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Abstract: In robotic micromanipulation systems, the orthogonality of the three-axis motion trajec-
tories of the motion control systems influences the accuracy of micromanipulation. A method of
measuring and evaluating the orthogonality of three-axis motion trajectories is proposed in this
paper. Firstly, a system for three-axis motion trajectory measurement is developed and an orthogonal
reference coordinate system is designed. The influence of the assembly error of laser displacement
sensors on the reference coordinate system is analyzed using simulation. An approach to estimating
the orthogonality of three-axis motion trajectories and to compensating for its error is presented
using spatial line fitting and vector operation. The simulation results show that when the assembly
angle of the laser displacement sensors is limited within a range of 10◦, the relative angle deviation
of the coordinate axes of the reference coordinate frame is approximately 0.09%. The experiment
results show that precision of spatial line fitting is approximately 0.02 mm and relative error of the
orthogonality measurement is approximately 0.3%.
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1. Introduction

Stereo light microscopes (SLMs) consist of two independent optical paths that form
a binocular microscopic stereovision system. This kind of stereovision system not only
possesses a long working distance, but can also capture dynamic-scene images in real
time. Therefore, it is suitable for microscopic fields, and it can be combined with mo-
tion control systems and micromanipulators to form automatic micromanipulation robot
systems, which are employed to capture, transfer, or assemble some microscale objects
(such as biological tissues, cells, microstructures, etc.). Their sizes range from microns
to submillimeter, and the positioning precision of the system can reach micron or even
submicron or nanometer levels. This kind of system has been applied in microassem-
bly [1–3], microinjection [4,5], bioengineering [6–11], minimally invasive surgery [12–15],
and other microscopic fields. The motion control system with three translational degrees
of freedom and driven by ball screw, guide rail, slider, and motor, is one of the various
motion control systems. It has a simple structure, can provide small displacement in three
orthogonal directions, and can drive the micromanipulator to move in a small length range.
Its control program design is flexible, and the displacement can be adjusted under various
resolutions. This kind of motion control system is convenient to use in micromanipulation
robot systems [16,17]. It contains three motion axes, which are equivalent to the three
axes in the Cartesian coordinate system. Theoretically, when moving along these three
axes or in the same direction, their trajectories should be straight lines and orthogonal
to each other. The better the linearity and orthogonality of the motion trajectory lines on
the motion axes, the higher the positioning precision. However, due to the machining
accuracy of the ball screw and other transmission errors, the real motion control system
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cannot achieve absolute orthogonality and straightness of the motion trajectory. Therefore,
these two factors need to be measured and corrected in high-precision micromanipulation
robot systems.

The basic unit of a motion control system is the linear motion module. One-dimensional
linear motion modules are composed of a ball screw, guide rail, and motor. According
to the orthogonal assembly relationship, three motion modules are combined to form
a three-axis motion control system. The positioning precision of this motion control
system is inevitably affected by the machining accuracy of main parts such as ball screw
and guide rail. Considerable research has been conducted on the error source, error
distribution, error modeling, error analysis, and error compensation of the ball screw
and guide rail [18–22]. Before leaving the factory, the manufacturer usually conducts
orthogonal experiments on the linear motion module assembly using auxiliary tools such
angle rulers and angle measuring instruments to measure the installation angles between
the linear motion modules to ensure the orthogonal relationship of installation angles
much far as possible. However, in the motion process, the three-axis linear motion module
group is affected by a variety of error sources (such as the machining precision of ball
screws and guide rails; the transmission error between ball screws, guide rails, and sliders;
the assembly’s orthogonal error; etc.), so its trajectories on three motion axes are not
strictly in a straight line and orthogonal. Especially when these linear motion modules
are integrated into the micromanipulation robot system, they need to be reassembled,
which will break the original assembly relationship. Therefore, in micromanipulation robot
systems with high precision positioning requirements, the trajectories of the motion axes
are measured by obtaining the position coordinates of points on the motion trajectories,
and the orthogonality and straightness of the trajectories of the motion axes are analyzed
to provide data for the calibration of the orthogonality and straightness of the motion axis,
which are helpful for improving the positioning precision of motion control systems.

Laser interferometry methods can be used for length measurement in precision en-
vironments [23,24]. They use the principle of light interference to generate interference
fringes. By analyzing the patterns of interference fringes to measure the distance, high
measurement accuracy can be achieved (nanometer and micron levels, etc.). For example,
these methods are used to measure and compensate for the geometric error and nonlin-
ear force error of high-speed, high-precision, and large-scale motion control system of
mounters [25]. When using laser interferometry to measure the error of the motion control
system, the measurement and compensation accuracy can reach the micron level. Laser
interferometry methods can also be used for position tracking and measurement of three-
axis motion control systems with a ball screw and motor, but the cost of the interference
measurement equipment is high and the equipment requires sufficient installation space.
The binocular stereo vision method can also be used to track spatial position and measure
trajectory [26,27]. A calibration object is mounted on the three-axis motion control system
to make the calibration object move along the three motion axes. The stereo image pairs of
the calibration object are obtained by a binocular camera. The motion trajectories of the
calibration object can be reconstructed based on stereo matching and visual calculation.
This kind of measurement system is easy to build, low cost, and easy to use, but the
measurement accuracy depends on the accuracy of image processing and stereo vision
calculation. In recent years, laser displacement sensors based on the principle of triangula-
tion have developed rapidly, with the emergence of point sensors, stripe-structured light
sensors, etc., which can detect the position of a single point or multiple simultaneously
and are being increasingly widely used for many tasks such as shape reconstruction, ge-
ometric dimension measurement, distance measurement, etc. [28–31]. The design of the
laser displacement sensor is modularized and compact. It can provide displacement data
of different ranges and precisions; it is also cheap and a compact position tracking and
measurement system is easy to build. The working space of the micromanipulation robot
system is narrow and small, and the system for measuring the trajectory of the motion
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axis is required to have a small and compact structure, so laser displacement sensors are
suitable for this demand.

Focusing on the three-axis motion control system used in micromanipulation robot
systems, the purpose of this study was to construct a method to measure and analyze
the orthogonality and linearity of the trajectories of the motion axes. Based on a laser
displacement sensor with a small spot, a spatial position tracking system was designed
to measure the trajectories of the motion axes. On this basis, an evaluation method of the
orthogonality and linearity of the trajectory of the motion axis was established. The method
is low-cost, easy to use, and suitable for micromanipulation. In addition, it can be used as
an on-site measurement system without too much calibration. Because laser displacement
sensors are general module that have a variety of ranges and precision, the method can
also meet different range and precision requirements (such as submicron, micron, tens of
microns, etc.), which is very flexible.

The remainder of this article is organized as follows: In Section 2, the micromanip-
ulation robot system is introduced; in Section 3, the method for three-axis orthogonality
measurement is developed. In Section 4, the orthogonal reference coordinate system is
analyzed. This method is discussed in Section 5, and the conclusions are described in
Section 6.

