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abstract

PURPOSE Institutional efforts toward the democratization of cloud-scale data and analysis methods for cancer
genomics are proceeding rapidly. As part of this effort, we bridge two major bioinformatic initiatives: the Global
Alliance for Genomics and Health (GA4GH) and Bioconductor.

METHODS We describe in detail a use case in pancancer transcriptomics conducted by blending imple-
mentations of the GA4GH Workflow Execution Services and Tool Registry Service concepts with the Bio-
conductor curatedTCGAData and BiocOncoTK packages.

RESULTS We carried out the analysis with a formally archived workflow and container at dockstore.org and
a workspace and notebook at app.terra.bio. The analysis identified relationships between microsatellite instability
and biomarkers of immune dysregulation at a finer level of granularity than previously reported. Our use of standard
approaches to containerization and workflow programming allows this analysis to be replicated and extended.

CONCLUSION Experimental use of dockstore.org and app.terra.bio in concert with Bioconductor enabled novel
statistical analysis of large genomic projects without the need for local supercomputing resources but involved
challenges related to container design, script archiving, and unit testing. Best practices and cost/benefit metrics
for the management and analysis of globally federated genomic data and annotation are evolving. The creation
and execution of use cases like the one reported here will be helpful in the development and comparison of
approaches to federated data/analysis systems in cancer genomics.
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INTRODUCTION

Broadly stated, the computational initiatives of the
Global Alliance for Genomics and Health (GA4GH)
concern improvements in the efficiency of data man-
agement and analysis at a global level.1 Consortium-
generated genome-scale data sets should be uniformly
and securely managed in globally accessible systems,
and analytic tools should be deployed on the data within
these systems, minimizing investigator efforts de-
voted to data downloads and system configuration
and eliminating the need for local high-performance
computing infrastructure. The potential for federated
data management and computation implicit in this
vision is in contrast to the highly distributed, localized
nature of bioinformatic method development and
analysis prevalent to date.

In this article, we examine an approach to combining
the GA4GH Tool Registry Services (TRS) and Workflow
Execution Services (WES) concepts, as implemented
in dockstore.org2 and the Broad Institute Cromwell
workflow execution engine, with data, annotation, and

software resources and practices developed in the
Bioconductor project.3,4 The goal of an agile bio-
informatic resource ecosystem requires principles
of resource distribution and management that are
coming into focus as new resources are brought to
bear on problems of increasing size and importance.
In this context, resources include data, annotation,
software, documentation, analysis environments, and
architectural materials related to overall system func-
tion, security, and evolution. We illustrate GA4GH-
Bioconductor blending for working bioinformaticians
by stepping through a problem in pancancer tran-
scriptomics, using standard approaches to defining and
distributing a container, and carrying out the analysis in
the Broad Institute Terra computing environment.

METHODS

Use Case Definition

Systematic associations between microsatellite insta-
bility (MSI) and expression of biomarkers of immune
activation have been repeatedly reported, as illustrated
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in Figure 5C of the 2018 pancancer analysis of driver
mutations by Bailey et al.5 These authors used The Cancer
Genome Atlas (TCGA) expression data on tumors from
colon or rectum, stomach, and uterine corpus, comparing
scatterplots of expression of CD8A, CD8B, CD274, PDCD1,
and PDCD1LG2 across strata defined by the MSIsensor
measure of MSI,6 with the threshold set at a value of 4.
Figures 1A to 1C show boxplots of CD8A (selected for
reference from the panel of five genes in Bailey et al5)
distributions, separating colon from rectal tumors. Our use
case was defined as follows: expand on the analysis of
Bailey et al5 across all TCGA tumor types, with the aim of
establishing false discovery rates (FDRs) for hypotheses
asserting a linear trend between the MSIsensor measure of
MSI and expression levels of members of a freely chosen
set of genes.

An illustration of the trend analysis is provided in Figure 1D,
in which a robust linear regression line is superimposed on
the scatterplot relating MSIsensor score to average ex-
pression of CD8A in testicular germ cell cancer (TGCT). The
FDRs will be computed, adjusting for batch effects by
allowing a fixed effect for RNA sequencing (RNA-seq)
assay plate in the tumor type–specific regression models.
The gene set that will be analyzed for all tumors is com-
posed of 21 genes. The set is made up of 10 prognostically
adverse and 10 prognostically favorable genes, as enu-
merated by Gentles et al7 in 2015, along with CD8A.

