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Abstract Natural killer (NK) cells are immune cells that
play a crucial role against viral infections and tumors. To
be tolerant against healthy tissue and simultaneously attack
infected cells, the activity of NK cells is tightly regulated
by a sophisticated array of germline-encoded activating and
inhibiting receptors. The best characterized mechanism of
NK cell activation is “missing self” detection, i.e., the recog-
nition of virally infected or transformed cells that reduce
their MHC expression to evade cytotoxic T cells. To mon-
itor the expression of MHC-I on target cells, NK cells
have monomorphic inhibitory receptors which interact with
conserved MHC molecules. However, there are other NK
cell receptors (NKRs) encoded by gene families showing a
remarkable genetic diversity. Thus, NKR haplotypes con-
tain several genes encoding for receptors with activating
and inhibiting signaling, and that vary in gene content and
allelic polymorphism. But if missing-self detection can be
achieved by a monomorphic NKR system why have these
polygenic and polymorphic receptors evolved? Here, we
review the expansion of NKR receptor families in differ-
ent mammal species, and we discuss several hypotheses that
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possibly underlie the diversification of the NK cell recep-
tor complex, including the evolution of viral decoys, peptide
sensitivity, and selective MHC-downregulation.
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Introduction

Natural killer (NK) cells are large granular cells that play a
pivotal role in controlling viral infections and tumors (Vivier
et al. 2008). To be tolerant to healthy tissue, and yet attack
infected cells, the activity of NK cells must be tightly regu-
lated. Unlike B and T cells, NK cells do not undergo gene
rearrangements to generate the repertoire of cell surface
receptors. Instead, they use germline-encoded inhibiting and
activating receptors.

Inhibiting NK cell receptors is characterized by the pres-
ence of immunoreceptor tyrosine-based inhibitory motifs
(ITIM) in their cytoplasmic tail that can decrease the state
of activation (Vivier et al. 2004). Activating receptors lack
ITIMs, but contain a positively charged amino acid (arginine
or lysine) in their transmembrane region, and are associated
with signaling adaptor molecules containing immunore-
ceptor tyrosine-based activating motifs (ITAM), such as
DAP10, DAP12, or Fcγ R (Lanier 2005). NK cells integrate
signals derived from both types of receptors upon cellu-
lar contact, thereby determining whether or not they should
initiate effector functions.

Many inhibiting NK cell receptors interact with major
histocompatibility complex (MHC) class I proteins, which
are ubiquitously expressed on the surface of nucleated cells.
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Because of the abundant expression of MHC-I on many
cells, NK cells remain non-responsive to healthy tissue. But
when cells have a decreased expression of MHC-I, which
can occur during certain viral infections or in tumors, they
can become target for NK cell killing. The process by
which NK cells detect cells with aberrant MHC-I expres-
sion has been coined by Kärre et al. as “missing-self”
detection (Ljunggren and Kärre 1990).

For the development of functional NK cells in the
bone marrow, interactions between inhibiting receptors and
MHC-I are necessary (Raulet et al. 1997; Raulet and Vance
2006; Höglund and Brodin 2010). This process is called
NK cell education and determines the threshold for acti-
vation in mature NK cells. Depending on the strength of
the inhibitory signals received during development, every
NK cell balances its activation threshold as a rheostat to
adapt to the particular MHC phenotype of their host (Brodin
et al. 2009). The expression of both activating and inhibit-
ing receptors during development is thought to occur in
a sequential and stochastic manner (Raulet et al. 1997;
Moretta et al. 1990; Valiante et al. 1997; Husain et al. 2002),
giving rise to a large NK cell repertoire composed of 3000–
35,000 functionally different NK cell subsets (Horowitz
et al. 2013).

Evolution of NK cell receptors

Genes encoding NK cell receptors are clustered in two main
gene complexes: the natural killer complex (NKC) encod-
ing C-type lectin-like molecules, and the leukocyte receptor
complex (LRC), encoding the immunoglobulin-like recep-
tors (Trowsdale 2001). Although these gene clusters are
present in several species, there is extensive evidence for
species-specific expansion of different NK cell receptor
genes (Averdam et al. 2009; Futas and Horin 2013; Gag-
nier et al. 2003; Guethlein et al. 2007a, b; Iizuka et al.
2003; Kelley et al. 2005; McQueen et al. 1998; Takahashi
et al. 2004; Trowsdale 2001; Wilhelm et al. 2002, and see
Fig. 1), resulting in a fascinating complexity of interac-
tions between MHC-I and NK cell receptors. The NK cell
receptor expansions known so far are described in detailed
below.

Expansion of NK cell receptors in primates

In humans, the main NK cell receptors for MHC-I are
the killer immunoglobulin-like receptors (KIRs), which are
located in the LRC on chromosome 19q13.4 (Wende et al.
1999). The haplotypes encoding KIRs exhibit great dif-
ferences in gene content and allelic polymorphism, with
up to 17 genes encoded over approximately 150 kilo
bases (Parham 2005; Martin et al. 2000; Wende et al. 1999;

Barten et al. 2001; Wilson et al. 2000; Trowsdale 2001). The
marked differences in gene content are thought to be the
result of non-reciprocal crossovers in the tandemly arranged
genes, causing hybrid loci or contraction and expansion of
the haplotype (Vilches and Parham 2002; Martin et al. 2003;
Martin et al. 2000; Wilson et al. 2000; Wende et al. 1999).

