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Abstract

Bioinformatics analyses of caleosin/peroxygenases (CLO/PXG) demonstrated that these

genes are present in the vast majority of Viridiplantae taxa for which sequence data are

available. Functionally active CLO/PXG proteins with roles in abiotic stress tolerance and

lipid droplet storage are present in some Trebouxiophycean and Chlorophycean green

algae but are absent from the small number of sequenced Prasinophyceaen genomes.

CLO/PXG-like genes are expressed during dehydration stress in Charophyte algae, a sis-

ter clade of the land plants (Embryophyta). CLO/PXG-like sequences are also present in

all of the >300 sequenced Embryophyte genomes, where some species contain as many

as 10–12 genes that have arisen via selective gene duplication. Angiosperm genomes

harbour at least one copy each of two distinct CLO/PX isoforms, termed H (high) and L

(low), where H-forms contain an additional C-terminal motif of about 30–50 residues that

is absent from L-forms. In contrast, species in other Viridiplantae taxa, including green

algae, non-vascular plants, ferns and gymnosperms, contain only one (or occasionally

both) of these isoforms per genome. Transcriptome and biochemical data show that

CLO/PXG-like genes have complex patterns of developmental and tissue-specific ex-

pression. CLO/PXG proteins can associate with cytosolic lipid droplets and/or bilayer

membranes. Many of the analysed isoforms also have peroxygenase activity and are

involved in oxylipin metabolism. The distribution of CLO/PXG-like genes is consistent

with an origin >1 billion years ago in at least two of the earliest diverging groups of the Viri-

diplantae, namely the Chlorophyta and the Streptophyta, after the Viridiplantae had

already diverged from other Archaeplastidal groups such as the Rhodophyta and Glauco-

phyta. While algal CLO/PXGs have roles in lipid packaging and stress responses, the

Embryophyte proteins have a much wider spectrum of roles and may have been instru-

mental in the colonisation of terrestrial habitats and the subsequent diversification as the

major land flora.
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Introduction

Comparative genomic and functional analyses of individual gene families can shed consider-

able light on the process of plant evolution and on the physiological role(s) of particular groups

of proteins[1, 2]. In this study we have analysed a well-conserved gene family, which is nor-

mally annotated in databases as ‘caleosin’ and/or ‘peroxygenase’, with the aim of tracing the

evolution, expression patterns and functional roles of the encoded proteins in plants. In terms

of their functional description, the caleosin/peroxygenases (CLO/PXG) are members of the

EC:1.11.2.3 class of oxidoreductases, Pfam reference PF05042. However, the CLO/PXGs also

have much broader biological functions and are present in the majority of Viridiplantae taxa

for which sequence and/or biochemical data are currently available [3]. The Viridiplantae,

which include all of the land plants and green algae are divided into two groups, namely the

Streptophyta (Charophyta + Embryophyta) and the Chlorophyta (a highly diverse group of

green algae including the Trebouxiophyceae, Chlorophyceae and Prasinophyceae)[4–6].

While CLO/PXGs appear to be ubiquitous in all land plant (Embryophyta) genomes, they are

present in some, but by no means all, algal taxa within the Charophyta and Chlorophyta[7].

CLO/PXGs are also found in many fungal taxa but are absent from other the major Opistho-

kont clades, including animals [8, 9].

The proteins encoded by CLO/PXG genes are relatively small (typically 25–30 kDa) and

contain a highly conserved single calcium-binding EF hand motif, a lipid-binding domain and

two invariant heme-coordinating histidine residues [2, 7, 9–11]. Additionally, there is a region

containing several predicted kinase sites proximal to the C terminus [1, 2, 12–14]. These fea-

tures make up the canonical motifs that are used to classify CLO/PXG proteins. We and others

have previously shown that some CLO/PXG isoforms from both plants and fungi can bind to a

variety of cellular bilayer membranes, including ER and plasmalemma, via a single transmem-

brane domain [7, 8, 15, 16]. It has also been shown that other CLO/PXG isoforms bind to the

