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Abstract: Plant-derived polyphenolic chemicals are important components of human nutrition and
have been found to have chemotherapeutic effects against a variety of cancers. Several studies in
animal models have proven polyphenols’ potential to promote apoptosis and tumor regression.
However, the method by which polyphenols show their anticancer effects on malignant cells is not
well understood. It is generally known that cellular copper rises within malignant cells and in the
serum of cancer patients. In this communication, investigations reveal that naringin (a polyphenol
found in citrus fruits) can strongly suppress cell proliferation and trigger apoptosis in various cancer
cell lines in the presence of copper ions. The cuprous chelator neocuproine, which confirms copper-
mediated DNA damage, prevents such cell death to a large extent. The studies further show that
the cellular copper transporters CTR1 and ATP7A have a role in the survival dynamics of malignant
cells after naringin exposure. The findings emphasize the crucial function of copper dynamics
and mobilization in cancer cells and pave the path for a better understanding of polyphenols as
nutraceutical supplements for cancer prevention and treatment.
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1. Introduction

Cancer is a complex disease in which abnormal cells multiply as a result of normal
cell proliferation and cell cycle processes being disrupted, resulting in tumors that expand
and invade other body areas [1,2]. There are several cancer treatment options; however,
some may be ineffective due to increased resistance to standard anticancer drugs and
unwanted side effects [3]. Incorporating additional fruits and berries into the human diet,
particularly citrus fruits, may benefit cancer prevention and progression [4–6]. Fruit-derived
anticancer and therapeutic compounds, such as flavonoids and their derivatives, have
shown a significant ability to inhibit tumor and cancer cell development [7]. Flavonoids
have been shown in multiple studies to have potent anticancer activities by acting as
antioxidants, changing ROS-scavenging enzyme activity, increasing apoptosis, autophagy,
and cell cycle arrest, and decreasing inflammation, proliferative processes, and metastatic
formation [3,8–12]. Naringin, a flavanone glycoside produced from naringenin, is found in
several fruits of the Citrus genus, particularly grapefruit [13]. Naringin is thought to have a
variety of pharmacological effects, including antioxidant, anti-inflammatory, anti-apoptotic,
anti-tumor, and anti-viral characteristics [14–17]. Few papers exist that provide an overview
of naringin in cancer without a focus on its anticancer qualities, and none have explored
naringin separately in cancer prevention and treatment [17–19]. The mechanisms behind
naringin’s anticancer activities are not fully known and are the focus of extensive research.

Copper is a metal ion found in chromatin that is tightly connected to DNA bases,
specifically guanine [20]. It is one of the most redox-active metal ions found in living cells.
Elevated copper levels have been observed in a variety of malignancies [21] in both humans
and laboratory animals. Copper levels have been discovered to be raised in both the serum
and tissue of malignant human tumors, which is a fascinating discovery [21]. The increase
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in copper in the tumor is not caused by the type of tissue but rather by a metabolic feature
of the tumor itself [22].

The majority of plant-derived polyphenols have both antioxidant and prooxidant
activities [23]. The prooxidant activity of plant-derived polyphenols, which mediates their
selective anticancer action, is thought to be the result of a selective elevation in copper
levels in malignant cells compared to non-cancerous controls. Plant-derived polyphenolics
undergo a Fenton-like reaction with cellular copper in the presence of DNA, resulting in
the production of reactive oxygen species (ROS) and apoptosis-like cell death [23].

The powerful oxidative, damage-inducing ability of naringin is demonstrated in this
study. It has been demonstrated that naringin’s abilities in malignant cells are reliant on
the cellular bioavailability of copper and its redox recycling. Figure 1 depicts the chemical
structure of naringin.
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Figure 1. Chemical structure of naringin.

