
depth phenotyping of patients with

uncomplicated AUD and Korsakoff’s

syndrome are required to address

these issues. Furthermore, it is impor-

tant to better understand the patho-

physiology of alcohol craving and

addiction, in which the thalamus—

especially the anterior nuclei—may

also be involved (George et al.,

2001). For example, could addictive

behaviour be reinforced by a self-pro-

pelling process in which the thalamic

alterations per se are involved in the

pathophysiology of addiction? In this

light, can specific MRI findings be

identified in patients with AUD that

could be used to provide more perso-

nalized treatment or information on

prognosis?

Taken together, the findings of this

study point to a central role for struc-

tural abnormalities in both the med-

iodorsal and anterior thalamic nuclei

observed in uncomplicated AUD and

Korsakoff’s syndrome. In the FCC,

atrophy of the mediodorsal nuclei is

the most prominent finding, while

decreased connectivity between the

anterior nuclei and hippocampus

was observed in the Papez circuit.

This disconnection may result in atro-

phy of the anterior nuclei, which

seems to be specific to Korsakoff’s

syndrome, and thus could potentially

be used as a neuroimaging marker for

this disorder. Future—preferably

longitudinal—studies will be neces-

sary to better understand the patho-

physiology and heterogeneity of

AUD, and to assist the development

of evidence-based treatments. Until

then, public health interventions

must ensure that people are informed

about the harmful effects of chronic

excessive alcohol consumption—not

only neuropsychological sequelae but

also an increased risk of cancer and

cardiovascular disease—to try to

reduce the impact of alcohol (Day

et al., 2015).
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Theoretically meaningful models can answer
clinically relevant questions

This scientific commentary refers to

‘The ease and sureness of a decision:

evidence accumulation of conflict

and uncertainty’, by Mandali et al.

(doi:10.1093/brain/awz013).

One of the most dominant models of

human decision-making over the past

decades has been the diffusion model

(Ratcliff, 1978; Ratcliff et al., 2016).

However, the diffusion model may

not be familiar to all readers of

Brain, as the model has primarily

been applied within the field of cog-

nitive psychology. The diffusion

model proposes that decision-making
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results from an internal process of

sequential evidence accumulation,

where each potential choice alterna-

tive accumulates evidence from the

environment over time, until the evi-

dence for one alternative reaches

some threshold level of evidence that

triggers a decision. Importantly, the

diffusion model can decompose the

accuracy and time taken for each

decision into latent parameters from

the underlying decision-making pro-

cess, most notably drift rate, decision

threshold, and non-decision time. The

drift rate parameter is the rate of evi-

dence accumulation, with faster accu-

mulation indicating better ability. The

decision threshold parameter is the

amount of evidence required to trig-

ger a decision, with higher decision

thresholds indicating greater caution.

The non-decision time parameter

represents the time taken up by pro-

cesses such as perceptual encoding

and motor responding. These latent

parameters allow researchers to

directly assess changes in the compo-

nents of the underlying cognitive pro-

cess, rather than attempting to

indirectly infer changes from the raw

observed variables, such as accuracy

and mean response time. A schematic

overview of the diffusion model is

provided in Fig. 1.

In this issue of Brain, Mandali and

co-workers present a clear example of

how the diffusion model can provide

additional insight into the differences

between clinical groups in various

components of an underlying cogni-

tive process (Mandali et al., 2019).

Specifically, Mandali et al. compared

healthy controls to participants with

obsessive-compulsive disorder (OCD)

and participants with alcohol depen-

dence in an experimental task where

participants made repeated two-alter-

native choices between different sym-

bols, with each symbol providing a

£1 reward with some probability,

and the probability of reward for

each symbol changing over the

course of the experiment. This task

separates two different elements of

incoming evidence, which are often

conflated: the difference between the

alternatives in the probability of a

reward (i.e. difficulty/conflict), and

the uncertainty of whether or not a

reward would occur for each alterna-

tive (i.e. the variance of a Bernoulli

random variable). A standard analysis

of mean response time and accuracy

proved difficult to interpret.

Participants with OCD were slower

than healthy controls in easy trials

with moderate uncertainty, and less

accurate than healthy controls in dif-

ficult trials with high uncertainty,

whereas participants with alcohol

dependence were slower than healthy

controls in hard trials with low uncer-

tainty, and both slower and less accu-

rate than healthy controls in easy

trials with moderate uncertainty. In

contrast, a diffusion model analysis

yielded more interpretable results.

Both clinical groups were more cau-

tious (i.e. higher thresholds) overall in

the task than healthy control subjects,

and showed poorer performance (i.e.

lower drift rate) than healthy controls

under certain conditions. Participants

with OCD were poorer than healthy

controls in difficult trials that were

uncertain, which Mandali et al. link

back to the compulsive checking

behaviours of these patients; partici-

pants with alcohol dependence were

poorer than healthy controls in easy

trials, and showed no improvement in

task performance for easy trials over

hard trials. As pointed out by

Mandali et al., these findings have

importance in terms of how these

clinical conditions are viewed and

potentially how they are treated.

Mandali et al. should be com-

mended for using the diffusion

model to make direct inferences

about the underlying components of

the cognitive process, rather than

indirect inferences based only on

observed variables. Many studies

involving human decision-making

continue to perform statistical ana-

lyses on observed variables, such as

mean response time, and infer that

changes in these observed variables

reflect changes in specific underlying

cognitive components, such as

mental processing speed (i.e. drift

rate). However, as discussed in

Mandali et al., the response choices

and times may be generated by an

intricate combination of several dif-

ferent latent parameters. One classic

example of response time providing

a poor proxy for drift rate is in the

literature on ageing, where older par-

ticipants are slower at many cognitive

tasks than younger participants.