phospholipid monolayer membrane that surrounds intracellular lipid droplets (LDs), possibly

via a conserved proline-rich motif [17–20]. It is possible that some CLO/PXG isoforms can

bind both to bilayer membranes and LDs, as has been demonstrated with other lipid-binding

proteins [21–24]. Experimental studies in several labs have confirmed that CLO/PXGs from

both plants and fungi can act as calcium-binding proteins that have specific types of lipid per-

oxygenase (PXG) activities that require the presence of the heme groups coordinated by two

invariant histidine residues [9, 10, 25–28]. This lipid peroxygenase activity is commonly asso-

ciated with epoxy fatty acid biosynthesis as part of overall oxylipin metabolism in plants [25,

29, 30] as well as a broader series of epoxidation, hydroxylation and aromatization activities on

substrates including terpenes and acyl derivatives [31]. In view of their multifunctional roles

and database annotations as both ‘caleosins’ and ‘peroxygenases’, we will refer to these genes/

proteins as CLO/PXG and CLO/PXG respectively.

To date, only a relatively small fraction of the many hundreds of plant and fungal genes that

are currently annotated as ‘caleosin’ and/or ‘peroxygenase’ in public databases, such as NCBI or

Ensembl Plant, have been shown to encode proteins with experimentally proven PXG activity.

Moreover, our detailed manual curation of these annotated genes and their derived protein

sequences has shown that in some cases these putative CLO/PXG-like sequences lack critical

residues known to be involved in key biological functions of the proteins, such as calcium bind-

ing, heme coordination or membrane attachment. One of the unusual features of CLO/PXG

proteins is that, in addition to often being active enzymes, they can also have important struc-

tural roles in cytosolic LDs where they are the second most highly abundant components (after

oleosins) in the LD proteome [22, 24]. Indeed, CLO/PXGs have been shown to play important

structural roles in facilitating the assembly, stabilisation, storage and turnover of LDs in a range
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of plant tissues from leaves and seeds to pollen grains and even in individual algal cells [8, 9, 18,

20, 32].

Experimental studies and transcriptional data have implicated CLO/PXGs in a wide range

of physiological functions in plants, including a host of processes in vegetative tissues of plants

and algae. These physiological processes include drought and osmotic stress responses [33–

37], pathogen responses [33, 38], toxin sequestration [39], stomatal regulation, water transpi-

ration, seed germination and G protein signalling [40], nitrogen deprivation [14, 20, 41–43]

and adaptation to darkness [44]. In reproductive tissues, such as in seeds and pollen grains,

CLO/PXGs have been shown to have roles in lipid packaging and post germinative LD mobili-

zation[16, 24, 45–48].

The purpose of this study was to characterise the CLO/PXG gene superfamily in terms of its

occurrence in the Viridiplantae, its possible evolutionary origins and to investigate how this

might shed light on the biological roles of the encoded proteins. Of particular interest was

whether separate CLO/PXG isoforms are involved in the mainly LD-associated structural

functions as compared the peroxygenase functions of the proteins, which tend to be associated

with bilayer membranes rather than LDs. To achieve this we performed a comprehensive bio-

informatic analysis of the >1300 CLO/PXG-related sequences from Viridiplantae species that

are currently lodged in public databases. The primary aim of this analysis was to establish a

robust phylogeny and to explore the possible evolution of plant CLO/PXGs over the past >1

billion years. Alongside this analysis, we analysed the transcriptional profiles of CLO/PXGs in

two unpublished monocot (palm) species in addition to analysing profiles from other species

that were obtained from public databases.