2. Results
2.1. Copper Chelation Inhibits Naringin-Induced Growth Inhibition

Several studies show that naringin suppresses cell proliferation, migration, and in-
vasion and enhances apoptosis in a variety of cancer cells, including those of bladder,
hepatocellular, breast, colorectal, and gastric malignancies [24]. Copper appears to play
a critical role in the cytotoxicity of naringin [25,26] based on the existing research. To
confirm the critical role of intracellular copper in the cytotoxic action of naringin, multiple
cancer cell lines were treated with specific metal chelators, and it was discovered that only
the copper chelator, Neo, was able to protect MDA-MB-231, BxPC-3, MDA-MB-468, and
C42B cells against the growth-inhibiting action of naringin (Figure 2). DM and His (iron
and zinc chelators, respectively) had a protective effect against naringin-induced growth
suppression. However, this was still less than Neo’s level of inhibition.
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Figure 2. Effects of certain metal chelators on the antiproliferative action of naringin in four distinct
cancer cell lines. As illustrated in the picture, cancer cells were treated with 100 µM naringin alone or
in the presence of the copper chelator neocuproine (Neo), the iron chelator desferrioxamine mesylate
(DM), or the zinc chelator histidine (His). The metal chelator concentration utilized was 50 µM. After
72 h of treatment, the MTT assay specified in the Materials and Methods section was conducted.
Values reported are ±S.E.M. of three independent experiments. * p-value < 0.05 when compared to
respective control.

2.2. Copper Chelation Inhibits Naringin-Induced Apoptosis

Additionally, the effect of various metal chelators on naringin-induced apoptosis was
examined (Figure 3). The copper chelator neocuproine gave substantial protection. Iron
and zinc chelators also showed some protective effects. However, this was still less than
the protection with neocuproine, corroborating the notion that the anticancer mechanism
of naringin includes copper mobilization.Pharmaceuticals 2022, 15, x FOR PEER REVIEW 4 of 10 
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Figure 3. Effects of various metal chelators on naringin-induced apoptosis in four distinct cancer
cell lines. MDA-MB-231, BxPC3, MDA-MB-468, and C42B cancer cells were treated with 100 µM
naringin either alone or in the presence of the copper chelator neocuproine (Neo), the iron chelator
desferrioxamine mesylate (DM), or the zinc chelator histidine (His), as shown in the figure. The
metal chelator concentration utilized was 50 µM. As mentioned in the Materials and Methods section,
ELISA was conducted 72 h following treatment. Values reported are ±S.E.M. of three independent
experiments. * p-value < 0.05 when compared to respective control.
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2.3. Naringin Inhibits the Expression of Copper Transporters CTR1 and ATP7A

It was revealed that naringin-induced growth inhibition and death in malignant cells
is a result of the compound’s interaction with intracellular copper (Figures 2 and 3). Due
to the fact that malignant cells have a higher expression of copper transporter CTR1 and
ATP7A [27], it was determined if copper supplementation led to an increase in copper trans-
porter expression in non-malignant epithelial cells. Copper supplementation in the growth
media of MFC-10A cells resulted in a significant upregulation of the copper transporters
CTR1 and ATP7A, according to the findings (Figure 4). Further addition of naringin to the
medium resulted in a reduction in the expression of both copper transporters, suggesting
an influence of naringin on copper metabolism in cancer cells.
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Figure 4. The effect of naringin on the elevated mRNA transcript levels of copper transporters CTR1
and ATP7A in MCF-10A-Cu cells compared to MCF-10A cells. Total RNA was extracted utilizing
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) per manufacturer’s instructions. CTR1 and ATP7A
mRNA expression was quantified using real-time PCR, as stated in the Materials and Methods section.
To determine the effect of naringin on mRNA expression, only MCF-10A-Cu (normal MCF-10A cells
grown in a medium containing 25 µM CuCl2) was treated with 100 µM naringin. Values reported are
±S.E.M. of three independent experiments. * p-value < 0.05 when compared to untreated control.

2.4. Targeted Silencing of CTR1 and ATP7A in MCF-10A Cells Grown in Copper Supplemented
Medium Reduces Naringin-Induced Inhibition of Proliferation

Using targeted siRNA, copper transporter CTR1 and ATP7A were silenced to confirm
copper’s crucial role in naringin-induced growth suppression (Figure 5). CTR1 and ATP7A
mediate copper uptake in cells, and as established previously (Figure 4), their expression
makes MCF-10A cells more susceptible to naringin-induced growth suppression. Copper-
rich medium-grown MCF-10A cells were found to be less sensitive to naringin when the
copper transporters CTR1 and ATP7A were silenced. This finding demonstrates conclu-
sively that naringin interacts with cellular copper and that cellular copper is essential for
naringin’s growth-inhibiting effect on cancer cells.
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Figure 5. Cell proliferation of MCF-10A-Cu cells (normal MCF-10A cells cultured in a medium
containing 25 µM CuCl2) was significantly reduced after treatment with naringin following CTR1
and ATP7A knock-down. MCF-10A-Cu cells were first treated with naringin or with specific si-RNA
against CTR1 (siCTR1) and ATP7A (siATP7A) for 48 h and then with indicated concentrations of
naringin for 24 h. Values reported are ±S.E.M. of three independent experiments. * p-value < 0.05
when compared to respective control.