2. Motion Trajectory Coordinate Frame

Figure 1a shows a special robotic micromanipulation system [16,17,26] that uses a
stereo light microscope and binocular cameras to form a microscopic binocular stereovision
system, which captures stereo image pairs of space scene in real time, and realizes three-
dimensional positioning, navigation, position feedback, etc. In this system, the three-axis
motion control system is used as the positioning driver, which receives the position coordi-
nates reconstructed by the binocular stereovision system to achieve accurate positioning.
Various types of micromanipulators can be carried on its mechanical arm to perform tasks
such as microgripping, microassembly, microinjection, etc. The three-axis motion control
system is used not only as the coordinate acquisition device of control points for system
calibration, but also as the driving device of position adjustment.
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Figure 1. The setup of one kind of micro-manipulation system using a 3-axis motion control system. (a) General composition
of the system, A1: X-axis linear motion module, A2: Y-axis linear motion module, A3: Z-axis linear motion module.
(b) Definition of the motion trajectory coordinate frame. (c) For an ideal motion trajectory coordinate frame, when moving
along its three motion axes (X-axis, Y-axis and Z-axis), the trajectories should be straight and orthogonal. (d) For a real
motion trajectory coordinate frame, when moving along its three motion axes, the trajectories may be curves with slight
deformation, and the perpendicularity of the fitting trajectory lines may deviate by 90 degrees.
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The three-axis motion control system in Figure 1a is composed of three linear motion
modules, which are assembled according to the orthogonal relationship. Each linear motion
module is mainly composed of a ball screw, double linear guide, coupling, and a motor.
To describe the position coordinates of the three-axis motion control system in the motion
process, the motion trajectory coordinate frame is defined as shown in Figure 1b. The
motion trajectory coordinate frame is represented by O-XYZ, where O is the origin, and X,
Y, and Z represent the three motion coordinate axes. At the starting position of each linear
motion module, a triggered switch sensor is installed to generate an absolute zero point (or
the zero point of grating ruler installed on linear motion module is used as the zero point
of the module), and the position of the absolute zero points of the three motion modules is
used as the origin of the coordinate frame, i.e., point O. The trajectories of the three motion
axes are generated as follows: At one time, only one linear motion module is allowed to
move in a line, and the other two linear motion modules remain stationary. The trajectory
of the moving module forms a motion coordinate axis. According to this rule, modules
A1, A2, and A3 move in a line separately, and their trajectories form the three motion
coordinate axes: X-, Y-, and Z-axes. If none of the error factors interfere with the motion,
the trajectory lines of the X-, Y-, and Z-axes should be lines; after the three linear motion
modules are assembled according to the orthogonal relationship, the trajectory lines of the
three motion axes are orthogonal, so the motion coordinate frame at this time is a typical
Cartesian coordinate frame, as shown in Figure 1c. However, the motion control system
is actually affected by a variety of error factors in the motion process such as: (1) when
the vertical installation angles between the three linear motion modules deviate 90◦, the
motion trajectory lines on the X-, Y-, and Z-axes cannot guarantee perpendicularity. In
the assembly process, this error factor will only be reduced as much as possible, but will
not disappear. (2) The machining precision of the ball screw and guide rail affects the
straightness of the motion trajectory on the X-axis, the Y-axis and the Z-axis, which may
cause small deformation of the motion trajectory line. This error source also affects the
orthogonality of the motion trajectory line. (3) The assembly error among the ball screw,
guide rail, and slider also affects the linearity and orthogonality of motion trajectory line
on the motion coordinate axis. Only a few error sources are introduced above, but their
effects do exist. Due to the influence of error factors, the motion trajectory coordinate
frame is no longer a Cartesian coordinate frame in terms of orthogonality and coordinate
axis linearity, as shown in Figure 1d. The posture of deviation from orthogonality and
line is relatively small. It is not necessary to analyze and correct the orthogonality and
coordinate axis linearity for all three-axis motion control systems, only when there is a
need for high-precision positioning is this analysis is more necessary, such as the system in
Figure 1a.

The motion of the three-axis motion control system is realized by a control algorithm,
which is designed based on the Cartesian coordinate frame in Figure 1c. It can be imagined
that when the three-axis motion control system moves in the coordinate frame in Figure 1d,
it cannot accurately reach the preset position by the control algorithm, so for the system in
Figure 1a, it is necessary to analyze the orthogonality and linearity of the motion trajectory
coordinates. Therefore, we developed an orthogonality and linearity evaluation method.

3. Methods

A schematic diagram of three-axis motion trajectory measurement is shown in Figure 2.
Three grating-ruler sensors with a resolution of 0.1 µm were precisely installed on the X, Y,
and Z linear motion modules of the motion control system to measure small displacement
in each motion axis. The origin of the motion trajectory coordinate frame O-XYZ was set on
the motion control system, and the X-, Y-, and Z-axes coincided with the motion trajectories
of the three linear motion modules. The motion trajectories can be regarded as a series of
spatial discrete points, whose spatial coordinates are obtained by the measurement system,
as shown in Figure 2. A cuboid gauge block composed of stainless steel was installed on
the motion control system, and its three adjacent surfaces, A, B, and C, were used as the test
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surfaces for displacement measurement. These test surfaces had good surface roughness
and maintained accurate orthogonality.
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When assembling the gauge block, the normal direction of its three test surfaces should
be parallel to the X-, Y-, and Z-axes as much as possible. That is, the normal directions
of the three test surfaces A, B, and C should be parallel to the trajectory lines of the three
motion axes of the motion control system as much as possible. The gauge block followed
the motion control system; moved along the X-, Y-, and Z-axes at intervals; and stayed at
the preset location for a certain time. Then, three laser displacement sensors (HG-C1050,
Panasonic, Tokyo, Japan) were used to measure the displacement of the three test surfaces
simultaneously. Three laser displacement sensors (A, B, and C) were used to construct
the motion trajectory measurement system to measure the displacement of the three test
surfaces (A, B, and C). During assembly of the three laser displacement sensors, the central-
axis lines of the sensors should satisfy the orthogonal condition as much as possible. The
non-orthogonality of laser sensor assembly influences the displacement measurement and
is discussed in Section 4. The three laser displacement sensors constitute an approximate
orthogonal world coordinate frame denoted by Q-UVW, where Q is the origin; U, V, and
W represent the three axes; and the measured motion trajectories of the gauge block are
described in Q-UVW. The spatial trajectory lines corresponding to the motion trajectories
were obtained by the spatial linear fitting method, and the vector parameters of the spatial
lines were derived from spatial line equations. Then, the angles between these spatial
trajectory lines were calculated by vector calculation and the orthogonality of the three
coordinate axes of O-XYZ were estimated. If the coordinate axes of O-XYZ do not satisfy the
orthogonal conditions, it becomes a non-orthogonal coordinate frame and its coordinates
should be corrected based on the orthogonality measurement. These coordinates in the
real non-orthogonal O-XYZ are transformed into a virtual orthogonal coordinate system;
then, accurate positioning control is achieved. The valid detection ranges of the three laser
displacement sensors are depicted by dotted lines in Figure 2. The gauge block only moves
in the valid space.
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3.1. Data Acquisition

The three laser displacement sensors were used to construct the approximate orthogo-
nal world coordinate frame Q-UVW, as shown in Figure 2. To measure the trajectories on
the motion axes, the gauge block moved along the preset trajectories in the valid cuboid
space, and the displacement of the test surface was measured. In Figure 2, S represents the
vector of a point on the test surface in Q-UVW, and is generated by the laser displacement
sensors; R represents its vector in O-XYZ, and is generated by the three grating-ruler sen-
sors. The motion trajectory is composed of a series of separate points, and the coordinate
vectors of all the separate points constitute a data sample, which is the basic data of the
orthogonality estimation of the three-axis motion trajectories of O-XYZ. Figure 3 shows the
acquisition of data samples.
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The gauge block moved at preset distance intervals on the X-, Y-, and Z-axes, or in
directions parallel to them. In Figure 2, {An|1 ≤ n ≤ N} represents the set consisting of N
points on the X-axis trajectory and An is an element. Point An corresponds to two vectors:
one is defined in O-XYZ, and the other is defined in Q-UVW. So, the set {An|1 ≤ n ≤ N}
corresponds to two coordinate vector samples: {Ran = (xan, yan, zan)T|1 ≤ n ≤ N} and
{San = (uan, van, wan)T|1 ≤ n ≤ N}. The vector San consists of three elements, uan, van, and
wan, whose values are the three displacement components of the gauge block at point
An. San is measured by the three laser displacement sensors. Similarly, {Bm|1 ≤ m ≤M}
and {Ck|1 ≤ k ≤ K} are the point sets corresponding to the Y- and Z-axis trajectories,
respectively, and their vector sets are {Rbm = (xbm, ybm, zbm)T|1 ≤ m ≤M} and {Sbm = (ubm,
vbm, wbm)T|1 ≤ m ≤M}, respectively.