KIRs can have either two (KIR2D) or three (KIR3D)
extracellular immunoglobulin-like domains and contain
either long cytoplasmic tails with ITIM motifs or short
cytoplasmic tails comprising ITAMS (Vilches and Parham
2002). An exception is KIR2DL4 which has a cytoplas-
mic long tail and possesses a positively charged residue
in the transmembrane region, allowing association with the
activating protein Fcγ R (Kikuchi-Maki et al. 2005).

KIRs started expanding between 31 and 40 million years
ago (Martin et al. 2000), resulting in a rapid and species-
specific diversification in primates (Martin et al. 2000).
Old world monkeys, apes, and humans have a common
organization of the KIR gene complex, sharing four phy-
logenetic lineages (I,II,III, and V), which are characterized
by their structure and specificity for MHC-I (Parham and
Moffett, 2002; Vilches and Parham 2013 and see Table 1).
In humans, the lineage I KIR binds HLA-G-peptide com-
plexes (Rajagopalan 2010), lineage II KIRs recognize epi-
topes A3/A11 on HLA-A, and Bw4 on HLA-A and B, and
lineage III KIRs bind to HLA-C epitopes C1 and C2 (Trows-
dale et al. 2001). These epitopes are mutually exclusive and
differ in unique residues that are involved in the KIR-pMHC
interaction (Trowsdale et al. 2001). The dimorphism among
HLA-C molecules at position 80, i.e., either asparagine or
lysine, determines the classification of HLA-C1 and HLA-
C2 alleles (Colonna et al. 1993; Fan et al. 2001). The
Bw4 epitope, on the other hand, is defined by residues 77–
83 (Sanjanwala et al. 2008; Gumperz et al. 1997; Gumperz
et al. 1995). As shown by a vast range of structural and
functional studies (Colonna et al. 1993; Vivian et al. 2011;
Schafer et al. 2014; Saunders et al. 2015), single amino acid
substitutions in these key residues can have large effects on
KIR binding. Ligands for KIR lineage V have to still be
identified.

In the LRC, there are some differences in gene content
and specificity of the KIRs across primate species. Impor-
tantly, the marked differences go hand in hand with the evo-
lution of MHC-I genes. In macaques, carrying duplicated
MHC-A and MHC-B genes (Daza-Vamenta et al. 2004; Shi-
ina et al. 2006), the Bw4 motif is important for binding of
a large collection of several lineage II KIRs (Adams and
Parham 2001; Bimber et al. 2008; Blokhuis et al. 2010,
2011; Kruse et al. 2010; Schafer et al. 2014). Consistent
with the observation that macaques lack MHC-C molecules,
they have only one lineage III KIR, with members
that do not seem to bind any MHC-class I (Bimber
et al. 2008; Hershberger et al. 2001). Orangutans, on the
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Fig. 1 Cartoon of the NK cell receptor complexes. The NK cell recep-
tor complexes. This figure shows a schematic organization of some of
the genes encoded in the NKC (left) and in the KIR region of the LRC
(right) for different species. The NKC encodes genes from the CD94
(yellow boxes), NKG2 (blue), and Ly49 (red) families. While higher
primates have one copy of a non-functional Ly49 gene (white boxes),
lemurs have one functional Ly49, and mice encode 15 Ly49 genes,
11 of which are functional. Lemurs have expanded their CD94/NKG2

system, with three CD94 genes, and eight NKG2 genes. KIRs (orange
boxes) are encoded in the LRC. All higher primates share a common
organization within this gene complex. Between the four framework
genes, i.e. KIR3DL3, KIR2DL4, KIR3DL2, (gray boxes), and the
pseudo gene KIR3DP1 (white boxes), the gene content varies across
species. Lemurs have only one non-functional copy, and mice do not
encode any KIR in the LRC. The gene order was taken from the
literature sources mentioned in the text and from Kelley et al. (2005)
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Table 1 Ligands of activating and inhibiting human KIRs

Lineage Ligand

Activating KIR

2DS1 III HLA-C2

2DS2 III HLA-C1, HLA-A*11:01

2DS3 III unknown

2DS4 III HLA-C*05:01, A*11:02, C*16:01

2DS5 III unknown

3DS1 II unknown

Inhibiting KIR

2DL1 III HLA-C2

2DL2 / 2DL3 III HLA-C1, HLA-C2, HLA-B*46:01, and

HLA-B*73:01 (C1 epitope)

2DL4 I HLA-G (might be an intracellular

interaction)

2DL5 I unknown

3DL1 II HLA-A with Bw4 motif, HLA-Bw4

3DL2 II HLA-A3/A11

3DL3 V unknown

other hand, carry fewer MHC-A and MHC-B loci than
macaques, and encode only one lineage II KIR accordingly.
Orangutans were the first primates to evolve MHC-C (C1
epitope), corresponding to the expansion of their lineage III
KIRs (Guethlein et al. 2007b). Lineage III KIRs expanded
further in chimpanzees, correlating with the evolution of the
C2 epitope in MHC-C. Chimpanzees have both inhibiting
and activating KIRs, and eight of them recognize MHC-C
only (Abi-Rached et al. 2010).

Humans, in contrast, have only seven lineage III KIRs
and two lineage II KIRs, with three KIR genes showing
specificity for HLA-C, including the inhibiting KIR2DL2/3,
and KIR2DL1, and the activating KIR2DS2 (see Table 1).
Additionally, humans are the only species that have under-
gone specific expansion in the telomeric part of the KIR
complex (Abi-Rached et al. 2010). While the centromeric
part of human KIR haplotypes is more similar to chim-
panzee KIR haplotypes (Abi-Rached et al. 2010), the
telomeric region in humans accumulated genes that show
mainly activating potential, and that have little or no bind-
ing affinity to HLA-I molecules, such as KIR2DS2, 2DS3,
and 2DS5 (Moesta et al. 2010; Pyo et al. 2010). This
clear distinction between centromeric and telomeric genes
allowed for the distinction of the two haplotype groups, A
and B. Both haplotypes are present in all human popula-
tions (Hollenbach et al. 2010) (including Japanese Yawata
et al. 2006; Amerindian Gendzekhadze et al. 2009;
African Norman et al. 2013; Polynesian Nemat-Gorgani
et al. 2014), differ in frequency and are maintained by

balancing selection (Yawata et al. 2006), indicating their
essential role for long-term survival (Gendzekhadze et al.
2009).