Computational Approach

Figure 2 provides an overview of the components of the
approach to this analysis.

Data resources. We use Bioconductor 3.10 in R version
3.6.0 to obtain TCGA expression measures via the
curatedTCGAData package.8 The measures denoted
RNASeq2GeneNorm are extracted for each tumor type.
These measures are upper-quartile normalized RSEM9

TPM gene expression values; in the analyses to be re-
ported, we add 1 to each value and transform using base 2

logarithms. MSIsensor scores for 10,783 TCGA samples
are available in the dingMSI data element of the Bio-
cOncoTK package.10 These values are derived from Table
S5 of the 2018 report by Ding et al.11

Containerization of software infrastructure and data. The
Bioconductor project manages Docker containers that
provide complete Linux infrastructure to support installation
and use of . 1,700 Bioconductor software packages and
all their dependencies. We produced a container that in-
cludes the curatedTCGAData and BiocOncoTK packages
and then executed code to retrieve and serialize curated
versions of the expression and phenotype data for 33 TCGA
tumors within the container. These serialized per-tumor
MultiAssayExperiment instances are managed by facilities
of the Bioconductor ExperimentHub package.12 The hub
defined by this package combines an SQLite database of
metadata about all hub components with a collection of file
references to serialized data instances or remote resources.
Requests for resources optionally include verification steps
to determine whether a given resource in the hub requires
updating. We chose to include the serialized TCGA data
within the container to achieve persistence of this data
image; the resulting container has a size of 4 GB. On
a MacBook Air (2017 model), the container provides an R
session within 5 seconds and delivers in-memory random
access to all TCGA BRCA expression and clinical data
within 30 seconds.

Workflow programming and component unit tests. Two
programs in the Workflow Description Language (WDL)13

are present in the inst/scripts/msireg folder of version 1.5.3
of the Bioconductor BiocOncoTK package. The GitHub
repository for this package14 is used to register the WDL
programs in dockstore.org. The workflow programs specify,
using the scatter command, that computations for each
gene in a gene list are to be run in parallel and that gene-
specific computations for each tumor in TCGA are likewise
run in parallel. The current version of WDL does not support

CONTEXT

Key Objective
How can new concepts emerging from the Global Alliance for Genomics and Health help cancer scientists and clinicians do

their work?
Knowledge Generated
New protocols for tool registration and workflow execution can be combined with easy-to-use open-source software and

interactive notebook systems to broaden our knowledge of the impacts of tumor mutation profiles on gene expression.
When mutation profiles are viewed along a spectrum, we can identify situations in which gene expression varies smoothly
with a measure of mutation load.

Relevance
As genome sequencing costs decline, clinics will have access to whole-genome sequences, the interpretation of which will

have implications for therapeutic choices. Informatic tools that integrate expression and genotype can bemade easy to use,
and with cloud computing, reliable and rapid interpretation of complex genomic data can be achieved.
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nested scatter commands, so the tumor-level computations
must be expressed in an external program that is imported
to the program for gene-level computations. The WDL
programs specify the desired hardware configurations in
terms of the Docker container supplying system resources,
boot and user disk sizes, volume of RAM, and maximum
number of retries for failed tasks. These programs drive the
data acquisition and analysis by calling R scripts in the
BiocOncoTK package that are mirrored to globally acces-
sible Google Storage buckets. These scripts make use
of curatedTCGAData, BiocOncoTK, and ExperimentHub
packages. Unit tests for the scripts are present in the
BiocOncoTK package, and these tests are run nightly to
verify that any changes to these packages in Bioconductor
do not adversely affect this analysis.

Workflow execution. Version 45 of the Cromwell WDL ex-
ecution engine is available for use at app.terra.bio. Upon
publishing the workflow at dockstore.org, a user can ac-
tivate a control labeled Run in Terra. The browser is then
directed to define a Terra workspace in which the workflow
can be inserted. The user is prompted to specify inputs
(values for any variables that do not have bindings in the
WDL) and start the job. The Terra system provides basic
facilities for monitoring job progress, and final results are
delivered to a workspace-specific Google Storage bucket.