Methods

Transcriptional analyses

Date palm (Phoenix dactylifera L.) seeds were collected from fruits of the Sukary cultivar, im-

ported from Kingdom of Saudi Arabia. Seeds were isolated, washed, air-dried and stored in

plastic bags at room temperature until required. Seeds were then germinated in vitro in a cur-

rent of running water for two weeks before planting in culture boxes placed in an incubator at

30 ± 2˚C and humidified daily and seedlings were obtained 15 days after sowing. Seedlings with

a radicle length of 0.5 or 2 or 4.5 cm were referred as stage I, II and III, respectively. For stress

experiments, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD dissolved in toluene at 10 μg

mL-1, purity 99%) was purchased from Supelco Inc., USA. TCDD was placed in a 10 mL capped

glass tube and evaporated to dryness under nitrogen. For health and environmental safety rea-

sons, residual TCDD was re-dissolved in a minimum volume (100 μL) of dimethyl sulfoxide

(DMSO), and 5 mL of aqueous solutions of TCDD were prepared in deionized and distilled

water to obtain initial concentrations of 0, 10, 50 and 100 ng L-1 TCDD. For treatment of seeds

with TCDD, seeds were germinated as described above and humidified daily with the prepared

solutions of TCDD at various concentrations. Seedlings at stages 0, I, II and III were taken for

further analysis. For drought stress, seedlings were pre-treated with water for 2, 4 and 6 days

under the culture conditions described above. Osmotic stress was achieved by irrigating seed-

lings with water at concentrations of 150 and 300 mg L-1 NaCl at each development stage.

Changes in relative transcriptional abundance of genes encoding LD-associated proteins in

response to TCDD exposure were analyzed by reverse-transcription quantitative PCR (RT-

qPCR). Briefly, frozen fine powder (1 g) samples from whole seedlings at stages 0, I, II and III

were used to extract total RNA using an RNeasy kit (Qiagen) according to the manufacturer’s

instructions. The quality of extracted RNAs was checked on agarose gels and concentrations

measured by a Nanodrop device. Remaining traces of genomic DNA were digested by DNase I
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and the lack of trace genomic DNA in total RNA was confirmed by a control PCR using total

RNA as the template. Aliquots of 1 μg total RNA were used for first-strand cDNA synthesis

according to Hanano et al (2014). Real-time and qPCRs were performed as described by

Hanano et al (2014) and primers are listed in S1 Table. The relative expression of target genes

was normalized using two reference genes Act-1 and Tub-β [49]. Each measurement was per-

formed in triplicate together with a dilution series of the reference gene. PCR efficiencies were

between 95% and 105% (data not shown) and the average of CT was taken. The relative quanti-

fication RQ of target genes was calculated directly using software from the qPCR system.

Sequences of amplified regions were confirmed by sequencing on an ABI 310 Genetic Ana-

lyzer using a Big Dye Terminator kit (Applied Biosystems).

Oil palm transcriptome analysis was carried out according to [50]. The oil palm genome

P5-build was used to read map the RNA seq data from Roche 454 reads (a full dataset is avail-

able from NCBI BioProject PRJNA201497). Briefly, reads from Roche/454-derived libraries

were assembled into isotigs, which were blasted onto Arabidopsis thaliana gene models with a

threshold of E-value< 10−5. The best-hit A. thaliana gene model was assigned to the homo-

logue of the query isotig. To estimate expression levels of genes in mesocarp and kernel tissues,

Illumina HiSeq 2000 reads from each library were mapped to assembled isotigs from all Elaeis
guineensis reads by using the Burrows–Wheeler Aligner. Gene group expression levels were

calculated as the number of mapped reads on each isotig divided by the total number of isotigs,

multiplied by 100,000, and scaled by the number of genes in each gene group. Both copy num-

ber and read coverage were the mean of measures from two biological replicates. Data were

analysed as described above for Roche/454 data, except that expression levels were calculated

as transcripts per million tags. Identification of expression caleosin in oil palm was done using

open source Tuxedo suite software [51].