The other receptor cluster in primates is the NKC. The
main members of these gene families are the Ly49 and the
NKG2 genes. Primates have only one gene of the Ly49
family, which is a pseudo gene, but their NKC encodes sev-
eral NKG2 genes (Renedo et al. 1997; Khakoo et al. 2000;
LaBonte et al. 2001; Guethlein et al. 2002). Members of
the NKG2 family include the inhibiting NKG2A, the acti-
vating NKG2C, NKG2E, and NKG2D, and the NKG2F, for
which no function has been yet determined (Lazetic et al.
1996). NKG2 proteins dimerize with the invariant CD94
molecule on the cell surface, which contains a short cyto-
plasmic domain and transduces the activating or inhibiting
signal (Lazetic et al. 1996). An exception is NKG2D, an
activating receptor, which shares little sequence similarity
with the other members, and associates with the activating
molecule DAP10 on the cell surface.

The ligands of NKG2A and NKG2C include the con-
served and non-classical HLA-E molecule in humans and
Qa-1b in mice (Borrego et al. 1998; Braud et al. 1998;
Petrie et al. 2008; Zeng et al. 2012), which present peptides
derived from the leader sequences of the classical HLA-A,
HLA-B, and HLA-C molecules in humans, and from H2
molecules in mice. The engagement of NKG2A by HLA-E
or Qa-1b inhibits the activity of NK cells, preventing tar-
get cell lysis. In higher primates, both NKG2A and MHC-E
(i.e., receptor and ligand) are very well conserved (Shum
et al. 2002), presenting a system for detection of “gross”
MHC-I expression, that unlike KIRs is highly conserved.

Lemurs, on the other hand, exhibit only one single non-
functional KIR gene in their LRC, but they have diversified
the genes encoding CD94 and NKG2 (Averdam et al.
2009). Located in lemur chromosome 7, the NKC com-
prises three CD94 genes and five to eight inhibiting and
activating genes. Like KIRs in higher primates, the CD94
and NKG2 genes in lemurs are highly polymorphic, with
many of the polymorphic positions representing function-
ally relevant sites, i.e., residues involved in binding of
MHC class I ligands and their presented peptides (Aver-
dam et al. 2009). The homologs of HLA-E have not been
yet identified in prosimians, but the ligands for the NKG2
receptors are expected to be the lemur MHC-I molecules
(Averdam et al. 2009).

Importantly, Averdam et al. showed that all possible
CD94/NKG2 combinations are able to form heterodimers
at the cell surface, giving rise to a great combinatorial
diversity. For instance, the combination of three CD94 and
five NKG2 molecules in the gray mouse lemur or three
CD94 and eight NKG2 molecules in the ruffed lemur gives
rise to 15 or 24 different NK cell receptors, respectively,
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(Walter 2011; Averdam et al. 2009). An exchange of the
CD94 or the NKG2 subunit can influence the binding speci-
ficity for MHC class I ligands, changing the functionality
of the NK cell receptors (Averdam et al. 2009). Thus, lower
primates seem to have evolved an alternative system for
variable NK cell receptors.

Expansion of NK cell receptors in rodents

The LRC is located on chromosome 7 in mice and on chro-
mosome 4 in rats (Kirkham and Carlyle 2014; Iizuka et al.
2003; Schenkel et al. 2013). The murine LRC does not con-
tain any of the KIRs that bind MHC-I in humans (Martin
et al. 2002a), but contains orthologs of human GP6 (Trows-
dale et al. 2001), NCR1, RPS9, and LAIR1 (Martin et al.
2003), and genes of the Pir family, which share sequence
identity with the human LILRs (Kubagawa et al. 1999).

Instead of having polygenic and polymorphic KIRs,
rodents have expanded their Ly49 genes, resulting in
a remarkable diversity across different inbred mouse
strains (Kirkham and Carlyle 2014; Iizuka et al. 2003).
While the mouse Ly49 complex comprises at least 20 genes
and pseudo genes (Wilhelm et al. 2002), the variation is
even larger in rats, with 19 functional genes and 15 pseudo
genes (Nylenna et al. 2005; Flornes et al. 2010). Table 2
shows the most important known receptors in mouse strains
studied so far (Rahim et al. 2014). Ly49 receptors in mice
are functionally similar to KIRs in humans, having both
inhibiting and activating receptors, and genes encoding pro-
teins that preferentially bind mouse MHC-I (Schenkel et al.
2013). Although several ligands for activating Ly49 recep-
tors remain unknown, some activating receptors bind viral
encoded proteins (see below).

NK cell receptors in other species

At least five highly conserved polymorphic Ly49 genes
have been found in some equids, including horses, asses
and zebras (Takahashi et al. 2004; Futas and Horin 2013).
By contrast, only one single Ly49 has been found in
cattle (McQueen et al. 1998), domesticated dogs and
cats, and pigs (Gagnier et al. 2003). Cattle have also
functional KIRs (Parham and Moffett 2013; Guethlein et al.
2007a; Allan et al. 2015). Opposite to primate KIRs, which
diverged from the founder gene KIR3DL, cattle expanded
their founder gene KIR3DLX. In every species, the gene
that was not diversified became nonfunctional (Guethlein
et al. 2007a; Dobromylskyj and Ellis 2007). No species
studied so far is known to have two expanded NK cell
receptor families (Parham and Moffett 2013), but several
species diversify neither, keeping both KIR and Ly49 as one
single copy genes (Hammond et al. 2009).