3.2. Three-Axis Orthogonality Evaluation

In this section, a spatial linear fitting approach is applied to the vector sets {San|1 ≤
n ≤ N}, {Sbm|1 ≤ m ≤ M}, and {Sck|1 ≤ k ≤ K}, which outputs the line equations and
their parameters. The intersection angles between the fitted lines are calculated based
on vector operation, and the orthogonality of the fitted lines in O-XYZ is analyzed based
on these angles. The intersection angles between the X- and Y-axis, between the X- and
Z-axis, and between the Y- and Z-axis are denoted by α, β, and γ, respectively, as shown in
Figure 3, the values of which indicate the orthogonal levels between the coordinate axes.
The classification criteria related to the orthogonality are proposed and listed in Table 1.
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Table 1. The orthogonal rules defined for motion trajectory lines.

Category α β γ Logic

Orthogonal rule |α-90◦| ≤ Tabc |β-90◦| ≤ Tabc |γ-90◦| ≤ Tabc α&β&γ
Non-orthogonal rule |α-90◦| > Tabc |β-90◦| > Tabc |γ-90◦| > Tabc A||β||γ

where Tabc is a preset threshold for the angles α, β and γ.

The angles α, β, and γ are compared with 90◦. The orthogonality condition is satisfied
if the differences between these angles are less than the threshold Tabc; instead, the condition
cannot be satisfied.

Figure 4 shows the process of the orthogonality estimation, which includes the follow-
ing steps:
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displacement are measured by the three laser displacement sensors. (c) The test points are used to simulate the motion
trajectories, and the intersection angles of the motion trajectories are calculated. (d) The intersection angles of the motion
trajectories obtained by the steps (a–c) are used to correct the coordinates of the motion control system.

Step 1: The data acquisition process is conducted; the three sets are generated,
{An|1 ≤ n ≤ N}, {Bm|1 ≤ m ≤ M}, and {Ck|1 ≤ k ≤ K}; and their vector sets are mea-
sured, as shown in Figure 4a,b.

Step 2: A spatial linear fitting approach is applied to the six vector samples in Figure 3.
The linear equations and their parameters are obtained, and the error of spatial line fitting
is calculated, as shown in Figure 4c.
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Step 3: The angles α, β, and γ are calculated based on the parameters, and the orthog-
onality between the coordinate axes is analyzed on the basis of the principles defined in
Table 1.

A general expression of spatial line equation is defined as follows:

u− u0

ρu
=

v− v0

ρv
=

w− w0

ρw
(1)

where (u, v, w)T is the coordinate vector of a point located in Q-UVW, (u0, v0, w0)T is
the coordinate vector of a known reference point, and (ρu, ρv, ρw)T is the unit vector
of the spatial line. The above six parameters describe a spatial line and constitute a
parameter vector P, where P = (u0, v0, w0, ρu, ρv, ρw)T. The fitted lines based on the three
sets, {San|1 ≤ n ≤ N}, {Sbm|1 ≤ m ≤ M}, and {Sck|1 ≤ k≤ K}, can be described by the
following general expression:

Pa = F({San|1 ≤ n ≤ N})
Pb = F({Sbm|1 ≤ m ≤ N})
Pc = F({Sck|1 ≤ k ≤ N})

(2)

where F represents spatial line fitting method; Pa, Pb, and Pc are the three parameter
vectors of P, where Pa = (u0,a, v0,a, w0,a, ρu,a, ρv,a, ρw,a)T, Pb = (u0,b, v0,b, w0,b, ρu,b, ρv,b,
ρw,b)T, and Pc = (u0,c, v0,c, w0,c, ρu,c, ρv,c, ρw,c)T. Deng et al. [32] proposed a mixed least-
square algorithm to fit a spatial line, which was used to fit the sets {San|1 ≤ n ≤ N},
{Sbm|1 ≤ m ≤M}, and {Sck|1 ≤ k ≤ K} in this study. If the three unit vectors of the fitted
lines are represented by na, nb, and nc, where na = (ρu,a, ρv,a, ρw,a)T, nb = (ρu,b, ρv,b, ρw,b)T,

and nc = (ρu,c, ρv,c, ρw,c)T, the intersection angles α, β, and γ, can be derived using the dot
product operation: 

cos α = na·nc
cos β = na·nb
cos γ = nb·nc

(3)

3.3. Compensation for Three-Axis Nonorthogonality

If the coordinate axes of O-XYZ cannot maintain the approximate orthogonal rela-
tionship, a virtual orthogonal coordinate system O-XGH is created, which uses the same
X-axis as O-XYZ, as shown in Figure 4d. O-XGH is used to compensate for the orthogonal
error. Here, plane XOY in O-XYZ and plane XOG in O-XGH overlap. It is assumed that the
vectors of a point P in O-XGH and O-XYZ are rp,gh = (xp,gh, yp,gh, zp,gh)T and rp,yz = (xp,yz,
yp,xyz, zp,yz)T, where the subscripts gh and yz represent O-XGH and O-XYZ, respectively.
The vector rp,gh is obtained by vision calculation. The vector rp,yz represents the real dis-
placement of the motion control system and is given by grating-ruler sensors. The purpose
of compensation for the non-orthogonal coordinate frame O-XYZ is to transform rp,gh to
rp,yz, and a general expression between them is defined as:

rp,yz = Method(rp,gh) (4)

where Method() represents the transformation method between rp,gh and rp,yz. To deduce
Method(), a rotational transformation is applied to the coordinates in O-XYZ and O-XGH.
Equation (4) indicates that more reasonable motion trajectories can be obtained through
Method(). The motion control system with a nonorthogonal motion coordinate frame will
be able to realize precise positioning.

