. Compressive genomics. Nat Biotechnol.

2012;30:627–630. doi:10.1038/nbt.2241. http://www.ncbi.nlm.nih.gov/
pubmed/22781691.

 2. Deorowicz S, Grabowski S. Data compression for sequencing data. Algorithms
Mol Biol. 2013;8:25. doi:10.1186/1748-7188. URL http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=3868316&tool=pmcentrez&rendertype=abstr
act; http://www.almob.org/content/8/1/25;

 3. RAID Incorporated. Storing and managing petabytes of genome sequencing
data. https://www.raidinc.com/storing-and-managing-petabytes-of-genome-
sequencing-data/. Technical report. Published 2015. Accessed March 23, 2015.

 4. Brandon MC, Wallace DC, Baldi P. Data structures and compression algo-
rithms for genomic sequence data. Bioinformatics. 2009;25:1731–1738.
doi:10.1093/bioinformatics/btp319. http://www.pubmedcentral.nih.gov/articler
ender.fcgi?artid=2705231&tool=pmcentrez&rendertype=abstract.

 5. Muir P, Li S, Lou S, et al. The real cost of sequencing: scaling computation to
keep pace with data generation. Genome Biol. 2016;17:1–9. doi:10.1186/s13059-
016. http://dx.doi.org/10.1186/s13059-016-0917-0.

 6. FASTQ format specification. http://maq.sourceforge.net/fastq.shtml. Published
2014. Accessed September 23, 2014.

 7. Sequence Alignment / Map Format Specification. The SAM/BAM Format
Specification Working Group. 2015:1–16. https://samtools.github.io/hts-specs
/SAMv1.pdf

 8. Li P, Jiang X, Wang S, et al. HUGO: Hierarchical mUlti-reference Genome
cOmpression for aligned reads. J Am Med Inform Assoc. 2014;21:363–373.
doi:10.1136/amiajnl-2013. http://www.pubmedcentral.nih.gov/articlerender.fcg
i?artid=3932469&tool=pmcentrez&rendertype=abstract

 9. Numanagić I, Bonfield JK, Hach F, et al. Comparison of high-throughput
sequencing data compression tools. Nat Methods. 2016;13:1005–1009.
doi:10.1038/nmeth.4037.

 10. Andreas D, Baxevanis BF, Francis O. Bioinformatics: A Practical Guide to the
Analysis of Genes and Proteins. 2nd ed. Hoboken, NJ: John Wiley & Sons; 2004.
doi:10.1007/s10439-006-9105-9.

 11. Bakr NS, Sharawi AA. DNA lossless compression algorithms: review. Am J
Bioinformat Res. 2013;3:72–81. doi:10.5923/j.bioinformatics.20130303.04.
http://article.sapub.org/pdf/10.5923.j.bioinformatics.20130303.04.pdf.

 12. 1000Genomes. A deep catalog of human genetic variation. http://www
.1000genomes.org. Published 2014. Accessed October 3, 2014.

 13. ENCODE: encyclopedia of DNA elements. http://www.encodeproject.org/.
Published 2014. Accessed October 3, 2014.

 14. ICGC Cancer Genome Projects. https://icgc.org/. Published 2014. Accessed
October 3, 2014.

 15. Genomics England. http://www.genomicsengland.co.uk. Published 2014.
Accessed October 3, 2014.

 16. Zhang Y, Patel K, Endrawis T, et al. A FASTQ compressor based on integer-
mapped k-mer indexing for biologist. Gene. 2015;579:75–81. doi:10.1016/j.
gene.2015.12.053. http://dx.doi.org/10.1016/j.gene.2015.12.053.

 17. Wandelt S, Bux M, Leser U. Trends in genome compression. Curr Bioinfor-
mat. 2013:1–24. URL. https://edit.rok.informatik.hu-berlin.de/wbi/research
/publications/2013/2013-cbio.pdf.

 18. Ziv J, Lempel A. A universal algorithm for sequential data compression. IEEE T
Inform Theory. 1977;23:337–343.

 19. Ziv J, Lempel A. Compression of individual sequences via variable-rate coding.
IEEE T Inform Theory. 1978;24:530–536.

 20. Kaipa KK, Lee K, Ahn T, et al. System for random access DNA sequence com-
pression. Paper presented at: IEEE International Conference on Bioinformatics
and Biomedicine Workshops System; December 18, 2010; Hong Kong,
China:853–854. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5703942.