Table 2 Ly49 haplotypes in four known mouse strains with their
response to MCMV (modified from Rahim et al. 2014)

Mouse strain

NOD 129 B6 BALB

Response to MCMV

Susceptible Susceptible Resistant Susceptible

Activating

Ly49D Ly49P Ly49D Ly49L

Ly49H Ly49R Ly49H

Ly49M Ly4UP

Ly49P1

Ly49P3

Ly49U

Ly49W

Inhibiting

Ly49A Ly49Bb Ly49A Ly49A

Ly49Bb Ly49E Ly49Bb Ly49Bb

Ly49C Ly49EC2 Ly49C Ly49C

Ly49E Ly49Gb Ly49E Ly49E

Ly49F Ly49I1
b Ly49F Ly49G

Ly49G2 Ly49O Ly49G Ly49I

Ly49I Ly49Q1 Ly49I Ly49Q

Ly49Q Ly49S Ly49J

Ly49T Ly49Q

Ly49V

Why are NK cell receptors polygenic
and polymorphic?

The evolution of variable NK cell receptor genes is expected
to have been shaped by several factors determining fit-
ness and survival, like pathogen resistance, detection of
polymorphic ligands like MHC-I, and reproductive success
(Parham and Moffett 2013). The inter- and intra-species
gene diversity indicates their rapid evolution. Importantly,
the independent convergent evolution of variable NK cell
receptors in several different species highlights their func-
tional importance. However, the exact evolutionary selec-
tion pressure whereby NK cell receptors became poly-
morphic and polygenic remains unresolved. The conserved
inhibitory receptor NKG2A demonstrates that abnormali-
ties in MHC-I expression, i.e., missing-self, can be detected
without a polygenic and polymorphic NK cell receptor
system. Why then have these polygenic and polymorphic
receptors evolved?
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Reproductive success

Since the divergence from chimpanzees, hominids have
evolved several changes in aspects of locomotion, anatomy,
and reproduction. Two key aspects of this human specific
evolution affect the reproductive success: bipedalism and
larger brain size. The evolution of bipedalism imposed dras-
tic anatomic changes in the size and shape of the human
female pelvis, affecting directly the size of the birth canal.
While the size of the birth canal was decreasing, the evolu-
tion of larger brains was imposing additional challenges for
a successful birth (Parham and Moffett 2013).

The evolution of bigger brain sizes required more blood
supply in the placenta (Leonard et al. 2007), a process
that has been achieved by a remodeling of the uterine
arteries (reviewed in Wallace et al. 2012). Arterial remod-
eling occurs thanks to extra-villous trophoblast (EVT)
cells. EVT are fetal cells invading the uterus, transform-
ing the spiral arteries into large vessels that are able
to provide adequate blood supply to the growing fetus
(Moffett-King 2002). Preeclampsia and recurrent miscar-
riage have been associated with a compromised arterial
remodeling (Wallace et al. 2012).

A successful EVT invasion depends on the interactions
of EVT with uterine NK cells. The activation of uter-
ine NK cells is important for arterial remodeling, as it
results in the release of cytokines, which in turn promote
migration of the trophoblasts (Xiong et al. 2013). Because
EVT uniquely express HLA-C (lacking HLA-A or HLA-B),
and uterine NK cells preferentially express HLA-C-specific
KIRs (Sharkey et al. 2008), several correlations between
reproductive success and particular KIR/HLA-C combina-
tions have been found (Hiby et al. 2004, 2010, 2014).
The presence of HLA alleles in the fetus binding more
inhibiting than activating receptors of the mother’s NK cells
results in compromised arterial remodeling and reduced
fetal growth (Kieckbusch et al. 2014). Accordingly, moth-
ers being homozygous for KIR A haplotypes have a high
risk of developing preeclampsia if the fetus carries one C2
allele, as KIR A homozygous individuals have two copies
of the inhibiting KIR2DL2, which binds strongly to C2
(Hiby et al. 2004, 2010, 2014).

The evolution of larger brain sizes started mainly in
Homo erectus (Robson and Wood 2008) and correlates with
the emergence of KIR B haplotypes that encode more acti-
vating KIRs than KIR A haplotypes. However, the evolution
of more activating KIRs is not always beneficial for repro-
duction, as NK cell-mediated placentation can lead to large
babies that are not able to pass through the birth canal,
causing obstructed labor (Hiby et al. 2014). A successful
placentation is hence dependent on a tight NK cell-mediated
regulation. Thus, the pressure for a successful reproduction
could drive and maintain inhibiting and activating receptors

specific for MHC-I. However, because humans are the only
species with a narrow birth canal requiring deep placenta-
tion (Moffett and Loke 2006), it is not likely that repro-
ductive success would exert sufficient selection pressure to
expand and maintain a set of polygenic and polymorphic
NK cell receptors in other species.

Response to viral infections

Because of the evolutionary arms race between infectious
agents and the host’s immune system, another possible
explanation for the diversification of NK cell receptors
is the selection pressures imposed by various successful
immuno-evasive mechanisms evolved by several pathogens
(Lanier 2008; Sun and Lanier 2009). There is extensive
evidence of associations between particular NKRs and the
viral control caused by viruses, including cytomegalovirus
(CMV), human immunodeficiency virus (HIV-1), and hep-
atitis C virus (HCV).