This firmly establishes that naringin interacts with cellular copper and that cellular
copper is necessary for naringin’s growth-inhibiting impact on cancer cells.

3. Discussion

The prooxidant effect of plant-derived polyphenols, demonstrated by their interaction
with intracellular copper and subsequent redox signaling [28–30], is one of the mechanisms
by which polyphenols generate their selective lethal action. The observation that “normal”
breast epithelial MCF-10A cells are resistant to naringin’s cytotoxic action compared to
tumorigenic breast MDA-MB-231 and MDA-MB-468 cells is intriguing since it demonstrates
the cancer cell selectivity of naringin’s cytotoxic action. The observation that MCF-10A cells
become more sensitive to naringin-induced cytotoxicity when grown in the presence of
copper confirms the crucial role of cellular copper in naringin-mediated physiological pro-
cesses that lead to cell death. Copper’s physiological role in cancer is not well understood.
Despite this, data indicates the importance of high copper levels in tumor angiogenesis [31].
Experiments have proven that plant-derived polyphenols interact with intracellular copper
and induce oxidative DNA damage [32–34]. The new study provides additional support
for this view. It has been demonstrated that naringin can inhibit angiogenesis [35]. It is
likely that the anti-angiogenesis actions of naringin include copper mobilization and the
resulting prooxidant effect; however, additional research is required to confirm this notion.
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Normal breast epithelial cells cultivated in the presence of copper were shown to
upregulate the copper transporters CTR1 and ATP7A, which were examined in the present
work. Moreover, naringin has the potential to suppress the expression of these transporters.
Thus, copper transporter expression correlates with the acquired susceptibility of epithelial
cells to naringin activity. This fact adds an additional level of regulation to the hypothesis, in
which naringin not only interacts with copper and causes oxidative DNA damage but also
inhibits copper transporters, thereby impeding the copper metabolism of the “transformed”
cell(s), which appears to be essential for their survival.

In addition, the results were validated through an experiment utilizing the siRNA-
mediated inhibition of the expression of representative copper transporters CTR1 and
ATP7A. Such silencing of CTR1 and ATP7A rendered MCF-10A cultured with copper sup-
plementation insensitive to naringin, demonstrating and verifying that copper is necessary
for naringin-induced selective cell death.

4. Materials and Methods
4.1. Cell Lines and Reagents

Naringin (Nar), metal chelators (neocuproine (Neo), bathocuproine disulphonic
acid (Batho), desferrioxamine mesylate (DM) and histidine (His)), and cupric chloride
(purity > 99%) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Cancer lines
MDA-MB-231, MDA-MB-468, BxPC3, and C42B, as well as immortalized non-transformed
breast cell line MCF-10A, were acquired from ATCC (Manassas, VA, USA). MDA-MB-468
and C42B cells were maintained in RPMI, whereas MDA-MB-231 and BxPC3 cell lines
were maintained in DMEM (Invitrogen, Carlsbad, CA, USA). Then, 10% fetal bovine serum
(FBS), 100 units/mL penicillin, and 100 µg/mL streptomycin were added to the medium.
At 37 degrees Celsius and 5% CO2 (humid atmosphere), all cells were cultured. Naringin
(50 mM) stock solutions were stored at −80 ◦C in tiny aliquots. The stock solutions of
several metal ion chelators, such as neocuproine, desferoxamine mesylate, and histidine,
were always generated freshly right before studies at a 50 mM final concentration in PBS.
The normal breast epithelial cell line MCF-10A was cultured in DMEM/F12 (Invitrogen,
Carlsbad, CA, USA) along with 5% horse serum, 20 ng/mL EGF, 0.5 µg/mL hydrocorti-
sone, 0.1 µg/mL cholera toxin, 10 µg/mL insulin, 100 units/mL penicillin, and 100 µg/mL
streptomycin. MCF-10A cells that have grown for a month in regular culture medium with
25 µM CuCl2 added are known as MCF-10A-Cu cells. All other chemicals were commercial
products of analytical grade.