If the unit vector of the Y-axis in O-XGH is represented by ny,gh = (cosαy,gh, cosβy,gh,
cosγy,gh)T, where αy,gh, βy,gh, and γy,gh are the directional angles, αy,gh and βy,gh can be
derived from Figure 4d, i.e., αy,gh = ∠XOY = α and βy,gh = 90 − ∠XOY = 90 − α. Because
the Y-axis is perpendicular to the H-axis, γy,gh equals 90◦. Based on the above analysis, the
unit vector ny,gh can be written as ny,gh = (cosα, sinα, 0)T. Similarly, if the unit vector of
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the Z-axis in O-XGH is nz,gh = (cosαz,gh, cosβz,gh, cosγz,gh)T, where αz,gh, βz,gh, and γz,gh
are the directional angles of the Z-axis and αz,gh satisfies the condition αz,gh = ∠XOZ = β,
the unit vector nz,gh can be written as nz,gh = (cosβ, cosβz,gh, cosγz,gh)T. The intersection
angle between ny,gh and nz,gh equals γ, and the dot product between ny,gh and nz,gh is
calculated as:

ny,gh·nz,gh = cosα· cosβ+ sinα· cosβz,gh = ∠YOZ = cosγ (5)

The cosine value ofβz,gh is derived from Equation (5), i.e., cosβz,gh = (cosγ-cosαcosβ)/sinα.
Meanwhile, a normalization condition among αz,gh, βz,gh, and γz,gh is satisfied, i.e.,
(cosαz,gh)2 + (cosβz,gh)2 + (cosγz,gh)2 = 1, and the cosine value of γz,gh is obtained. The unit
vector nz,gh can be calculated via the angles α, β, and γ.

The projection transformation method is applied to deduce Method(), as shown in
Figure 4d. A line that is parallel to the H-axis and passes point P is drawn, which intersects
with plane XOG at point P1. Point P1 is the perpendicular projection of point P. Similarly,
another line that is parallel to the Z-axis and passes point P is drawn, which intersects
with plane XOY at point P11. Point P11 is the projection of point P. A line passing point
P11 and perpendicular to the G-axis is set and intersects with the G-axis at point P13. Line
segment P11P13 intersects with the Y-axis at point P12, and points P13 and P12 are the two
projections of point P11. Similarly, line segments that all pass point P11 are set: one of
them is perpendicular to the X-axis and intersects with the X-axis at point P2 and the
other is parallel to the Y-axis and intersects with the X-axis at point P4. Then points P4
and P2, corresponding to O-XGH and O-XYZ, respectively, are the two projections of
point P, all of which are located on the X-axis. A line segment that passes point P and
is parallel to line segment OP11 is set and intersects with the Z-axis at point P7. Point
P7 is the projection of point P. A line that passes point P7 and is perpendicular to plane
XOG is drawn, and intersects with plane XOG at point P8. The two points P10 and P9,
which are located on the G-axis and the Z-axis, respectively, are the projections of point
P8. The two projection points P3 and P14 of point P8 corresponding to O-XGH and O-XYZ,
respectively, are all located on the X-axis. The coordinate vectors of point P7 corresponding
to O-XGH and O-XYZ are represented by rp7,gh = (xp7,gh, yp7,gh, zp7,gh)T and rp7,yz = (0, 0,
zp7,yz)T, respectively. Because the vertical coordinates of points P7 and P are equal to each
other (i.e., zp7,gh = zp,gh) and point P7 is the projection of point P on the Z-axis, an equal
relationship between zp7,yz and zp,yz is satisfied, i.e., zp7,yz = zp,yz. The unit vector of the
Z-axis via O-XGH, nz,gh, is a known vector, then the vector rp7,gh is determined by the
following equation:

rp7,gh = zp7,yz·nz,gh = zp,yz·nz,gh (6)

The following condition applied to the vector operation is satisfied:

OP11 = P11P− rp,gh (7)

Due to the geometric relationship, as shown in Figure 4d, line segment P11P is parallel
to line segment OP7 and the conditions, |P11P| = |OP7|, P11P = rp7,gh, and OP11 = rp11,gh,
are satisfied in O-XGH. If the vector of rp11,gh is rp12,gh = (xp12,gh, yp12,gh, 0)T, Equation (7)
can be rewritten as:

rp11,gh = rp7,gh − rp,gh (8)

It is assumed that the vector of point P11 in O-XYZ is denoted as rp11,yz = (xp11,yz,
yp11,yz, 0)T and the mapping relationship between rp11,gh and rp11,yz can be derived. Point
P13, which is located on the G-axis, is the projection of point P11; the vector of point P13 in
O-XGH is denoted as rp13,gh = (0, yp11,gh, 0)T. Point P12, which is located on the Y-axis, is the
projection of point P11; the two vectors of point P12 corresponding to O-XYZ and O-XGH
are denoted as rp12,yz = (0, yp11,yz, 0)T and rp12,gh = (xp12,gh, yp12,gh, 0)T, respectively. Due to
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the shape of the triangle OP13P12 being a right-angled triangle, the following relationship
is satisfied: {

|P11P12|=|P11P13|−|P12P13|=|P11P13|−|OP13|/tg∠P13OP12∣∣OP12
∣∣=∣∣OP13

∣∣/ cos∠P13OP12
(9)

In Figure 4d, the conditions, |P11 P12| = xp11,yz, |P11P13| = xp11,gh, |OP12| = yp11,yz,
|OP13| = yp11,gh, and ∠P13O P12 = 90 − ∠XOY = 90 − α are satisfied and taken into
Equation (9). The following relationship can be derived:

rp11,yz = Ωα·rp11,gh =

 1 −tgα 0
0 1/ sinα 0
0 0 0

·rp11,gh (10)

where Ωα is a 3 × 3 matrix. The two coordinates of point P, zp,yz and zp,gh, corresponding
to O-XYZ and O-XGH, respectively, can be derived from the side-angle relationship of the
right triangle P1PP11. The conditions |PP1| = zp,gh and |PP11| = zp,yz are satisfied and the
angle ∠P11P P1 equals the angle γz,gh which is the intersection angle between the Z- and
the H-axis. The following relationship can be derived:

zp,yz = zp,gh/ cosγz,gh (11)

Finally, Method() is derived based on Equations (6), (8), (10) and (11) as follows:

rp,yz = Ωα·[(zp,gh/ cosγz,gh)·nz,gh − rp,gh] + r0,gh (12)

where r0,gh = (0,0,zp,gh/cosγz,gh)T. Based on Equation (12), the vector rp,yz in O-XYZ is
derived from the vector rp,gh in O-XGH. The motion control system can accurately generate
the displacement via the vector rp,yz and drives the micromanipulator to move from point
O to point P; finally, its precision positioning under orthogonal conditions is achieved.

4. Analysis of the Orthogonal Coordinate Frame

In this section, the influence of the rotation angles of the laser displacement sensor
and gauge block on three-axis orthogonality estimation is analyzed.

4.1. Description of Position and Posture

It is assumed that the laser displacement sensors and the gauge block are placed in
Q-UVW as shown in Figure 5. In an ideal status, the central-axis lines of the gauge block
and the laser displacement sensors and the motion trajectories of the gauge block satisfy
the following two constraint rules:

Constraint rule I: PART I (Figure 5) shows that the central-axis line of each laser
displacement sensor should be perpendicular to the corresponding test surface of the
gauge block. For example, the central-axis line lA of the laser displacement sensor A should
be perpendicular to test plane Plane3487, which is determined by points P3, P4, P8, and P7,
where the subscript numbers 3, 4, 8, and 7 of Plane3487 represent points P3, P4, P8, and P7,
respectively. Similarly, the central-axis lines lB and lC of the laser displacement sensors B
and C, respectively, should also be perpendicular to the corresponding test planes Plane1584
and Plane1234, where plane Plane1584 is determined by points P1, P5, P8, and P3, and plane
Plane1234 is determined by points P1, P2, P, and P4.