Role of KIRs in human diseases

Several human studies have provided evidence that some
NKRs may be directly involved in viral control. Associa-
tions between particular KIR alleles and disease outcome
have been found in HIV-1, HCV, and Influenza (Jamil and
Khakoo 2011).

During HIV-1 infection, there is an expansion of
3DS1+NK cells, and this expansion is dependent on the
presence of the Bw4-80I epitope (Alter et al. 2009; Pelak
et al. 2011). The expansion of selected NK cell subsets
could be beneficial to the host due to an immediate and
strong NK cell response. Indeed, individuals carrying these
KIR-HLA combinations showed lower viremia and a slower
progression to AIDS (Martin et al. 2002b). Furthermore, an
increased number of KIR3DS1 (caused by a higher copy
number variants of KIR3DL1/S1) was correlated with a
lower set viral point in the presence of HLA-Bw4-80I (Pelak
et al. 2011). All these studies show an important role of the
KIR3DS1- Bw4-80I pair in the immune response to HIV
infection. However, there is no evidence for direct bind-
ing between KIR3DS1 and HLA-Bw4 molecules (Gillespie
et al. 2007; O’Connor et al. 2007; Carr et al. 2007), suggest-
ing that the KIR3DS1 ligand interactions might be finely
regulated, e.g., via the presented peptide (O’Connor et al.
2015).

NK cells expressing the inhibiting receptors 2DL2/L3
exhibit increased degranulation when they respond to HCV
infected target cells (Amadei et al. 2010). Both 2DL3 and
2DL2 bind HLA-C1 epitopes, but they differ in their bind-
ing affinities, with 2DL2 binding stronger than 2DL3 (Win-
ter et al. 1998). Because of the weaker inhibiting interaction,
homozygous individuals for the 2DL3-HLA-C1 pair control
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HCV infection better and can even experience sponta-
neous clearance (Khakoo et al. 2004; Romero et al. 2008).
Additionally, a protective effect of the activating 3DS1 in
combination with HLA-Bw4-I80 in hepatocarcinoma has
been found in patients with chronic HCV infection (López-
Vázquez et al. 2005).

Studies of human influenza A virus (IAV) have also shed
light on NK cell responsiveness depending on KIR-HLA
genotypes. As shown by multicolor flow cytometry, NK
cells from individuals homozygous for the 2DL3-C1 pair
had a stronger activation (i.e., IFN-γ secretion and degran-
ulation) to IAV infected cells than those homozygous for
2DL1-C2 (Ahlenstiel et al. 2008). Another study of patients
infected with 2009 pandemic IAV strain (H1N1/09) estab-
lished that patients suffering from severe and pathological
reactions against the virus lack functional receptor-ligand
pairs (La et al. 2011). Patients carrying inhibiting 3DL1
but lacking HLA-Bw4 molecules, as well as patients pos-
itive for 2DL1 and lacking HLA-C2 alleles, were higher
in ICU patients relative to healthy controls or patients with
mild reactions against H1N1/09. This study suggests that
a lack of KIR-mediated inhibition might lead to NK cell
dysfunction and with it to an immunopathological outcome.

These few examples mirror the large range of studies
associating KIR-MHC combinations with the outcome of
diseases. However, the lack of well-characterized ligands
for several receptors and specific monoclonal antibodies for
detecting specific KIRs limit the understanding of the pre-
cise molecular mechanisms underlying this associations and
with it the precise functional role of these receptors upon
infection.

Selective downregulation of MHC-I

Several viruses, including Epstein-Barr-Virus (EBV), CMV,
and HIV decrease the expression of MHC-I on the cells they
have infected to escape from the T cell immune responses.
Interestingly, the downregulation does not always affect all
MHC molecules in the same way, and some viruses, e.g.,
HIV and CMV, have evolved mechanisms that target only
particular loci (reviewed in Nash et al. 2014). In humans,
the HLA molecules presenting peptides to T cells (A and B

loci) tend to be downregulated, while those HLA molecules
inhibiting NK cells (C and E loci) remain unchanged, sug-
gesting that selective MHC downregulation could be a viral
strategy to avoid missing-self detection (Table 3).

HCMV encodes several immunoevasin proteins that
selectively downregulate the expression of MHC-I on
the cell surface (Nash et al. 2014), such as US2 and
US11, targeting specific and non overlapping HLA-A and
HLA-B molecules, by promoting their export into the
cytosol for proteosomal degradation (Llano et al. 2003;
Gewurz et al. 2001; Schust et al. 1998). In addition to
selective MHC-downregulation, HCMV encodes proteins
that enhance MHC-I expression to inhibit NK cells. For
example, the peptides from UL40 have a high sequence sim-
ilarity to peptides from HLA-C alleles (Tomasec et al. 2000;
Ulbrecht et al. 2000). By binding to HLA-E, UL40 peptides
can promote its expression on the cell surface, providing a
ligand for NKG2A.

HIV-1 also decreases the expression of particular HLA
alleles. HIV Nef binds to the cytoplasmic tails of the HLA-
A and HLA-B molecules in the ER, re-directing them
to endolysosomal compartments for degradation (Schaefer
et al. 2008). Small differences in the cytoplasmic tails of
HLA-C and HLA-E prevent Nef from hampering their trans-
port to the cell surface, which in turn prevents HIV-infected
cells to be lysed by most NK cells (Gall et al. 1998; Collins
et al. 1998; Cohen et al. 1999).