 21. Huffman DA. A method for the construction of minimum-redundancy codes.
Proc IRE. 1952;40:1098–1101.

 22. Pinho AJ, Pratas D, Garcia SP. GReEn: a tool for efficient compression of genome
resequencing data. Nucleic Acids Res. 2012;40:e27. doi:10.1093/nar/gkr1124.

 23. Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation
sequencing reads aided by highly efficient de novo assembly. Nucleic Acids Res.
2012;40:e171. doi:10.1093/nar/gks754.

 24. Christley S, Lu Y, Li C, Xie X. Human genomes as email attachments. Bioinfor-
matics. 2009;25:274–275. doi:10.1093/bioinformatics/btn582.

 25. Guerra A, Lotero J, Isaza S. Performance comparison of sequential and parallel
compression applications for DNA raw data. J Supercomput. 2016;72:4696–4717.
doi:10.1007/s11227-016.

 26. Chen X, Kwong S, Li M. A compression algorithm for DNA sequences. IEEE
Eng Med Biol 2001;20:61–66. doi:10.1109/51.940049. http://ieeexplore.ieee.org
/lpdocs/epic03/wrapper.htm?arnumber=940049.

 27. Tembe W, Lowey J, Suh E. G-SQZ: compact encoding of genomic sequence and
quality data. Bioinformatics. 2010;26:2192–2194. doi:10.1093/bioinformatics/
btq346.

 28. Selva JJ, Chen X. SRComp: short read sequence compression using burstsort and
Elias omega coding. PLoS ONE. 2013;8:1–7. doi:10.1371/journal.pone.0081414.

 29. Janin L, Schulz-Trieglaff O, Cox AJ. BEETL-fastq: a searchable compressed
archive for DNA reads. Bioinformatics. 2014;30:2796–2801. doi:10.1093
/bioinformatics/btu387. http://www.ncbi.nlm.nih.gov/pubmed/24950811.

 30. Howison M. High-throughput compression of FASTQ data with SeqDB. IEEE/
ACM T Comput Biol Bioinform. 2013;10:213–218. doi:10.1109/TCBB.2012.160.

 31. Cox AJ, Bauer MJ, Jakobi T, Rosone G. Large-scale compression of genomic
sequence databases with the Burrows-Wheeler transform. Bioinformatics.
2012;28:1415–1419. doi:10.1093/bioinformatics/bts173. http://www.ncbi.nlm
.nih.gov/pubmed/22556365.

 32. Dutta A, Haque MM, Bose T, Reddy CV, Mande SS. FQC: a novel approach for
efficient compression, archival, and dissemination of fastq datasets. J Bioinform
Comput Biol. 2015;13:1541003.

 33. Grassi E, Gregorio FD, Molineris I. KungFQ: a simple and powerful approach
to compress fastq files. IEEE/ACM T Comput Biol Bioinform. 2012;9:1837–1842.
doi:10.1109/TCBB.2012.123.

 34. Nicolae M, Pathak S, Rajasekaran S. LFQC: a lossless compression algorithm
for FASTQ files. Bioinformatics. 2015;31:3276–3281. doi:10.1093/bioinformat-
ics/btv384.

 35. Zhan X, Yao D. A novel method to compress high-throughput DNA sequence read
archive. Paper presented at: International Conference on Software Intelligence Tech-
nologies and Applications and International Conference on Frontiers of Internet of
Things; December 4-6, 2014; Hsinchu, Taiwan: 58–61. doi:10.1049/cp.2014.1536.

 36. Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems.
Biomed Res Int. 2012;2012:251364.

 37. Grumbach S, Tahi F. A new challenge for compression algorithms: genetic
sequences. Inform Process Manag. 1994;30:875–886. https://hal.archives
-ouvertes.fr/file/index/docid/180949/filename/grumbach.pdf.

 38. Matsumoto T, Sadakane K, Imai H. Biological sequence compression algo-
rithms. Genome Inform Ser Workshop Genome Inform. 2000;11:43–52.
doi:10.11234/gi1990.11.43.

 39. Bonfield JK, Mahoney MV. Compression of FASTQ and SAM format
sequencing data. PLoS ONE. 2013;8:1–11. doi:10.1371/journal.pone.0059190.
http://dx.plos.org/10.1371/journal.pone.0059190.

 40. Roguski L, Deorowicz S. DSRC 2—industry oriented compression of FASTQ
files. Bioinformatics. 2014;30:2213–2215. doi:10.1093/bioinformatics/btu208.
http://bioinformatics.oxfordjournals.org/content/30/15/2213.