Constraint rule II: In Q-UVW, the gauge block and its motion trajectories on the coordi-
nate axes should maintain a certain relationship in position and posture. As shown in Part
III in Figure 5, the vectors QU1, QV1, and QW1 represent the three-axis motion trajectories
of the gauge block; and lu1, lv1, and lw1 are their trajectory lines, respectively. During the
gauge block moving along line lu1, the vectors of sample points on line lu1 are measured.
In this process, test plane Plane1234 is parallel to plane U1QV1, and line P1P4 or P2P3 is also
parallel to line lu1. During the gauge block moving along line lv1 (or lw1), the coordinates
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of sample points on line lv1 (or lw1) are measured, and test plane Plane1234 (or Plane1584)
must be parallel to plane U1QV1 (or U1QW1), and line P1P2 or P3P4 (or P1P5 or P7P8) must
be parallel to line lv1 (or lw1).
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If constraint rules I and II are satisfied simultaneously, the influence of the rotation
angles of the laser displacement sensor and gauge block on Q-UVW will decrease. However,
it is impossible for the real measurement system to satisfy constraint rules I and II. In other
words, it is impossible for lines lA, lB, and lC to absolutely be parallel to the corresponding
test planes. Moreover, it is impossible for the central-axis lines of the gauge block to be
absolutely parallel to the corresponding trajectory lines. However, the influence of the
above error factors on Q-UVW can be minimized as much as possible and limited to a
certain range. So, it is necessary to analyze the effects of the position and posture of the
gauge block and laser displacement sensors on the measurement.

We define the following parameters for the position and posture of the gauge block
and laser displacement sensors. For the gauge block, point P6 is set as a point as a basis
reference and its coordinate vector in Q-UVW is represented by sp6 = (up6, vp6, wp6)T. Based
on point P6, the rotation angle vector of the gauge block around the U-, V-, and W-axis is
denoted as Θ = (θu, θv,θw)T. The central-axis lines lA, lB, and lC are rotated by small angles
based on different reference points MA, MB, and MC, respectively. The unit vectors of lines
lA, lB, and lC are denoted as na = (cosαa, cosβa, cosγa)T, nb = (cosαb, cosβb, cosγb)T, and
nc = (cosαc, cosβc, cosγc)T, respectively. Lines lA, lB, and lC, respectively, intersect with
the corresponding test planes Plane3487, Plane1584, and Plane1234 at points NA, NB, and
NC. The vectors of points MA, MB, MC, NA, NB, and NC are denoted as sma = (uma, vma,
wma)T, smb = (umb, vmb, wmb)T, smc = (umc, vmc, wmc)T, sna = (una, vna, wna)T, snb = (unb, vnb,
wnb)T, and snc = (unc, vnc, wnc)T. Based on the above definitions, five vectors, sp6, Θ, na,
nb and nc, are used to describe the position and posture of the gauge block and laser
displacement sensors.

The unit vectors of lines lu1, lv1, and lw1 are denoted as nu1 = (cosαu1, cosβu1,cosγu1)T,
nv1 = (cosαv1, cosβv1,cosγv1)T, and nw1 = (cosαw1, cosβw1,cosγw1)T, respectively. The
intersection angles of lines lu1, lv1, and lw1 are denoted as αt, βt, and γt, respectively, where
αt = lu1∨lv1, βt = lu1∨lw1, and γt = lw1∨lv1. An angle vector Λt = (αt, βt, γt)T is defined and
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can be derived by the dot product operation, i.e., αt = arcos(nu1·nv1), βt = arcos(nu1·nw1),
and γt = arcos(nw1·nv1). A series of sample points located on lines lu1, lv1, and lw1 are
obtained that constitute three sample point sets, which are denoted as {an|1 ≤ n ≤ N},
{bm|1 ≤ m ≤M }, and {bk|1 ≤ k ≤ K}, respectively. The corresponding vector sets of the
sample point sets are denoted as {sa,n = (ua,n, va,n, wa,n)T|1 ≤ n ≤ N}, {sb,m = (ub,m, vb,m,
wb,m)T|1 ≤ m ≤M }, and {sc,k = (uc,k, vc,k, wc,k)T |1 ≤ k ≤ K }, respectively.

4.2. Simulation Method

In this section, a simulation method for three-axis motion trajectory estimation is
designed based on the MATLAB software. The simulation process consisted of the follow-
ing steps:

Step 1: In Figure 5, the coordinates of points P1–P8 were calculated by presetting the
values of Θ and sp6,0. The length, width, and height of the gauge block were used as
known parameters and denoted as LS, WS, and HS, respectively. The values of θu, θv, and
θw were initialized to zero. Then, the initial values of sp1,0-sp8,0 were calculated by the
following equation:

(
sp1,0, sp2,0, sp3,0, sp4,0, sp5,0, sp6,0, sp7,0, sp8,0

)
− sp6,0 =

 0 0 Ls Ls 0 0 Ls Ls
Ws 0 0 Ws Ws 0 0 Ws
Hs Hs Hs Hs 0 0 0 0

 (13)

After the gauge block was rotated by Θ, the new coordinates of spi were obtained
through the following rotation transformation:

spi = Rotu(θu)·Rotv(θv)·Rotw(θw)·(spi,0 − sp6,0) + sp6,0 (14)

where i is the number of the vertex and i ∈ [1,8]; Rotu(θu), Rotv(θv), and Rotw(θw) are
rotation matrices corresponding to the U-, V-, and W-axis, respectively.

Step 2: na, nb, and nc were initialized by presetting the values of αa, βa, γa, αb,
βb,γb, αc, βc, and γc; sma, smb, and smc were calculated by sma = (Ls + L0, Ws/2, Hs/2)T,
smb = (Ls/2, Ws+ L0, Hs/2)T, and smc = (Ls/2, Ws/2, Hs+L0)T, where L0 is a length adjust-
ment parameter.

Step 3: The nine angles, αu1, βu1, γu1, αv1, βv1, γv1, αw1, βw1, and γw1, were initialized
and a series of sample points on these lines were obtained. The sample sets were obtained,
i.e., {sa,n = Slena × n × nu1|1 ≤ n ≤ N}, {sb,m = Slenb × m × nv1|1 ≤ m ≤ M}, and
{sc,k = Slenc × k × nw1|1 ≤ k ≤ K}, where Slena, Slenb, and Slenc are the distance between
two neighboring sample points.

Step 4: The coordinates of the intersection points between the test planes and their
corresponding central-axis lines of the laser displacement sensors were calculated. When
the gauge block moved along lines lu1, lv1, and lw1, point P6 passed all of sample points in
the sets {an|1 ≤ n ≤ N}, {bm|1 ≤ m ≤M}, and {bk|1 ≤ k ≤ K}. Other vertices made similar
movements with point P6. Test planes Plane3487, Plane1584, and Plane1234 intersected with
lines lA, lB, and lC at points NA, NB, and NC, respectively. The laser displacement sensors A,
B, and C monitored the coordinate variation in points NA, NB, and NC, primarily involving
the coordinates ua (the U-axis coordinate of point NA), vb (the V-axis coordinate of point
NB), and wc (the W-axis coordinate of point NC). Then, the position vector of the gauge
block, ss, was given by ua, vb, and wc, where ss = (ua, vb, wa)T.