Kaposi’s sarcoma-associated herpesvirus (KSHV) is
another example of viruses that can evade CTL responses
via locus-specific MHC-I downregulation. KSVH encodes
two membrane-bound ubiquitin E3 ligases, K3 and K5,
which induce rapid internalization and degradation of
MHC-I molecules (Coscoy and Ganem 2000; Ishido et al.
2000), yet with different specificities (Ishido et al. 2000).
While K3 downregulates all four HLA allotypes (i.e., HLA-
A, HLA-B, HLA-C, and HLA-E), K5 impairs the expres-
sion of HLA-A and HLA-B, weakly downregulates HLA-
C, but does not affect the expression of HLA-E (Ishido
et al. 2000). Similarily, the EBV encoded protein BILF1
induces the rapid degradations of multiple HLA-A, -B, and
-E molecules, but hardly affects the expression of HLA-
C (Griffin et al. 2013).

Table 3 Viral proteins inducing locus-specific MHC-I downregulation in humans

Virus protein Downregulated HLA allotypes Expressed HLA allotypes

HCMV US2/US11 HLA-A, HLA-B HLA-C, HLA-E, HLA-G

HCMV UL40 not applicable HLA-E

HIV Nef HLA-A, HLA-B HLA-C

KSHV K5 HLA-A, HLA-B, HLA-C (weakly) HLA-E

EBV BILBF 1 HLA-A, HLA-B, HLA-E HLA-C
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Mouse CMV (MCMV) encodes glycoproteins that inter-
fere with the expression of MHC-I molecules (Wagner et al.
2002). For example, gp40 retains the MHC molecules in
the ER (Ziegler et al. 1997), while gp48 re-routes mature
MHC to endo-lysosomal compartments for degradation
(Reusch et al. 1999). Balancing this broad MHC-I down-
regulation is the MCMV protein gp34, which escorts some
MHC alleles to the cell surface (Kleijnen et al. 1997), and
thereby allows infected cells to escape NK cell mediated
killing.

All these examples highlight the evolutionary importance
of viruses partially downregulating the expression of MHC-
I molecules. The specific targets for MHC downregulation
(such as in HCMV or in HIV-1) illustrate the adaptation of
the viruses to several MHC-I loci. By selectively downregu-
lating MHC-I molecules, some viruses escape from NK cell
responses. Thus, it is possible that the evolution of these var-
ious immunoevasins was driven by the selection pressures
imposed by inhibiting NK cell receptors.

Our in silico studies of evolving host populations infected
with herpes-like viruses that selectively downregulate one
of the two MHC loci in the host (Carrillo-Bustamante et al.
2015b) showed that selective MHC downregulation exerts
selection pressure to evolve specific NK cell receptors. Due
to the infection with such viruses hosts naturally evolve
inhibiting receptors that specialize to one MHC locus, while
loosing their binding affinity to most MHC molecules in the
other locus (Carrillo-Bustamante et al. 2015b). Importantly,
the evolution of these “MHC locus” detectors exploits the
similarity of the MHC alleles within each locus and depends
on the difference between MHC loci. The easier it is to clas-
sify an MHC allele to its locus, the easier it is to evolve
“locus specific” detectors, decreasing the selection pressure
to diversify the genes encoding NK cell receptors. How-
ever, if MHC molecules in one locus resemble alleles from
another locus, it becomes difficult for inhibiting receptors
to discriminate between different MHC-I loci, driving the
evolution of highly specific inhibiting receptors encoded in
polygenic haplotypes.

These studies confirm the importance of MHC molecules
on the evolution of NK cell receptors and are in line with the
observation that inhibiting KIRs recognize motifs shared by
common MHC epitopes, such as HLA-A3/A11, HLA-Bw4,
HLA-C1, and HLA-C2 (Trowsdale et al. 2001). However,
only the HLA-C ligands are locus specific, as the Bw4
epitope is also carried by 25 % of HLA-A alleles (Gonzalez-
Galarza et al. 2011), impeding the discrimination between
HLA-A and HLA-B. Moreover, most HLA-A and HLA-B
alleles (approximately two thirds in each locus) do not carry
these KIR-specific epitopes (Gonzalez-Galarza et al. 2011),
indicating that humans have not evolved optimal HLA-A
or HLA-B detectors. Nevertheless, our results are in perfect
agreement with the emergence of MHC-C specific detectors

in chimpanzees and humans (i.e., lineage III KIRs). Why
only MHC-C specific detectors have evolved remains puz-
zling and suggests that additional evasion mechanisms must
have been involved in the evolution of MHC-A and MHC-B
specific KIRs.

MHC-I decoys in CMV

In addition to selectively downregulating the expression
of MHC I molecules, some viruses use MHC-I like pro-
teins, i.e., decoys, that can directly interact with the NK
cell receptors to modulate the immune response. Examples
of such decoys are the HCMV encoded UL18 binding to
the inhibitory LIR-1 (Prod’homme et al. 2007), and the
MCMV encoded m144, mimicking key structural character-
istics of H-2 molecules (Prod’homme et al. 2007; Natarajan
et al. 2006). Interestingly, UL18 and m144 share more
sequence similarity with MHC-I than they share with each
other, showing that species-specific immune pressure led to
independent acquisition of MHC-I mimics (Natarajan et al.
2006; Farrell et al. 1997).