 41. Hach F, Numanagic I, Alkan C, Cenk Sahinalp S. SCALCE: boosting sequence
compression algorithms using locally consistent encoding. Bioinformatics.
2012;28:3051–3057. doi:10.1093/bioinformatics/bts593. http://www.pubmed
central.nih.gov/articlerender.fcgi?artid=3509486&tool=pmcentrez&rendertype
=abstract.

https://orcid.org/0000-0001-6842-5273
https://orcid.org/0000-0003-4487-7624
http://www.ncbi.nlm.nih.gov/pubmed/22781691
http://www.ncbi.nlm.nih.gov/pubmed/22781691
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3868316&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3868316&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3868316&tool=pmcentrez&rendertype=abstract
http://www.almob.org/content/8/1/25
https://www.raidinc.com/storing-and-managing-petabytes-of-genome-sequencing-data/
https://www.raidinc.com/storing-and-managing-petabytes-of-genome-sequencing-data/
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2705231&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2705231&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1186/s13059-016-0917-0
http://maq.sourceforge.net/fastq.shtml
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3932469&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3932469&tool=pmcentrez&rendertype=abstract
http://article.sapub.org/pdf/10.5923.j.bioinformatics.20130303.04.pdf
http://www.1000genomes.org
http://www.1000genomes.org
http://www.encodeproject.org/
https://icgc.org/
http://www.genomicsengland.co.uk
http://dx.doi.org/10.1016/j.gene.2015.12.053
https://edit.rok.informatik.hu-berlin.de/wbi/research/publications/2013/2013-cbio.pdf
https://edit.rok.informatik.hu-berlin.de/wbi/research/publications/2013/2013-cbio.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5703942
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=940049
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=940049
http://www.ncbi.nlm.nih.gov/pubmed/24950811
http://www.ncbi.nlm.nih.gov/pubmed/22556365
http://www.ncbi.nlm.nih.gov/pubmed/22556365
https://hal.archives-ouvertes.fr/file/index/docid/180949/filename/grumbach.pdf
https://hal.archives-ouvertes.fr/file/index/docid/180949/filename/grumbach.pdf
http://dx.plos.org/10.1371/journal.pone.0059190
http://bioinformatics.oxfordjournals.org/content/30/15/2213
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3509486&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3509486&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3509486&tool=pmcentrez&rendertype=abstract

Guerra et al 19

 42. Giancarlo R, Rombo SE, Utro F. Compressive biological sequence analysis and
archival in the era of high-throughput sequencing technologies. Brief Bioinform.
2014;15:390–406. doi:10.1093/bib/bbt088.

 43. Grabowski S, Deorowicz S, Roguski L. Diskbased compression of data from
genome sequencing. Bioinformatics. 2015;31:1389–1395. doi:10.1093/bioinfor-
matics/btu844.

 44. Chandak S, Tatwawadi K, Weissman T. Compression of genomic sequencing
reads via hash-based reordering: algorithm and analysis. Bioinformatics.
2017;34:558–567.

 45. Ginart AA, Hui J, Zhu K, et al. Optimal compressed representation of high
throughput sequence data via light assembly. Nat Commun. 2018;9:566.

 46. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E. Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome Res.
2011;21:734–740. doi:10.1101/gr.114819.110. http://www.pubmedcentral.nih.gov
/articlerender.fcgi?artid=3083090&tool=pmcentrez&rendertype=abstract.

 47. Kozanitis C, Saunders C, Kruglyak S, Bafna V, Varghese G. Compressing
genomic sequence fragments using SlimGene. J Comput Biol. 2011;18:401–413.
doi:10.1089/cmb.2010.0253. http://www.pubmedcentral.nih.gov/articlerender
.fcgi?artid=3123913&tool=pmcentrez&rendertype=abstract.

 48. Benoit G, Lemaitre C, Lavenier D, Rizk G. Compression of high throughput
sequencing data with probabilistic de Bruijn graph; 2014. http://arxiv.org
/abs/1412.5932.

 49. Kingsford C, Patro R. Reference-based compression of short-read sequences
using path encoding. Bioinformatics. 2015;31:1920–1928. doi:10.1093/bioinfor-
matics/btv071. http://bioinformatics.oxfordjournals.org/lookup/doi/10.1093/
bioinformatics/btv071.

 50. Chlopkowski M, Antczak M, Slusarczyk M, Wdowinski A, Zajaczkowski M,
Kasprzak M. High-order statistical compressor for long-term storage of DNA
sequencing data. RAIRO: Oper Res. 2015;50:351–361. doi:10.1051/ro/2015039.
http://www.rairo-ro.org/articles/ro/pdf/forth/ro150039-s.pdf.