Analysis notebook. All computations related to data
preparation, inference, and visualization are recorded
and replayable in a Terra Jupyter notebook. Figure 3
provides a screenshot of this notebook, illustrating how
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FIG 1. Illustration of two approaches to assessing tumor type–specific relationships between microsatellite instability
and gene expression. (A-C) Qualitative reproduction of findings in Figure 5C of Bailey et al5: (A) colon adenocarcinoma
(COAD), (B) stomach adenocarcinoma (STAD), and (C) uterine corpus endometrial carcinoma (UCEC). (D) Robust
linear regression fit of mean expression of CD8A as a function of MSIsensor score as estimated for every The Cancer
Genome Atlas tumor in Ding et al.11 TGCT, testicular germ cell tumor; tpm, transcripts per million.
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code, narrative, and data visualizations are sequenced
in interactive exploration.

Statistical Methods

We evaluated the relationship between MSIsensor scores
and expression of selected genes in two ways. We used two-

sample t tests comparing samples with MSIsensor scores
above and below the threshold of 4. We computed tests for
trend between log(MSIsensor score + 1) and gene ex-
pression, allowing a fixed effect for assay plate, with linear
regression. FDRs for these tests were computed using the
method of Benjamini and Hochberg.15

FIG 2. High-level overview of components of the analysis. R/Bioconductor is used to curate the microsatellite instability and expression data from The
Cancer Genome Atlas andmanage source code composed in R andWorkflow Description Language (WDL) to specify the analysis. A Docker container is
used to collect in a fully reproducible way all software infrastructure needed to execute the analysis. Dockstore is used to register code and container for
durable public access and manage the conveyance of the workflow to the Terra platform, where the Cromwell workflow execution service manages the
creation of the computational and storage environments where the analysis is carried out.
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FIG 3. Screenshot of a segment of the Jupyter notebook recording exploratory and inferential computations for the pancancer transcriptomic use case. The
code segments address package attachment and installation and production of graphics depicting sample sizes and distributions of MSIsensor scores for all
tumor types in The Cancer Genome Atlas.
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RESULTS

The WDL workflow was completed in Terra in 33 minutes.
Downstream computations in the Jupyter notebook pro-
duced Figures 1, 4, and 5 in , 1 minute. The estimated
Google Cloud Platform charge for the analysis reported here
is $10.00, exclusive of resources consumed to construct
the Docker container.

There are 693 (21 × 33) tumor type by gene combinations
to be evaluated. Figures 1A to 1C present simple stratified
comparisons, with the MSIsensor score threshold set at 4.
Figure 1D unpacks the data on TGCT, for which all MSI-
sensor scores were , 4. The robust linear regression fit
indicates that average CD8 expression decays mono-
tonically with increasing MSIsensor scores. This finding is
presented cautiously in light of the remark by Bailey et al
that MSIsensor scores “below 4 cannot distinguish reliably
between MSI-Low and MSS.”5(pe6)

When the 693 stratified comparisons are conducted
using the Welch t test, 40 tumor type–gene pairs provide
evidence of a relationship between MSI and expression
with Benjamini-Hochberg FDR estimates of ≤ 5%. The
40 significant findings are depicted in Figure 4. An or-
ange line joining a tumor to a gene indicates that for that
tumor type, MSIsensor score . 4 is associated with
higher expression of the gene (blue line, lower expres-
sion). Gene symbols in orange boxes have higher expression

levels associated with unfavorable prognosis (light blue box,
favorable prognosis), according to Gentles et al.7

Figure 5 presents plate-adjusted linear regression tests of
association between MSIsensor scores and gene expres-
sion. Of the 693 tumor type–gene pairs evaluated, 246
exhibited significant trend tests (FDR , 5%) in the pres-
ence of adjustment for plate effects. The layout of the graph
aims to minimize edge crossings. When MSI associated
with a given tumor type is linked to a prognostically un-
favorable gene (symbol in orange box), the association is
always positive (134 of 134 significant pairs). When the link
is to a prognostically favorable gene, the association is
almost always negative (101 of 112 significant pairs).