The most extensively studied MHC decoy is the MCMV
encoded m157 protein. m157 allows MCMV to avoid
NK cell activation by engaging inhibitory receptors with
high affinity, as shown in 129/J mice that are highly sus-
ceptible to MCMV infection (Smith et al. 2002). Unlike
129/J mice, C57BL/6 mice exhibit spontaneous resistance
against MCMV, a phenomenon that has been genetically
mapped to one single gene encoding the activating recep-
tor Ly49H (Lee et al. 2001; Brown et al. 2001), which also
binds m157 with high affinity (Lee et al. 2001; Smith et al.
2002). The activating Ly49H evolved from its inhibitory
counterpart Ly49I (Abi-Rached and Parham 2005), indicat-
ing that the evolution of the activating receptors is a result
of the novel selective pressure exerted by CMV after evolv-
ing MHC-I decoys (Arase and Lanier 2002; Sun and Lanier
2009; Lanier 2008). The immuno-evasive role of m157 is
further supported by studies of wild mouse-derived MCMV
isolates where several strong interactions between m157
and an array of inhibitory receptors were detected. Only
a few m157 variants engage the activating Ly49H recep-
tor (Corbett et al. 2011; Voigt et al. 2003), indicating that
the host’s protection mediated by Ly49H is rather uncom-
mon among wild mouse populations. Importantly, NK cell
responses also exert strong immune pressure on the virus,
as shown by experiments where the repeated passage of
MCMV through resistant Ly49H mice resulted in the rapid
evolution of m157 mutants that do not engage Ly49H,
and thereby escape from the NK cell immune response
(Voigt et al. 2003).

C57BL/6 is not the only inbred strain resistant to MCMV.
Inbred MA/My mice also have low viral titers after infec-
tion with MCMV, although they do not possess the Ly49H
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gene. Their resistance is mediated by the activating recep-
tor Ly49P which specifically recognizes MCMV infected
cells in a H2-Dk dependent manner (Kielczewska et al.
2009). Interestingly, this resistance requires the presence of
the virally encoded protein m04, which escorts and binds
newly assembled MHC-I molecules on the cell surface.
Other activating receptors that recognize MCMV infec-
tion in a m04-H2 dependent manner include Ly49LBALB,
Ly49P1NOD, and Ly49W1NOD (Pyzik et al. 2011). Like
m157, the original function of m04 might have been to
counteract the effect of MHC downregulation and avoid
“missing-self” detection by inhibiting receptors. Together,
these observations suggest that hosts evolved novel acti-
vating receptors to recognize the decoys evolved by
viruses.

With a computational agent-based model of co-evolving
hosts and CMV-like viruses (Carrillo-Bustamante et al.
2013, 2014, 2015c), we tested the effects of MHC-I decoys
on the evolution of NK cell receptors. Our computational
approach revealed that viruses evolving MHC-decoys drive
the evolution of highly specific inhibiting receptors, i.e.,
receptors that specialize to particular MHC molecules in the
population. Because inhibiting NK cell receptors face the
challenge to avoid being “fooled” by the viral molecules
mimicking MHC-I, such a high degree of specificity is
optimal during infections with viruses evolving decoys.
Similarly, activating receptors are beneficial in our in sil-
ico populations because of the protection they provide when
they bind MHC-I decoys, thereby activating NK cells. Given
their involvement in pathogen defense and host survival, we
observe a natural expansion of the NK cell receptor cluster,
evolving several haplotypes composed of specific inhibiting
and activating genes.

Although these computational models provide insightful
mechanistic insights into this evolutionary model, several
questions remain still open. If activating NK cell receptors
are indeed advantageous because they can recognize viral
products, why is it so challenging to find and characterize
ligands for them? It is possible that these viral ligands are
encoded by short undetermined sequences in viruses hav-
ing large genomes, such as CMV, EBV, and other viruses
from the Herpes family. Another possible explanation for
the lack of identified viral ligands is that viruses evolve
rapidly, remaining a moving target for activating receptors,
hence to impede their adaptation.

Peptide sensitivity

It is widely believed that, unlike T cell receptors,
inhibiting KIRs (iKIRs) is not very specific for par-
ticular peptide-MHC (pMHC) complexes. However, sev-
eral studies have shown that iKIRs can be sensitive
to the specific peptides bound by the HLA molecules

(Malnati et al. 1995; Rajagopalan and Long 1997; Peruzzi
et al. 1996; Thananchai et al. 2007; Hansasuta et al. 2004).
Crystal structures of KIR2DL1 and KIR2DL2 in complex
with their HLA-C ligands further supported this observa-
tion (Boyington et al. 2000; Brooks et al. 2000; Fan et al.
2001; Li and Mariuzza 2014), by revealing that specifically
positions 7 (P7) and 8 (P8) of the bound peptide are in direct
contact with residues of the iKIR. Other studies showed that
peptides can markedly reduce or increase KIR-mediated
inhibition (Cassidy et al. 2014; Fadda et al. 2010).

Because of the direct contact between iKIR and the
MHC presented peptides, NK cell activation may vary
in a peptide-dependent manner, making iKIRs sensitive
to changes in the peptide repertoire presented by MHC-I
molecules. These observations call for an extension of the
current model of NK cell activation: “missing self” detec-
tion could be extended by “altered self”, where changes in
the MHC-I peptide repertoire modulate NK cell signaling.

The importance of peptide sensitivity has been recently
emphasized by HIV-1 studies, demonstrating that sequence
variations within HLA-C restricted HIV epitopes disrupt or
promote the binding to inhibiting KIR2DL2, subsequently
modifying NK cell activation (Fadda et al. 2012; van Tei-
jlingen et al. 2014). Importantly, these studies show that
a small number of naturally occurring variants of HIV-1
epitopes that are presented by HLA-C*03:04 can strongly
engage KIR2DL2, inducing a strong inhibiting signal for
the NK cells (van Teijlingen et al. 2014). It is tempting to
speculate that viral variants are selected to avoid NK cell
mediated immune responses in individuals expressing the
corresponding KIR/HLA pair.