 51. Grabowski S, Deorowicz S. Engineering relative compression of genomes.
arXiv:1103.2351. http://arxiv.org/abs/1103.2351v1.

 52. Pavlichin DS, Weissman T, Yona G. The human genome contracts again. Bioin-
formatics. 2013;29:2199–2202. doi:10.1093/bioinformatics/btt362.

 53. Wang C, Zhang D. A novel compression tool for efficient storage of genome
resequencing data. Nucleic Acids Res. 2011;39:5–10. doi:10.1093/nar/gkr009.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3074166&tool=pm
centrez&rendertype=abstract.

 54. Chern BG, Ochoa I, Manolakos a et al. Reference based genome compression.
IEEE Inform Theory. 2012;2012:427–431. doi:10.1109/ITW.2012.6404708.

 55. Wandelt S, Leser U. Adaptive efficient compression of genomes. Algorithms for
Molecular Biology. 2012;7:1–9. doi:10.1186/1748-7188. http://www.pubmedcentral
.nih.gov/articlerender.fcgi?artid=3541066&tool=pmcentrez&rendertype=abstr
act; http://www.biomedcentral.com/content/pdf/1748-7188-7-30.pdf.

 56. Zhu Z, Zhou J, Ji Z, et al. DNA sequence compression using adaptive particle
swarm optimization-based memetic algorithm. IEEE T Evol Comput.
2011;15:643–658. doi:10.1109/TEVC.2011.2160399.

 57. Kuruppu S, Puglisi S, Zobel J. Optimized relative Lempel-Ziv compression of
genomes. Paper presented at: Thirty-Fourth Australasian Computer Science Con-
ference; January 17-20, 2011; Perth, WA, Australia. http://dl.acm.org/citation
.cfm?id=2459307.

 58. Wandelt S, Leser U. MRCSI: compressing and searching string collections with
multiple references. Proc VLDB Endow. 2015;8:461–472.

 59. Afify H, Islam M, Wahed MA, et al. Genomic sequences differential compres-
sion model. International Journal of Computer Science and Information Technol-
ogy. Citeseer 2011; 3: 145-154.

 60. Wandelt S, Leser U. FRESCO: referential compression of highly similar
sequences. IEEE/ACM T Comput Biol Bioinform. 2013;10:1275–1288.
doi:10.1109/TCBB.2013.122.

 61. Deorowicz S, Danek A, Niemiec M. GDC 2: compression of large collections of
genomes. arXiv:1503.01624; 2015. doi:10.1038/srep11565. http://arxiv.org
/abs/1503.01624.

 62. Saha S, Rajasekaran S. ERGC: an efficient referential genome compression
algorithm. Bioinformatics. 2014;31:3468–3475. doi:10.1093/bioinformatics
/btv399.

 63. Hach F, Numanagic I, Sahinalp SC. DeeZ: reference-based compression by local
assembly. Nat Methods. 2014;11:1082-1084.

 64. Popitsch N, Von Haeseler A. NGC: lossless and lossy compression of aligned
high-throughput sequencing data. Nucleic Acids Res. 2013;41:1–12. doi:10.1093/
nar/gks939.

 65. Sakib MN, Tang J, Zheng WJ, Huang CT. Improving transmission efficiency of
large sequence alignment/map (SAM) files. PLoS ONE. 2011;6:2–5. doi:10.1371/
journal.pone.0028251.

 66. Campagne F, Dorff KC, Chambwe N, Robinson JT, Mesirov JP. Compression of
structured high-throughput sequencing data. PLoS ONE. 2013;8:e79871.
doi:10.1371/journal.pone.0079871.

 67. CRAM format specification (version 30). https://samtools.github.io/hts-specs
/CRAMv3.pdf. Published 2018. Accessed April 10, 2018.

 68. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and
SAMtools. Bioinformatics. 2009;25:2078–2079. doi:10.1093/bioinformatics
/btp352.

 69. Yanovsky V. ReCoil—an algorithm for compression of extremely large datas-
ets of DNA data. Algorithms Mol Biol. 2011;6:23. doi:10.1186/1748-7188.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3219593&tool=pm
centrez&rendertype=abstract; http://www.almob.org/content/6/1/23.

 70. Daily K, Rigor P, Christley S, Xie X, Baldi P. Data structures and compression
algorithms for high-throughput sequencing technologies. BMC Bioinformat-
ics. 2010;11:514. doi:10.1186/1471-2105. http://www.pubmedcentral.nih.gov
/articlerender.fcgi?artid=2964686&tool=pmcentrez&rendertype=abstract.