We conclude that there is a prima facie case for considering
the full spectrum of MSIsensor measures of MSI as
a component of genomic analysis of tumor progression and
treatment response, recognizing that the data configura-
tions for different tumor types will often suggest analyses
that are more detailed than the linear regressions applied
uniformly in this use case. Further work to accommodate
bimodality and heteroskedasticity in expression and ac-
commodate sparsity in distribution of MSIsensor scores will
lead to more secure inferences.

DISCUSSION

This analysis was conceived as a vehicle for exploring
a number of cross-cutting concerns in the democratization
of genome-scale data and analysis. We tackled a problem of

COAD STAD DLBCUCECGBM KICH BLCA LIHC PAADLGG

FOXM1 BIRC5 TOP2ANME1 CCNB1CEP55 TYMS CENPFCDKN3 ITM2BCBX7CD2CREBL2SATB1 NR3C1TMEM66 KLRK1FUCA1 CD8A

FIG 4. Existence and direction of significant associations (false discovery rate, 5%) between MSIsensor score. 4 and mean expression of selected genes
for selected tumor types. Gene symbols in light blue boxes are described as prognostically favorable in Gentles et al7; symbols in orange boxes are
prognostically unfavorable. A blue line between tumor type and gene indicates that MSIsensor scores. 4 associated with that tumor type are associated with
decreased expression of the target gene (orange line, increased expression). BLCA, bladder urothelial carcinoma; DLBC, lymphoid neoplasm diffuse large
B-cell lymphoma; COAD, colon adenocarcinoma; GBM, glioblastoma multiforme; KICH, kidney chromophobe; LIHC, liver hepatocellular carcinoma; LGG,
brain lower-grade glioma; PAAD, pancreatic adenocarcinoma; STAD, stomach adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
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moderate scale, surveying processed RNA-seq expression
data for 33 TCGA tumor types. We aimed to create a scal-
able, reproducible, and extensible analysis to address
a relatively simple question concerning associations between
MSI measures and gene expression patterns within TCGA
tumor types. There were three main phases of development.

In the first phase, we assessed the scope of software
components and persistent data required to execute the
use case and produced a DockerHub-registered container
provisioned to carry out the planned analysis. We explicitly
incorporated all RNA-seq expression data for all TCGA
tumors in this container.

In the second phase, we composed R scripts, and WDL
workflows based on these scripts, to filter TCGA expression
data managed in the Bioconductor ExperimentHub via
the curatedTCGAData package. The scripts and WDL
programs were added to the Bioconductor BiocOncoTK
package and archived on GitHub. This archive was reg-
istered in dockstore.org and made available for use in the
Broad Institute Terra environment via the Dockstore Ap-
plication Programming Interface. A thorough tutorial on
using Dockstore for general workflow management and
publication is provided in the video at https://youtu.be/
RYHUX9jGx24. The filtering of TCGA data and merging
of MSIsensor scores were carried out with the Cromwell

workflow execution engine in Terra. This produced an R
data frame with 200,193 rows (21 rows for each of the 9533
primary tumor samples) in a Google Storage bucket.

The third phase of work involved interacting with this data
frame in a Jupyter notebook within Terra to explore the data
and modeling concepts (Fig 1) and derive the bipartite
graphs (Figs 4 and 5). These interactions are recorded in a
publicly accessible Google Colaboratory notebook. Figure 3
provides a screenshot of part of this notebook.

This analysis could have been carried out completely in R
with Bioconductor or in any resource supporting statistical
analysis of TCGA data, such as any of the Cancer Genomics
Cloud projects.16 Adoption of the container plus workflow
protocol of dockstore.org provided convenient access to
Google Compute Platform facilities mediated through the
Broad Institute app.terra.bio. The environment configuration
is specified in WDL, and machines are started and stopped
as required by workflow tasks. The workflow is parame-
terized by WDL inputs, in this case the sets of tumors and
genes. Recomputing the workflow for different inputs is a
matter of modifying lists of symbols and pressing a button.