Bioinformatics procedures

The bioinformatics procedures used in this study are summarised in the workflow depicted in

S1 Fig. For data collection, a list of CLO/PXG–like genes was identified using one model spe-

cies (A. thaliana) and three economic crops (P. dactylifera, E. guineensis, Musa acuminate),
which were then used as the source of the CLO/PXG reference sequences in this study. Using

reference genomes and proteomes from public databases (i.e. NCBI Entrez and Pubmed), we

constructed a dataset of well-annotated full-length CLO/PXG genes. We then selected 34 spe-

cies from the Viridiplantae based on the quality of their sequenced genomes, their economic

and conservation importance, and their evolutionary significance. The selected species inc-

luded representatives from all available major Viridiplantae groups, such as the algal Charo-

phyte, Chlorophyceae and Trebouxiophyceae clades, plus the major Embryophyte (land plant)

taxa including bryophytes, ferns, gymnosperms, basal angiosperms and the major extant

monocot and dicot groups. Although the vast majority of currently available sequence data

comes from the monocot and dicot groups, and particularly from crop species of economic

importance, we are confident that there is sufficient genomic data from the sequenced non-

angiosperm groups to enable robust conclusions to be drawn about the evolution of this gene

family in the Viridiplantae.

Finding and assessing candidate CLO/PXG sequences from representative

genomes

Using sequences from the 34 reference species shown in S2 Table, we performed local align-

ment searches within each species using blastp from the BLAST+ toolset [52]. At this stage the

total number of candidate sequences was >500. These sequences were analysed using
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InterProScan (http://www.ebi.ac.uk/interpro/) to confirm the presence of the calcium binding

and EF hand domains. CLO/PXG sequences were also visually inspected using Geneious ver-

sion 10.0.9 (http://www.geneious.com, and CLC Genomics Workbench 10.0.3 (https://www.

qiagenbioinformatics.com/) to confirm the presence of the full range of canonical CLO/PXG
domains [53, 54]. After confirming the presence of major caleosin domains, we derived a list

of candidate caleosin genes and assigned names to these sequences, which are shown in S2

Table with corresponding species names and clade/groups. We then performed a set of experi-

ments using published and peer-reviewed toolsets on these candidate sequences. The experi-

ments included motif discovery, physical and chemical property analysis, domain sequence

conservation analysis and consensus study and evolutionary pattern studies. This enabled us

to narrow down the dataset to 131 CLO/PXG-like sequences. A list of physical and chemical

properties of CLO/PXG proteins (molecular weight (MW), isoelectric point (pI), amino acid

length) is shown in S2 Table. The physical and chemical properties of CLO/PXG proteins were

computed using ExPASY (http://www.expasy.org/protscale/) [55, 56]. For further detailed

analysis we selected 67 of the 131 sequences that presented themselves as strong candidates to

belong to the CLO/PXG family (S2 Table where sequences marked in green are the 67 selected

CLO/PXGs). A list of the 34 species with their corresponding CLO name, Taxon ID and num-

ber of CLO/PXG isoforms per species is given in S3 Table.

Motif, transmembrane (TM) domain, secondary structure prediction and

intron-exon analysis

Motif analysis was performed on the 67 sequences from 34 species to identify conserved

domains that might elucidate the biological activities of these multifunctional proteins. The

Multiple En for Motif Elicitation (MEME) software package was utilised to discover and ana-

lyse motifs across sequences [57, 58]. Protein datasets were used to analyse motifs for each

sequence. Sequences were analysed using the discriminative mode and a window size of 15–

50, which enabled identification of seven distinctive motifs. The list of motif logos and the

motif distribution patterns across species sequences are shown in Fig 1. Transmembrane (TM)

domain and secondary structure predictions were performed using the Geneious package and

both Geneious and ClustalW aligners were used to align and prepare the sequences for display.

The following parameters were used to align protein sequences: a) Cost matrix BLOSUM 45,

b) Gap open penalty 12, c) Gap extension penalty 3, and d) refinement iteration of 2 and the

resulting data are shown in S2 Fig. The location (start and end point) of each transmembrane

domain is shown in S4 Table and S2 Fig. The lengths of the TMs are consistent at 21 residues.