Part IV in Figure 5 shows that three types of point sets, {An|1 ≤ n ≤ N}, {Bm|1
≤ m ≤ M}, and {Ck|1 ≤ k ≤ K}, were measured. Their coordinate vectors are denoted
as {sA,n = (uA,n, vA,n, wA,n)T|1 ≤ n ≤ N}, {sB,m = (uB,m, vB,m, wB,m)T|1 ≤ m ≤ M}, and
{sC,k = (uC,k, vC,k, wC,k)T |1 ≤ k ≤ K}, respectively. When the gauge block reaches the posi-
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tion of a sample point, the normal vectors of planes Plane3487, Plane1584, and Plane1234 can
be obtained by the following equation:

n3478 = (sp7 − sp8)× (sp4 − sp8)/(
∣∣sp7 − sp8

∣∣·∣∣sp7 − sp8
∣∣)

n1584 = (sp4 − sp8)× (sp5 − sp8)/(
∣∣sp4 − sp8

∣∣·∣∣sp5 − sp8
∣∣)

n1234 = (sp4 − sp1)× (sp2 − sp1)/(
∣∣sp4 − sp1

∣∣·∣∣sp2 − sp1
∣∣) (15)

The vector ss of the gauge block at points NA, NB, and NC can be calculated by the
following equation:

sna = sma + {[(sma − sna)·n3478]/(n3478·nna)}·nna
snb = smb + {[(smb − snb)·n1584]/(n1584·nnb)}·nnb
snc = smc + {[(smc − snc)·n1234]/(n1234·nnc)}·nnc

(16)

Based on above steps 1 to 4, the vectors of points located on the calculated motion
trajectory lines were obtained. An angle vector Λt = (αt, βt, γt)T was defined that describes
the intersection angles between the motion trajectory lines defined in Section 4.1. A
spatial line fitting process was performed on the measured vector sets of {sA,n = (uA,n,
vA,n, wA,n)T|1 ≤ n ≤ N}, {sB,m = (uB,m, vB,m, wB,m)T|1 ≤ m ≤ M}, and {sC,k = (uC,k, vC,k,
wC,k)T |1 ≤ k ≤ K } and the unit vectors of fitted lines lu2, lv2, and lw2, nu2, nv2, and nw2,
were obtained, where nu2 = (cosαu2, cosβu2,cosγu2)T, nv2 = (cosαv2, cosβv2,cosγv2)T, and
nw1 = (cosαw2, cosβw2,cosγw2)T. The intersection angles, α (lu2 ∨ lv2), β (lu2 ∨ lw2), and
γ (lw2 ∨ lv2) constitute an angle vector Λ = (α, β, γ)T, which were calculated by the dot
product operation, i.e., α = arcos(nu2·nv2), β = arcos(nu2·nw2), and γ = arcos(nw2·nv2). The
angle vector Λ represents the measured data of the motion trajectory lines and the angle
vector Λt represents its true value. The error vector between Λ and Λt was calculated by
the following equation:

∆ = (δα, δβ, δγ) = Λ−Λt (17)

where ∆ is the error vector. When a set of error indexes consisting of sp6, Θ, na, nb, nc, nu1,
nv1, and nw1 was given, ∆ was calculated by Equation (17) based on the above steps 1 to 4.
∆ was used to analyze the influence of rotation angles of laser displacement sensor and
gauge block on the orthogonality estimation of three-axis motion trajectories.

4.3. Simulation Results

The influence of the rotation angles on the accuracy of orthogonality estimation was
simulated based on the following conditions: LS = 12 mm, WS = 12 mm, HS = 12 mm,
sp6 = (0,0,0)T, and L0 = 50. The simulation method limits the rotation angles, θu, θv, and θw,
within a small range and was set to be less than 10◦. For the laser displacement sensor, A,
the error was primarily from the variation of αa. Similarly, for sensors B and C, the error
was primarily from the variation in βb and γc, respectively. In the simulation, lu1, lv1, and
lw1 were set to be closer to the U-, V-, and W-axis, respectively. αu1, βv1, and γw1 were
primarily considered in the simulation; their maximum values were set to be less than or
equal to 10◦. Based on the above analysis, the simulation was run under 10 categories of
rotation angles.

The results obtained under the angles 1◦–5◦ are listed in Table 2, which shows that
when the rotation angle was less than 4◦, the maximum absolute value of δα, δβ, andδγ

was 0.0043◦, and the relative error compared with 90◦ was 0.005%. The results indicated
that the effect of the rotation angles of the gauge block and the laser displacement sensors
on the measurement results is completely negligible.
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Table 2. The effects of error sources on orthogonality estimation under the angles: 1◦–5◦.

Item Parameter Case I (1◦) Case II (2◦) Case III (3◦) Case IV (4◦) Case V (5◦)

Input angle (◦)

θu, θv, θw 1.0, 1.0, 1.0 2.0, 2.0, 2.0 3.0, 3.0, 3.0 4.0, 4.0, 4.0 5.0, 5.0, 5.0

αa, βa, γa
0.9965, 89.2954,

89.2954
1.9925, 88.5912,

88.5912
2.9972, 87.8812,

87.8812
4.0000, 87.1727,

87.1727
4.9905, 86.4734,

86.4734

αb, βb, γb
89.2954, 0.9965,

89.2954
88.5912, 1.9925,

88.5912
87.8812, 2.9972,

87.8812
87.1727, 4.0000,

87.1727
86.4734, 4.9905,

86.4734

αc, βc, γc
89.2954, 89.2954,

0.9965
88.5912, 88.5912,

1.9925
87.8812, 87.8812,

2.9972
87.1727, 87.1727,

4.0000
86.4734, 86.4734,

4.9905

αu1, βu1, γu1
1.0006, 89.2925,

89.2925
2.0006, 88.5855,

88.5855
2.9994, 87.8796,

87.8796
4.0063, 87.1683,

87.1683
5.0008, 86.4662,

86.4662

αv1, βv1, γv1
89.2925, 1.0006,

89.2925
88.5855, 2.0006,

88.5855
87.8796, 2.9994,

87.8796
87.1683, 4.0063,

87.1683
86.4662, 5.0008,

86.4662

αw1, βw1, γw1
89.2925, 89.2925,

1.0006,
88.5855, 88.5855,

2.0006
87.8796, 87.8796,

2.9994
87.1683, 87.1683,

4.0063
86.4662, 86.4662,

5.0008

Output angle
(◦)

αu2, βu2, γu2
1.7324, 90.2626,

88.2877
3.4640, 90.465,

86.5675
5.1940, 90.6086,

84.8419
6.9269, 90.6847,

83.1074
8.6494, 90.7093,

81.3801

αv2, βv2, γv2
88.3052, 1.7150,

90.2624
86.6374, 3.3945,

90.4638
84.9989, 5.0376,

90.6034
83.3849, 6.6496,

90.6729
81.8102, 8.2190,

90.6869

αw2, βw2, γw2
90.2802, 88.3050,

1.7181
90.5365, 86.6359,

3.4067
90.7698, 84.9940,

5.0651
90.9738, 83.3742,

6.6976
91.1644, 81.7907,

8.2926

αt, βt, γt
88.5763, 88.5763,

88.5763
87.1369, 87.1369,

87.1369
85.6835, 85.6835,

85.6835
84.2030, 84.2030,

84.2030
82.7265, 82.7265,

82.7265

α, β, γ
88.5763, 88.5764,

88.5763
87.1367, 87.1372,

87.1370
85.6821, 85.6847,

85.6838
84.1987, 84.2067,

84.2039
82.7162, 82.7353,

82.7289

δα, δβ, δγ 0, 0.0001, 0 −0.0002, 0.0003,
0.0001

−0.0014, 0.0012,
0.0003

−0.0043, 0.0037,
0.0009

−0.0103, 0.0088,
0.0024

Influence level Weak (<0.005◦) Weak (<0.005◦) Weak (<0.005◦) Weak (<0.005◦) Middle (0.01◦