The conveniences of dockstore plus Terra for expressing
and executing complex analytic workflows, fully re-
producibly, are compelling. We conclude with a con-
sideration of certain aspects of the Bioconductor software/

ACC CHOLUCS UVM BLCABRCA COADESCA GBMHNSCKICHKIRC KIRPLGG LIHCLUAD LUSC MESOOV PAADPCPGPRAD SARC SKCMSTAD TGCTTHYM UCEC

CCNB1 CDKN3 CENPFFOXM1 TOP2ATPX2 CD2KLRB1 KLRK1CEP55 CBX7NME1 SATB1 BIRC5 CD8ACREBL2ITM2B TMEM66 FUCA1NR3C1 TYMS

FIG 5. Bipartite graph presenting tumor type–gene pairs exhibiting significant linear association between log-transformed estimated MSIsensor score and
log-transformed gene expression. Gene symbols in light blue boxes are described as prognostically favorable in Gentles et al7; symbols in orange boxes are
prognostically unfavorable. A blue line between tumor type and gene indicates that MSIsensor scores associated with that tumor type are approximately
linearly associated with decreased expression of the target gene (orange line, increased expression). ACC, adrenocortical carcinoma; BLCA, bladder
urothelial carcinoma; BRCA, breast invasive carcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM,
glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP,
kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LGG, brain lower-grade glioma; LUAD, lung adenocarcinoma; LUSC, lung
squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromo-
cytoma and paraganglioma; PRAD, prostate adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma;
TGCT, testicular germ cell tumors; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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analysis/data ecosystem that will add value to the con-
tainer/workflow-oriented framework as it evolves.

Bioconductor is a self-sufficient framework for conducting
genome-scale data analyses of many kinds. Infrastructure
for genome representation and annotation is substan-
tial and mature, packages for state-of-the-art statistical
methods are constantly being added, and various ap-
proaches to scalable use of memory and parallel computing
facilities are readily available. The growth of Bioconductor
and its communities of users and developers is in part
a result of this capacity for creating self-sufficient, stable,
well-provisioned environments for investigators and labo-
ratories. Reliability of the system is rooted in high-frequency
continuous integration testing of all packages. Reliability of
specific computing activities is rooted in part in the com-
mitment to protocols for software packaging, documenta-
tion and testing, emphasizing self-describing data structures
for annotation (always documenting the reference build to
which any genomic coordinate refers), and experiments
(tightly binding metadata and sample data to assay data).
Insofar as the development of components of the container
plus workflow framework take us outside standard practices
underlying the Bioconductor ecosystem, there are risks of
systematic loss of key sources of reliability.

To partly mitigate these risks in this example, we defined
unit tests for the R scripts that manipulate TCGA data in our
workflow. These tests are now part of the BiocOncoTK
package and thus are run every night. Should any aspect of
infrastructure or dependent software or data change in
a way that alters the outputs of these scripts, the Bio-
cOncoTK check will fail, and its developer will be prompted
to undertake repair of the associated code. In principle, this
practice of incorporating workflow components into contin-
uously integrated packages can extend to incorporating and

testing the workflow itself. A basic question is how this can be
conducted independently of the container that workflow used
in its primary application. By design, the container plus
workflow registered on dockstore.org will have predictable
behaviors and thus would not seem to need continuous
testing. But if the workflow is to have value in reuse over time,
its components should be regularly tested in the evolving
ecosystem of which it is a part. The testing protocol imple-
mented for this workflow is limited, and further research and
development on the general topic of cost effectiveness of
testing workflow accuracy and durability are warranted.

In summary, new approaches to management and analysis
of globally federated genomic data and annotation provide
new opportunities for bioinformaticians. We describe ex-
perimentation with the GA4GH TRS and WES frameworks,
with deployments at dockstore.org and execution in the
Broad Institute app.terra.bio. Future work will demonstrate
how to relax platform dependence of the solution to the use
case presented here, abstracting from the specific data
model and execution system used.

The objective of democratizing cloud-scale data and
analysis methods for human genomic research is coming
into focus. Durable solutions must respect rapidity and
disruptiveness of evolution in the technologies of biologic
experimentation and computing. It is hoped that the cre-
ation and execution of use cases like the one reported here
will be helpful in the comparison of different approaches to
the use of containers and federated data/analysis systems
in cancer genomics. Specifically, we believe that the
tractability and reproducibility of clinical research efforts
involving computational analysis of cutting-edge assays
carried out on newly assembled cohorts will be greatly
enhanced through use of the GA4GH-based concepts and
tools outlined here.
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