The secondary structure predictions are shown in S3 Fig. The Scipio program version 1.4 was

used to identify intron-exon [59]. A summary graph of overall intron/exon numbers identified

using the Scipio program in each sequence is shown in S4 Fig while S5 Table shows the loca-

tions of intron/exons in the full list of the 67 analysed genes.

MSA (multiple sequence alignment) and phylogenetic analyses

Multiple sequence alignment and domain analyses were performed using ClustalOmega software,

version 1.2.2, using the default parameters [60, 61]. The alignments were inspected using the CLC

Genomics Workbench 10.0.3 (https://www.qiagenbioinformatics.com/). Complete alignments

with RasMol colour codes [62] are shown in Fig 2. The amino acid sequence alignments were

used to construct a phylogenetic tree using the ClustalW2 program version 2.1. The tree was gen-

erated following Bayesian Inference (BI), Neighbour-joining (NJ), and Unweighted Pair Group

Method with Arithmetic Mean (UPGMA) methods. The tree topologies constructed using the

three different methods showed complete consistency. The NJ tree was constructed using

Evolutionary and genomic analysis of caleosin/peroxygenases in the Viridiplantae
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ClustalW2 program version 2.1 [60]. The constructed tree was inspected using FigTree and is

shown in Fig 3 [63]. Phylogenetic analysis shown in Fig 3A was built from CLO/PXG sequences

across Viridiplantae while the tree shown in Fig 3B was built with CLO/PXG sequences across Vir-

idiplantae plus a range of representative basal and more advanced Fungal species, namely Aspergil-
lus flavus,Ustilago maydis, Rozella allomycis, Coprinus cinereus, Rhizophagus irregularis, and

Rhizopus delemar. Note that the addition of these six fungal sequences did not affect the phylogeny

of the plant sequences.

Results and discussion

Bioinformatics analyses

As of November 2017 we found>1310 sequence hits from the Viridiplantae that were classified

in public databases, such as NCBI, as being members of the ‘caleosin superfamily’. These

Fig 1. Motif analysis. (A) Consensus distribution of motifs in all Viridiplantae sequences. (B) Distribution of motifs across 67 representative Viridiplantae CLO/PXG

proteins grouped in eight taxonomic clades as follows. (i) Trebouxiophyceae, (ii) Chlorophyceae, (iii) Charophyta, (iv) Non-seed plants, (v) Gymnosperms, (vi) basal

Angiosperms, (vii) Monocots and (viii) Dicots.(C) Sequences of the 7 major motifs found in Viridiplantae CLO/PXG proteins.

https://doi.org/10.1371/journal.pone.0196669.g001
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sequences were mostly annotated in databases as either ‘caleosin’ or ‘peroxygenase’ although

some were labelled as ‘hypothetical protein’, and a small number were labelled as ‘ABA-induced

Fig 2. Sequence alignments of CLO/PXG protein families from three representative Charophyte species plus 67 sequences from 34 species across the Viridiplantae.

(A) Klebsormidium nitens alignment. (B) Oryza sativa alignment. (C) Arabidopsis thaliana alignment. (D) 67 protein sequences alignment from 34 Viridiplantae species.

The five major structural domains are shown respectively as the N-terminal H-caleosin, Ca 2+ binding EF Hand, Lipid-binding, Heme binding and kinase

phosphorylation and C-terminal kinase phosphorylation domains. The proline knot region and two conserved Histidines are also shown.

https://doi.org/10.1371/journal.pone.0196669.g002
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protein’ or ‘EF hand protein’. An example of the annotation list for the CLO/PXG enzymes

(EC:1.11.2.3) in A. thaliana can be found at http://www.brenda-enzymes.org/all_enzymes.php?

ecno=1.11.2.3&table=Source_Tissue#TAB. It should be noted that although this list is annotated

as ‘plant seed peroxygenase’, the source tissue list shows that the relevant CLO/PXG genes are

expressed throughout the plant and not just in seeds. We found that some of the putative CLO/
PXG genes in the various public genome databases were present as incomplete or partial seq-

uences with missing and/or corrupted versions of the major canonical CLO/PXG domains

known to be essential for protein function. Such sequences, which may be from non-functional

pseudogenes, were normally discarded in our analysis although several examples were included

to illustrate points of gene expansion as discussed below. A list of the chosen representative 34

species across the Viridiplantae and the CLO/PXG sequences used in subsequent analyses in

shown in S2 Table.