<&<0.1◦)

The results obtained under the angles 6◦–10◦ are listed in Table 3. Tables 2 and 3
shows that the minimum and maximum of absolute values of δα, δβ, δγ were 0.0103◦ and
0.0967◦, respectively, and the relative error compared with 90◦ varied from 0.01% to0.09%
when the rotation angles varied from 5◦ to 9◦. When the rotation angles approached 10◦

the error was 0.1427◦ and the relative error compared with 90◦ was 0.16%.
We classified the error into three levels: low, middle, and large. Any rotation angle

error less than 4◦ was considered small, the error under the rotation angles from 5◦ to 9◦

were classified as middle, and the error of rotation angles larger than 9◦ were considered
large. Tables 2 and 3 show that when the rotation angles of the laser displacement sensors
and gauge block were less than 10◦, the maximum error of motion trajectory orthogonality
measurement was close to 0.09% which has little effect on the measurement.
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Table 3. The effects of error sources on orthogonality estimation under the angles: 6◦–10◦.

Item Parameter Case VI (6◦) Case VII (7◦) Case VIII (8◦) Case IX (9◦) Case X (10◦)

Input angle (◦)

θu, θv, θw 6.0, 6.0, 6.0 7.0, 7.0, 7.0 8.0, 8.0, 8.0 9.0, 9.0, 9.0 10.0, 10.0, 10.0

αa, βa, γa
5.9978, 85.7628,

85.7628
7.0013, 85.0555,

85.0555
8.0005, 84.3520,

84.3520
8.9997, 83.6494,

83.6494
10.0002, 82.9468,

82.9468

αb, βb, γb
85.7628, 5.9978,

85.7628
85.0555, 7.0013,

85.0555
84.3520, 8.0005,

84.3520
83.6494, 8.9997,

83.6494
82.9468, 10.0002,

82.9468

αc, βc, γc
85.7628, 85.7628,

5.9978
85.0555, 85.0555,

7.0013
84.3520, 84.3520,

8.0005
83.6494, 83.6494,

8.9997
82.9468, 82.9468,

0.0002

αu1, βu1, γu1
6.0022, 85.7597,

85.7597
6.9900, 85.0634,

85.0634
8.0032, 84.3501,

84.3501
9.0016, 83.6481,

83.6481
10.0003, 82.9468,

82.9468

αv1, βv1, γv1
85.7597, 6.0022,

85.7597
85.0634, 6.9900,

85.0634
84.3501, 8.0032,

84.3501
83.6481, 9.0016,

83.6481
82.9468, 10.0003,

82.9468

αw1, βw1, γw1
85.7597, 85.7597,

6.0022,
85.0634, 85.0634,

6.9900,
84.3501, 84.3501,

8.0032
83.6481, 83.6481,

9.0016
82.9468, 82.9468,

10.0003

Output angle
(◦)

αu2, βu2, γu2
10.3714, 90.6677,

79.6506
12.0792, 90.5764,

77.9350
13.7932, 90.4053,

76.2130
15.4882, 90.1872,

74.5130
17.1705, 89.9113,

72.8298

αv2, βv2, γv2
80.2634, 9.7574,

90.6302
78.7582, 11.2541,

90.5186
77.2719, 12.7323,

90.3209
75.8295, 14.1707,

90.0696
74.4226, 15.5794,

89.7532

αw2, βw2, γw2
91.3280, 80.2321,

9.859
91.4811, 78.7122,

11.3871
91.5940, 77.2081,

12.8942
91.6993, 75.7455,

14.3597
91.7859, 74.3162,

15.7903

αt, βt, γt
81.2261, 81.2261,

81.2261
79.7333, 79.7333,

79.7333
78.1896, 78.1896,

78.1896
76.6567, 76.6567,

76.6567
75.1121, 75.1121,

75.1121

α, β, γ
81.2053, 81.2443,

81.2313
79.6957, 79.7664,

79.7431
78.1274, 78.2453,

78.2070
76.5600, 76.7443,

76.6853
74.9694, 75.2433,

75.1569

δα, δβ, δγ
−0.0208, 0.0182,

0.0052
−0.0376, 0.0331,

0.0098
−0.0622, 0.0557,

0.0174
−0.0967, 0.0876,

0.0286
−0.1427, 0.1312,

0.0448

Influence level Middle (0.01◦ <
& < 0.1◦)

Middle (0.01◦ <
& < 0.1◦)

Middle (0.01◦ <
& < 0.1◦)

Middle (0.01◦ <
& < 0.1◦) Large (>0.1◦)

5. Results and Discussion

The setup of the experimental system is shown in Figure 6. The system was placed on
an optical platform, which consisted of a stereo light microscope, a three-axis motorized
translation stage, a rectangular gauge block and three laser displacement sensors. The
motion of the three-axis motorized translation stage was controlled in closed-loop mode.
The measurement range of the laser displacement sensor was ±5 mm and its positioning
precision was 0.01 mm. The gauge block was machined by precision machining and
possessed a surface roughness of less than 0.0008 mm. The stage was rigorously assembled
by the manufacturer. Virtual motion trajectories were designed for the experiments. The
approach to generating the virtual motion trajectories is shown in Figure 7a. We assumed
that the coordinate axes of O-XYZ were orthogonal, and three virtual motion trajectory
lines that intersect with the X-, Y-, and Z-axes at small angles were created (generally less
than 10◦), separately. A series of sample points on the virtual motion trajectory lines was
obtained and their vectors were regarded as true values. The gauge block moved along
the virtual motion trajectory lines and passed sample points in order. When the gauge
block reached a sample point, its position was measured by the laser displacement sensors.
The measured positions of the sample points constituted the motion trajectories, and their
spatial fitted lines were obtained, as shown in Figure 7b–d. The intersection angles of the
three virtual motion trajectory lines were used as true values and the intersection angles
of the three fitted lines were used as measured values. The error between the measured
and true values was obtained. Six groups of experiments were performed to test the



Micromachines 2021, 12, 344 16 of 21

orthogonality of the motion trajectory lines. The range of the intersection angles as input
parameters was set to [82.728◦, 90◦]. The results are listed in Table 4.
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a 3-axis motorized translation stage with a positioning precision of 1μm, three Panasonic-style laser displacement 
sensors with a precision of 10μm and a gauge block with size of 90 mm(length) × 5 mm(width) × 5 mm(height) and 
surface roughness of 0.8 μm. 

Figure 6. The photo of the experiment system. The system consists of an Olympus SZX7-style stereo light microscope, a
3-axis motorized translation stage with a positioning precision of 1µm, three Panasonic-style laser displacement sensors
with a precision of 10µm and a gauge block with size of 90 mm(length) × 5 mm(width) × 5 mm(height) and surface
roughness of 0.8 µm.
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observation. For the spatial line fitting process, a gross error filter for gross error detection 
was used to obtain high-precision fitted lines, which needed several repeated fitting 

Figure 7. The fitted motion trajectory line in the X-, Y- and Z- directions. The three initial standard motion trajectory lines
with 25 sampled points in each line were preset firstly which have the unit vectors along the X-, Y- and Z-axis, respectively.
The angle between the two adjacent motion trajectory lines is initialized by 87.728 degrees. (a) The vectors of the sample
points measured by the laser displacement sensors constructed three measured trajectory lines. (b) The fitted line is obtained
based on the X-direction data; (c) The fitted line is obtained based on the Y-direction data; (d) The fitted line is obtained
based on the Z-direction data.
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Table 4. The results of angle measurement between moving trajectories.