4.2. Cell Growth Inhibition Studies Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5
Diphenyltetra-zolium (MTT) Assay

Subsequently, 2 × 103 cells were seeded in each well of 96-well microtiter plates.
The regular growing medium was replaced with a fresh medium containing varying
concentrations of diluted 50 mM naringin stock after overnight incubation. As described in
each study, specific assays were treated with a metal chelator. After 3 days of incubation,
25 µL of MTT solution (5 mg/mL in PBS) was added to each well, and plates were incubated
for an additional 2 h at 37 ◦C and 5% CO2.

The supernatant was removed after a 2-h incubation period. Using a gyrating shaker,
metabolically viable cell-derived MTT formazan was dissolved in 100 µL of DMSO for
30 min. Using an Ultra Multifunctional Microplate Reader, 595 nm was calculated as the
absorbance (TECAN, Durham, NC, USA). Eight replicate wells were utilized for each
treatment, and the DMSO concentration never surpassed 0.1%. Each experiment was
conducted thrice.

4.3. Apoptosis Detection Using the Histone/DNA ELISA

Using the Cell Death Detection ELISA Kit (Roche, Palo Alto, CA, USA), apoptosis
in growth cells treated with naringin was identified. The cells were treated for 72 h with
naringin or DMSO as a control. After treatment, DNA and cytoplasmic histone were
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extracted from cells and incubated on microtiter plate modules coated with anti-histone
antibody. Peroxidase-conjugated anti-DNA antibody was utilized to detect immobilized
histone/DNA, followed by color development using a peroxidase-specific ABTS substrate.
Using an Ultra Multifunctional Microplate Peruser (TECAN, Durham, NC, USA) at 405 nm,
the spectrophotometric absorbance of the samples was measured.

In addition, various metal ion chelators were utilized during the reactions. DM (50 µM)
was employed to chelate Fe (II), His (50 µM) to chelate Zn (II), and Neo (50 µM) to chelate
Cu (II) ions.

4.4. Real-Time Reverse Transcriptase PCR

TRIzol reagent (Invitrogen) was used to isolate total RNA in accordance with the
manufacturer’s instructions. To quantify mRNA expression, real-time PCR was performed.
Sequences of primers for CTR1 (forward: 5′-GCT GGA AGA AGG CAG TGG TA-3′;
reverse: 5′-AAA GAG GAG CAA GAA GGG ATG-3′), ATP7A (forward: 5′-ACG AAT GAG
CCG TTG GTA GTA-3′; reverse: 5′-CCT CCT TGT CTT GAA CTG GTG-3′) and GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) (forward: 5′-TGG GTG TGA ACC ATG AGA
AGT-3′; reverse: 5′-TGA GTC CTT CCA CGA TAC CAA-3′) were the same as reported
earlier [36,37], and the amount of RNA was normalized to GAPDH expression.

4.5. Small Interfering RNA (siRNA) Transfection

siRNA transfections were carried out as outlined before [37]. Santa Cruz Biotech-
nology, Inc. was reached out to for siRNA targeting CTR1 and ATP7A. As a control,
garbled siRNA was utilized. Copper transporters, i.e., CTR1 and ATP7A, were silenced by
siRNA (0.60 nmol/µL) 48 h prior to the experiment utilizing Lipofectamine RNA iMAX
Transfection Reagent (Invitrogen) as per the manufacturer’s guidelines.

4.6. Statistical Analysis

The statistical analysis was conducted as outlined by Tice et al. [38] and is expressed
as the standard error of the mean ± S.E.M. of three independent experiments. A Student’s
t-test was used to examine statistically significant differences. ANOVA was used to conduct
an analysis of variance. p-values ≤ 0.05 were considered statistically significant.

5. Conclusions

It is possible to draw the conclusion that the availability of intracellular copper and
the presence of polyphenols (such as naringin) affect their ability to cause oxidative DNA
damage in cancer cells. The critical significance of intracellular copper levels, made possible
by copper transporters, in the anticancer effect of naringin in particular and the plant-
derived polyphenols, in general, has been established by the presented results. This adds a
new dimension to the design of future mechanism-based research aimed at targeting the
tumor microenvironment for the desired efficacy of non-toxic anticancer agents.
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