As shown in Fig 1C, motif analysis using MEME enabled the identification of seven highly

conserved CLO/PXG protein regions, which varied in length from 15 to 50 residues, and are

found throughout the Viridiplantae. The motifs are numbered 1 to 7 in order of their motif

score, which reflects their length and their extent of conservation across all the species ana-

lysed. The distribution of these motifs beginning at the N terminus of CLO/PXG proteins was

4-1-7-6-2-5-3 as shown in Fig 1A. In Fig 1B, the selected CLO/PXGs are grouped in eight dis-

tinctive taxonomic clades that represent the major Viridiplantae groups. In all cases these

highly divergent plant groups show highly conserved organisation of the seven Motifs listed

above. However, it should be noted that Motif 4, which is present in H-domain variants, is

absent from at least one CLO/PXG sequence from all angiosperm species, i.e. Groups (vi), (vii)

and (viii), and it is these Motif 4-lacking proteins that make up the L-isoforms of CLO/PXG

[1, 2, 64, 65]. Motif 4 is a 30–50 residue domain present close to the N-terminus and is found

in many CLO/PXG sequences throughout the Viridiplantae (and Fungi). This Motif is charac-

teristic of the so-called H-caleosins (where H = high molecular weight), as previously reported

from several labs [1, 2, 27, 28, 64–66]. We found that all Angiosperm genomes sequenced to

date contain at least one copy each of the L- and H-caleosin sequences and although the

Fig 3. Phylogenetic analysis of 67 CLO/PXG sequences. (A) 67 CLO/PXG sequences from 34 species across the Viridiplantae. (B) 67 CLO/PXG sequences

from 34 species across the Viridiplantae plus six selected fungal species.

https://doi.org/10.1371/journal.pone.0196669.g003
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evidence is less clear for the other Viridiplantae, it seems that most species also contain both

isoforms. One reason for the existence of these two isoforms that are differentiated only by the

30–50 residue N-terminal insertion may be found in their respective pI values. The H-isoforms

have low pI values typically below 6 while the L-isoforms have values typically above 8, which

indicates that they may function optimally in different subcellular compartments [1].

Motif 1 includes the canonical calcium binding EF hand domain as found in all CLO/PXG

sequences in all species. Motifs 7 and 6 contain the proline-rich and lipid binding domains

respectively, which are well conserved in the Viridiplantae. Although the MEME software iden-

tified Motifs 7 and 6 as separate features, they can probably be regarded functionally as a single

well conserved lipid-binding motif due to the presence of the group of about 20 non-polar resi-

dues that make up the putative TM or LD-binding domain. Motif 2 includes heme-binding and

kinase phosphorylation domains and includes a relatively lengthy 32-residue consensus

sequence, NIHKCKHGSDSGVYDTEGRFVPEKFEEIFSKY, which we also found as a very

highly conserved domain in most plant and fungal CLO/PXGs. Motif 5 is a shorter and weaker

feature that is of unknown function. Motif 3 is a well-conserved C-terminal domain with a char-

acteristic casein kinase phosphorylation box, DGSLFE, as reported elsewhere [12, 40]. However,

the full version of Motif 3 includes a larger 27-residue consensus sequence, LYWLCKDKDGFLH
KETVRRCYDGSLFE, which is relatively highly conserved across the Viridiplantae.