 71. Zhu Z, Li L, Zhang Y, Yang Y. Comp map: a reference based compression pro-
gram to speed up read mapping to related reference sequences. Bioinformatics.
2014;31:426–428. doi:10.1093/bioinformatics/btu656.

 72. Zhang Y, Li L, Yang Y, Yang X, He S, Zhu Z. Light-weight reference based
compression of FASTQ data. BMC Bioinformatics. 2015;16:188. doi:10.1186/
s12859-015.

 73. Huang ZA, Wen Z, Deng Q , Chu Y, Sun Y, Zhu Z. LW-FQZip 2: a parallel-
ized reference-based compression of FASTQ files. BMC Bioinformatics.
2017;18:1–8. doi:10.1186/s12859-017.

 74. Hunt JJ, Vo KP, Tichy WF. An empirical study of delta algorithms. Paper pre-
sented at: International Workshop on Software Configuration Management;
March 25-26, 1996, Berlin, Germany:49–66. Berlin, Germany: Springer.

 75. Fu J, Dong S. All-CQS: adaptive locality-based lossy compression of quality
scores. Paper presented at: IEEE International Conference on Bioinformatics
and Biomedicine (BIBM); November 13-16, 2017; Kansas City, MO:353–359.

 76. Voges J, Ostermann J, Hernaez M. CALQ: compression of quality values of
aligned sequencing data. Bioinformatics. 2018;34:1650–1658.

 77. Li H, Homer N. A survey of sequence alignment algorithms for next-generation
sequencing. Brief Bioinform. 2010;11:473–483.

 78. Ferragina P, Sirén J, Venturini R. Distribution-aware compressed full-text
indexes. Algorithmica. 2013;67:529–546. doi:10.1007/s00453-013. https://doi.
org/10.1007%2Fs00453-013-9782-3.

 79. Grabowski S, Raniszewski M, Deorowicz S. FM-index for dummies; 2015.
https://arxiv.org/abs/1506.04896.

 80. Needleman SB, Wunsch CD. A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48:443–453.
doi:10.1016/0022-2836(70)90057. https://doi.org/10.1016%2F0022-2836%28
70%2990057-4.

 81. Lotero J, Benavides A, Guerra A, et al. UdeAlignC: fast alignment for the com-
pression of DNA reads. Paper presented at: IEEE Colombian Conference on
Communications and Computing (COLCOM); May 16-18, 2018; Medellin,
Colombia:1-6. New York: IEEE.

 82. Pollard MO, Gurdasani D, Mentzer AJ, et al. Long reads: their purpose and
place. Hum Mol Genet. 2018;27:R234–R241.

 83. bzip2 and libbzip2. http://www.bzip.org/. Published 2014. Accessed December
3, 2014.

 84. Burrows M, Wheeler DA. A block-sorting lossless data compression algorithm.
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf. Techni-
cal Report. Palo Alto, CA: Digital Equipment Corporation; 1994.

 85. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and cov-
erage: key considerations in genomic analyses. Nat Rev Genet. 2014;15:121–132.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3083090&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3083090&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3123913&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3123913&tool=pmcentrez&rendertype=abstract
http://arxiv.org/abs/1412.5932
http://arxiv.org/abs/1412.5932
http://bioinformatics.oxfordjournals.org/lookup/doi/10.1093/bioinformatics/btv071
http://bioinformatics.oxfordjournals.org/lookup/doi/10.1093/bioinformatics/btv071
http://www.rairo-ro.org/articles/ro/pdf/forth/ro150039-s.pdf
http://arxiv.org/abs/1103.2351v1
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3074166&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3074166&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3541066&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3541066&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3541066&tool=pmcentrez&rendertype=abstract
http://www.biomedcentral.com/content/pdf/1748-7188-7-30.pdf
http://dl.acm.org/citation.cfm?id=2459307
http://dl.acm.org/citation.cfm?id=2459307
http://arxiv.org/abs/1503.01624
http://arxiv.org/abs/1503.01624
https://samtools.github.io/hts-specs/CRAMv3.pdf
https://samtools.github.io/hts-specs/CRAMv3.pdf
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3219593&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3219593&tool=pmcentrez&rendertype=abstract
http://www.almob.org/content/6/1/23
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2964686&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2964686&tool=pmcentrez&rendertype=abstract
https://doi.org/10.1007%2Fs00453-013-9782-3
https://doi.org/10.1007%2Fs00453-013-9782-3
https://arxiv.org/abs/1506.04896
https://doi.org/10.1016%2F0022-2836%2870%2990057-4
https://doi.org/10.1016%2F0022-2836%2870%2990057-4
http://www.bzip.org/
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