Salthouse (1996) suggested that this

reflected a cognitive slowdown,

where older participants were slower

because cognitive abilities decrease

with age. However, a diffusion

model analysis revealed that in many

tasks older participants had equal

cognitive abilities to younger partici-

pants (i.e. equal drift rates), and that

the slower responding of older parti-

cipants was caused by a combination

of increased caution (i.e. higher

thresholds) and longer non-decision

times (Ratcliff et al., 2001). In sum,

the work of Mandali et al. provides a

key example of the importance of

making direct assessments on the

latent parameters, rather than indirect

inferences that use observed variables

as a proxy for cognitive constructs.

However, we also believe that the

analysis of Mandali et al. can be

improved by taking into account the

recent literature on statistical methods

for cognitive models. First, Mandali

et al. use a two-step approach,

where the parameters are first esti-

mated for each individual using a

Bayesian hierarchical model, and

then placed into a subsequent statisti-

cal analysis (e.g. an ANOVA) to

assess differences between conditions

or groups. However, as shown by

Boehm et al. (2018), this intuitive

approach creates a systematic bias

towards finding effects. Specifically,

the individual parameter estimates

are subject to shrinkage in the initial

hierarchical estimation, which reduces

the within-group variance in the sub-

sequent statistical analyses, and there-

fore inflates the effect sizes. This may

be particularly problematic in Mandali

et al.’s experimental condition with

hard trials and high uncertainty, as

all participants had fewer than 15

trials within the condition, and many

participants had fewer than five trials.

When applying a hierarchical model to
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data this sparse, the individual para-

meter estimates become strongly

drawn to the group mean.

Second, Mandali et al. had to make

a series of analysis choices, but did not

explore or report whether reasonable

alternative choices would leave the

results qualitatively unaffected. For

example, they used null-hypothesis sig-

nificance testing for the observed vari-

ables, Bayes factors for the latent

parameters, and the deviance informa-

tion criterion for the hierarchical

model. This methodological variety

may be driven in part by pragmatic

considerations, but it would neverthe-

less be good to learn the extent to

which the qualitative conclusions are

robust to the different analysis choices

(Evans, in press). Another example is

the choice to exclude trials with

response times under 50 ms. Usually,

response times 5150 ms or 200 ms

are excluded as anticipatory responses.

The choice of this response time

lower-bound exclusion criteria can be

highly influential, as the non-decision

time parameter estimate is constrained

by the fastest responses included in the

data, which can then influence the esti-

mated values of the other parameters.

To address this issue one may perform

a multiverse analysis, where a

Figure 1 A schematic depiction of the diffusion model, and how the latent parameters relate to the raw data from decision-

making tasks. (A) A typical experiment for applying the diffusion model, where participants decide whether the display of pixels contains greater

numbers of white or black pixels. The first and second panels show easy trials, where the display is clearly dominated by white, or by black. The

third and fourth panels show hard trials, where the display is less clearly dominated by white, or by black. (B) The diffusion process underlying the

decision. Decisions for easier trials are generally faster and more accurate, as the drift rate (v) is larger. Note that a refers to the decision

threshold, and t0 refers to the non-decision time. (C) The diffusion model predictions for the choice response time distributions—formed by

combining the choices and times for each decision across the experiment—shown separately for easy and hard trials. (D) The process of

estimating the latent parameters using the diffusion model, where the diffusion predictions are compared to the actual data. In this case, all

parameters are the same for easy and hard trials, except for drift rate, which is larger for easier trials.
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researcher chooses a range of possible

exclusion criteria and assesses how

these choices affect the results

(Steegen et al., 2016).

To conclude, Mandali et al. should

be commended for using a modern

framework (hierarchical drift diffu-

sion model; Wiecki et al., 2013) for

applying the diffusion model in order

to learn about the latent cognitive

processes that cause performance dif-

ferences between clinical groups. As

in most other empirical work, alterna-

tive analyses are possible and may or

may not support the same conclusion.

As a general solution, anonymized

data could be shared in a public repo-

sitory, allowing other researchers to

conduct reanalyses and examine the

robustness of the conclusions.

Although the diffusion model is a

powerful weapon in the arsenal of

cognitive science, researchers unac-

quainted with state-of-the-art model-

ling may find it difficult to wield.

This difficulty in application has fru-

strated the model’s broader adoption.

In the future, we hope to implement a

framework for applying the diffusion

model within the program JASP

(JASP Team, 2018), which will

incorporate the most recent, robust

methodologies within a simple point-

and-click interface, allowing researchers

to make robust inferences on the latent

parameters of the diffusion model.
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Glossary
Bayesian hierarchical model: Bayesian parameter estimation involves estimating a distribution of possible values for each parameter, rather than

only a single point estimate, taking into account uncertainty in the true value. Adding a hierarchical structure to the model means that latent

parameter values are estimated for each individual participant, with all individual parameter values constrained to follow a group-level distribution.

JASP: An open-source statistical software package, catering to a similar audience as SPSS, which implements common statistical analyses using both

frequentist and Bayesian methods. JASP also implements more advanced statistical methods, such as structural equation models and network

analyses, and within the near future will aim to implement cognitive models, such as the diffusion model. More information can be found at https://

jasp-stats.org/.

Shrinkage: A phenomenon that occurs within hierarchical models where the estimated parameter values for each individual become more alike to

one another than when estimated independently, due to the constraint of all individuals having to follow the group level distribution. Although

shrinkage is generally seen as a positive, making estimation more robust when there are few data per participant, shrinkage also decreases the

heterogeneity in parameter estimates for participants within the same group, which becomes problematic in the case of two-step analysis

approaches.
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