The transmembrane domain (TM) predictions (S4 Table) and (S2 Fig) show the distribu-

tion of TM domains in each CLO/PXG sequence. Note that, since many CLO/PXG isoforms

bind to LDs either instead of or in addition to bilayer membranes, these TM domains can be

regarded as generalised lipid binding domains and not necessarily only involved in transmem-

brane functions. A single TM domain was present in each case except for five sequences where

there were two TM domains. These five CLO/PXG sequences were ApCLO1 from Trebouxio-

phyceae, VcCLO1 and GpCLO1 from Chlorophyceae, SmCLO2 from lower plants and Eg-

CLO3 from the monocot group. There were also six CLO/PXG sequences where no predicted

TM domain was present, namely CrCLO2 from Chlorophyceae, MpCLO1 from lower plants,

PdCLO4 from monocots, StCLO5, NtCLO5 and GmCLO5 from dicots. In all cases these were

members of larger CLO/PXG families in each species and, since the predicted proteins had all

the other features of CLO/PXGs, these may be non-lipid-binding, soluble isoforms. Gene

structures were predicted using the Scipio program version 1.4. Identified intron-exons were

inspected using Webscipio program and are presented in S5 Fig [67, 68]. A summary graph of

overall intron/exon numbers identified using webscipio program in each sequence is shown in

S4 Fig while S5 Table shows the detailed locations of intron/exons in the full list of the 67 ana-

lysed genes.

This shows that their gene organisation is relatively divergent in the Viridiplantae as a

whole, although the intron/exon structures are relatively conserved within the more recently

diverged dicot group of species.

In Fig 2, the protein sequence alignments are shown for CLO/PXG protein families from

three representative Charophyte species, namely the alga Klebsormidium nitens (Fig 2A) which

contains 5 isoforms, the monocot Oryza sativa (Fig 2B) with 10 isoforms, and the dicot A.

thaliana (Fig 2C) with 7 isoforms. For a full sequence alignment of all 67 representative CLO/

PXG proteins from 34 Viridiplantae species see Fig 2D. All of these alignments show high lev-

els of sequence conservation, especially within the seven key motifs depicted in Fig 1. The

three alignments in Fig 2 demonstrate how CLO/PXG gene families can be relatively large and

the encoded proteins rather diverse, even within a single species. This is consistent with tran-

scriptome and functional evidence that different CLO/PXG proteins are found in different

subcellular and tissue locations, are subject to different forms of regulation and also may have

different types of enzymatic or structural activities in plants [8, 27, 28, 69, 70]. In the case of
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the alga K. nitens (Fig 2A), the major structural domains are conserved in all five isoforms and

while there are large insertions in three of the isoforms, these do not affect the integrity of the

key canonical domains. For example KNCLO1 has a 100+ residue extension at the N terminal,

which has no similarity with any other published sequence, but the remainder of the protein is

obviously a member of the CLO/PXG family.

The monocot O. sativa (japonica rice) genome contains 10 annotated CLO/PXG-like seq-

uences (Fig 2B), not all of which are likely to be functional proteins. In particular, OsjCLO10

lacks the Ca+-, heme- and lipid- binding domains and contains a 150-residue insert at the N-

terminus. This insert has some similarity with the missing CLO/PXG-like domains and may

therefore be due to a transposition of part of the genomic sequence, most likely due to exon

shuffling. In contrast, OsjCLO2 contains a 68-residue insert at the N-terminus with no homol-

ogy to other database sequences but the remainder of the protein includes all the normal CLO/

PXG motifs. Apart from these unusual sequences, the remaining 8 rice isoforms show the nor-

mal protein architecture although their H-domains are much less conserved compared to

those of A. thaliana as discussed below. Transcriptome data show that 8 of the rice CLO/PXG-

like genes are expressed in a wide variety of vegetative and reproductive tissues and are modu-

lated by drought, salt and cold stresses [71].