Group θ True Value (◦) Measured Value (◦) Absolute Error (◦) Relative Error (%)

1
θXY 90.000 89.875 −0.125 0.138
θXZ 90.000 90.015 0.015 0.016
θYZ 90.000 89.943 −0.057 0.063

2
θXY 88.578 88.467 −0.111 0.125
θXZ 88.578 88.417 −0.161 0.182
θYZ 88.578 88.663 0.085 0.096

3
θXY 87.137 86.931 −0.206 0.237
θXZ 87.137 87.070 −0.067 0.077
θYZ 87.137 87.106 −0.031 0.035

4
θXY 85.682 85.720 0.038 0.045
θXZ 85.682 85.437 −0.245 0.286
θYZ 85.682 85.597 −0.085 0.099

5
θXY 84.213 84.178 −0.035 0.042
θXZ 84.213 84.067 −0.146 0.173
θYZ 84.213 84.203 −0.010 0.012

6
θXY 82.728 82.623 −0.105 0.127
θXZ 82.728 82.568 −0.160 0.193
θYZ 82.728 82.809 0.081 0.098

For the selection of the sample points on the motion trajectory line, we attempted
to make the density of the sample points as large as possible. Here, we set 25 points
for observation. For the spatial line fitting process, a gross error filter for gross error
detection was used to obtain high-precision fitted lines, which needed several repeated
fitting processes. If the vertical distance between the sample points and fitted line was
larger than a given threshold (here, 0.02 mm was used), the sample points that exceeded
the threshold were removed from the sample point sets. Then, the spatial line fitting was
repeatedly performed on the remaining sample points until the satisfactory fitting precision
was reached. In Table 4, θ is the intersection angle and includes three components, θXY,
θXZ, and θYZ, where θXY is the angle between the X and Y-axis, θXZ is the angle between
the X- and Z-axis, and θYZ is the angle between the Y- and Z-axis. In Table 4, the value of θ
decreases gradually. When θ was 90◦, 88.578◦, 87.137◦, 85.682◦, 84.213◦ and 82.728◦, the
maximum absolute error was 0.125◦, 0.161◦, 0.206◦, 0.245◦, 0.146◦ and 0.160◦, respectively,
and the fluctuation range was 0.12◦. The maximum relative errors of the six cases were
0.138%, 0.182%, 0.237%, 0.286%, 0.173% and 0.193%, respectively, and the fluctuation range
was 0.148%. The results showed that the maximum absolute error of the measured value
of θ was 0.245◦ and the maximum relative error was 0.286% when the value of θ changed
from 90◦ to 82.728◦.

The accuracy of spatial line fitting affected the precision of three-axis motion trajectory
orthogonality measurement. Fitting errors in the six groups of experiments were counted
and compared. The statistical rule of fitting error used in this paper is shown in Figure 8.
Two types of parameters, σ and η, were defined to describe fitting error, where σ represents
the vertical distance between the sample point and the fitted line, and η represents the
azimuth of the sample point. The distribution of fitting error in polar coordinates is shown
in Figure 9, where σ is the polar radius and η is the polar angle. The fitting error in
Figure 9a–f was obtained under conditions 1–6 listed in Table 4. Figure 9a–f show that the
distribution of sample points and their fitting error were random, and that the measured
values of the sample points fluctuated. In Figure 9a–f, the values of θ are approximately 90◦,
88.578◦, 87.137◦, 85.682◦, 84.213◦ and 82.728◦. Compared with the 90◦ motion trajectory
lines, the motion trajectory lines generated under these six angles deviated by 0◦, 1.422◦,
2.863◦, 4.318◦, 5.787◦ and 7.272◦ respectively. From the results, the value of θ decreased
gradually, and the degree of its corresponding motion trajectory lines deviating from the
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90◦ motion trajectory line increased gradually. In Figure 9a–f, the number of sample points
with fitting error more than 0.015 mm is 4, 1, 10, 1, 8 and 5 respectively, but the fitting error
of all sample points is less than 0.02 mm. When the value of 90-θ was less than or equal to
7.272◦, the maximum fitting error was 0.02 mm.
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Figure 8. The definition of the error parameters of the fitted spatial line, where XDT = X-direction motion trajectory,
YDT = Y-direction motion trajectory, ZDT = Z-direction motion trajectory. Two parameters, σ and η, are used. The
parameter σ represents the distance between a point P and a fitted line, and point P1 is one of the fitted points corresponding
to point P. The parameter η is used to describe the azimuth of a sample point, which is the intersection angle between the
lines PP1 and l. The line l is located in the plane passing the points P1 and P, and perpendicular to the fitted line OP1.

In Section 4.3, the influence of the rotation angles generated by the laser displacement
sensor assembly on the orthogonality of the reference coordinate system was analyzed
through simulation. If the influence is large, the accuracy of motion trajectory measurement
is affected, and the angle deviation between the measured motion trajectory and the real
motion trajectory is large. Figure 9a,b shows that the position offset between the sample
points can be controlled within 0.02 mm, which indicated that the output data of the laser
displacement sensor have good stability. In the experiment, the range of the deviation
angles of the motion trajectory lines was 0◦–7.272◦. Table 4 shows that the absolute
error of the deviation angles of the motion trajectory lines experienced small fluctuation:
the maximum fluctuation was 0.245◦ and the corresponding relative error was 0.286%,
which indicated that the measurement error of the motion trajectory lines was small. This
experiment also showed that within this deviation angle range, the orthogonality of the
reference coordinate system formed by laser displacement sensors has a weak influence on
the angle measurement. This is consistent with the simulation results in Section 4.3.
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obtained under 85.683◦; (e) The error was obtained under 84.213◦; (f) The error was obtained under 82.728◦.

6. Conclusions

Stereo light microscopes are designed based on a binocular stereo structure, which
requires a large workspace and can be applied to develop microscopic stereovision systems
and in the micromanipulation fields to provide micromanipulation robot systems with a
stereovision function. The motion control system is an important part of micromanipulation
robot systems. For a three-axis motion control system, the orthogonality and linearity of
the three-axis motion trajectories have the accuracy of micromanipulation. So, the study
of the mechanisms of the linearity and orthogonality of three-axis motion trajectories is
important. Aiming at this problem, we constructed a novel approach to measure three-axis
motion trajectories, designed the approximate orthogonal reference frame, and analyzed the
influence of laser displacement sensor assembly error on the orthogonality of the reference
frame via simulation. An approach to evaluate the linearity and orthogonality of three-
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axis motion trajectories was proposed, and then the rules to correct the non-orthogonal
motion trajectories were developed. The results showed that when the assembly angles
of the central-axis lines of the laser displacement sensors are limited within a range of
10◦, the relative angle deviations of the axes of the reference frame compared with 90◦ are
approximate to 0.09%, the accuracy of the axial motion trajectory fitting is approximately
0.02 mm, and the relative error of the intersection angles of the three-axis motion trajectories
is approximately 0.3%. Thus, the results showed that when the assembly angle is limited
within a reasonable range, the three-axis orthogonality of the orthogonal reference frame
can be guaranteed, and the method proposed in this paper can be used to effective evaluate
the orthogonality of three-axis motion trajectories for micromanipulation robot systems.
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