The changes in the MHC presented peptides after a viral
infection are also expected to enhance the binding to activat-
ing receptors, allowing for NK cell activation. In mice, the
interactions between the activating CD94/NKG2E and the
peptides loaded onto the non-classical MHC-I Qa-1b have
indeed been associated with enhanced viral control against
mousepox infections (Fang et al. 2011). Qa-1b is normally
loaded with small peptides derived from other self MHC-I
molecules, which forms the natural ligand for the inhibit-
ing CD94/NKG2A receptor. After mouse pox infection,
these peptide-MHC complexes are no longer recognized by
inhibiting receptors but they bind to activating receptors.
The molecular mechanisms underlying this “altered-self”
detection remain unknown, as it is not clear whether it is
a viral or a newly expressed self peptide that is engag-
ing the activating receptor. Nevertheless, this observation
clearly highlights the importance of activating NK cell
receptors in recognizing peptide-MHC complexes during
viral infections, calling for further studies.

Our recent analysis of the peptides presented by HLA
molecules before and after infection with measles virus
(MV) has shed light on the required specificity for an
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inhibiting KIR to detect altered-self (Carrillo-Bustamante
et al. 2015a). To be able to detect the changes in the peptide
pool induced after a viral infection, inhibiting KIRs need
to be sufficiently specific, i.e., they must be able to dis-
criminate between any unique amino acid pairs or groups
of amino acid groups in P7 and P8 (unpublished results).
Because of this required specificity, an individual would
need more than one inhibiting KIR to detect changes in
the peptide repertoire after a viral infection, indicating that
a diverse KIR repertoire is advantageous to successfully
detect altered self. Further experimental elucidation of the
KIR motifs in the MHC presented peptides is necessary to
validate these predictions.

Concluding remarks

The evolution of NK cell receptors in different species led
to a fascinating complexity. Most NK cell receptors inter-
act with the highly polymorphic MHC molecules, resulting
in receptor-ligand pairs that individualize the immune sys-
tem, a process that is thought to improve hosts’ survival.
Yet, the exact evolutionary advantage of these expanded
genotypes has remained unresolved. In this review, we have
discussed several hypothesis that possibly underly the diver-
sification of the NK cell receptor complex and provided
some mechanistic insights into these viral-driven hypothe-
ses, i.e., viral evolution of decoys, peptide sensitivity, and
selective MHC-downregulation.

In the last 5 years, we have studied each of the hypotheses
independently using computational and mathematical mod-
eling. These studies revealed that each mechanism revised
here can contribute, albeit in different degrees, to the evo-
lution of polygenicity and polymorphism in the clusters
encoding NK cell receptors. The studies reviewed here mir-
ror the complexity of the biological process, as we now
have several explanations for the complex biological ques-
tion why NK cell receptors are specific, polygenic, and
polymorphic. All these processes are most likely inter-
twined, simultaneously exerting pressures on hosts to evolve
the functional NKR-MHC pairs which render NK cells
protective. Therefore, the development of a more gen-
eral model incorporating all three mechanisms (i.e., viral
evolution of decoys, peptide sensitivity, and selective MHC-
downregulation) is essential to quantify their contribution
to the required genetic diversity for a population’s long-
term survival. A more complete model might shed also
light onto how different pathogen interactions (i.e., several
evasion mechanisms) influence the fixation of alternative
NK receptor systems in different species. The evolution-
ary contribution of a diverse NK cell receptor repertoire to

reproductive success remains still open and also calls for
another extension of our models.

Importantly, the degree of genetic diversity that evolves
in our simulations depends strongly on how the host’s
protection is modeled. In all our studies, the existence
of MHC-I decoys (Carrillo-Bustamante et al. 2013, 2014,
2015c) results in the evolution inhibiting receptors with
a high degree of specificity recognizing very few MHC
molecules in the population. This high specificity that hosts
required to clear decoy-encoding viruses (which in turn
exerts a stronger selection pressure on the NK cell receptors)
depends on whether at least one or all inhibiting recep-
tors in the licensed repertoire should be protective. Based
on the experiments of MCMV infected 129/J mice which
showed that one interaction between the inhibiting Ly49I
and the decoy protein m157 is sufficient for the host to
succumb the infection (Smith et al. 2002), we assumed
that all inhibiting receptors must be protective to clear the
infection. However, it is counterintuitive to have one inhibit-
ing interaction dominating the host’s NK cell response.
Theoretically, if one inhibiting receptor is able to detect
missing-self (i.e., to be protective), the NK cell subsets
carrying that receptor should proliferate and provide some
degree of protection. Indeed, relaxing this assumption (i.e.,
that a host needs at least one protective inhibiting receptors
to clear the infection) results in a lower degree of diver-
sity as shown by our model of selective downregulation
(Carrillo-Bustamante et al. 2015b). The actual protection
probably lies between all and at least one protective inhibit-
ing NK cell receptors, but the current understanding of the
contribution of each NK cell subset to host’s protection
during a viral infection remains limited.

Our computational models provided insightful mech-
anistic insights into viral selection pressures driving the
evolution of NK cell receptors. For future extensions of
these models, determining the complex, still unresolved,
molecular and cellular processes of NK cells is crucial.
Shedding light on these mechanisms, including the precise
role of MHC-I molecules in NK cell maturation, the exact
mechanisms of NKR repertoire acquisition, and the expan-
sion of different NK cell subsets during viral infections, will
allow us to better study the effects of NK cell education, and
the diversity of NK cell subsets in fighting pathogens and
survival.
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