The model dicot species A. thaliana contains 7 CLO/PXG isoforms (Fig 2C). According to

transcriptome data, all of the genes encoding these isoforms are expressed, although AtCLO7 is

only present at very low levels relative to the other 6 genes [1, 65]. As in other Brassicaceae species,

it is clear that segmental duplication is the main driver of the accumulation of the large gene fam-

ily in A. thaliana [1, 65]. However, a more detailed inspection of the AtCLO7 sequence shows

that the protein is not a true caleosin because it lacks critical motifs such as the Ca+-binding EF

hand and the two heme-binding histidine residues. In comparison with the other six genes,

AtCLO7 is the least expressed and shows little or no response to environmental stimuli [1], which

means that it is probably a pseudogene. The other six sequences fall into two well-defined classes,

namely the H-isoforms, AtCLO1, 2 & 3 plus AtCLO8, and the L-isoforms, AtCLO4 & 6.

Phylogenetic analyses of a representative 67 CLO/PXG sequences from 34 species across

the Viridiplantae are shown in Fig 3A. The sequences separate into four clearly distinct clusters

that are labelled as follows: A) Chlorophyte and Streptophyte green algae, B) non-angiosperm

Embryophytes; C) H-isoform angiosperms; and D) L-isoform angiosperms. This phylogeny

supports the conclusion from the Motif analysis (see above) that H-caleosin isoforms are

ancestral to the L-caleosin isoforms. In Fig 3B, the phylogenetic analysis has been extended to

include sequences from six selected basal and advanced species that represent all of the major

Fungal taxa as well as the 67 Viridiplantae sequences. The fungal sequences used were: A. fla-
vus (AflCLO1); U. maydis (UmCLO1); R. allomycis (RaCLO1); C. cinereus (CcCLO1); R. irre-
gularis (RiCLO1); and R. delemar (RdCLO1). Note that the CLO/PXG sequences for each of

these very diverse fungal species that probably diverged from one another >1 billion years ago

(Bya) [72, 73] are located within a single branch of the green algal cluster and fall within the

same group as the Trebouxiophyte, (shown as the yellow group A). This indicates that the fun-

gal CLO/PXG sequences are more closely related to those of algae than to the land plants,

which did not appear until after 500 million years ago (Mya), and the fungal CLO/PXGs may

therefore have been derived from Trebouxiophyte algae. The origin, distribution and biologi-

cal functions of fungal CLO/PXGs will be the subject of a subsequent paper.

Transcriptional analyses of CLO/PXG in date and oil palm

The oil palm genome contains six CLO/PXG-like sequences and a heatmap analysis of their

expression patterns in 22 different tissue libraries is shown in Fig 4A. Transcripts of EgCLO2
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were particularly highly expressed in developing fruit mesocarp and kernel (seed) tissues

where there is considerable accumulation of storage lipids. In contrast EgCLO1 was more

highly expressed in shoot and floral tissues, while EgCLO3 showed high but relatively even lev-

els of expression in all tissues in a manner similar to that of a constitutive gene profile. The

remaining three genes, EgCLO4, 5, 6, all responded to the same probe so these data represent

the sum of their expression patterns. In comparison with the other genes, these three had

much lower expression in most conditions although they showed significant upregulation in

later stages of kernel, mesocarp and pollen development. These three tissues are all actively

accumulating storage lipids at the stages where EgCLO4, 5, 6 are upregulated which is consis-

tent with a role in LD formation as found in other CLO/PXG proteins in other plant and algal

species. The overall differentially regulated patterns of CLO/PXG-like gene expression in oil

palm supports the conclusion that the encoded proteins carry out a range of roles in various

tissues throughout the plant and that these roles occur at different developmental stages.

The date palm genome contains five CLO/PXG-like sequences but only three of these

genes, PdCLO2, 3 and 4, were expressed (Fig 4B) at moderate to high levels following the vari-

ous treatments while PdCLO1 and 5 were expressed at much lower levels in all cases. Exposure

to the hydrophobic organic toxin, dioxin, led to a 20-fold upregulation of PdCLO2 and 3, while

PdCLO3 and 4 were transiently upregulated by >30-fold following drought stress and were

also >20-fold upregulated following increasing exposure to NaCl. Expression of PdCLO4 gene

was higher in the young emerging shoot (plumule) than in radicle while PdCLO2 was more

expressed in radicle tissues than in plumule and very small levels of transcripts for both genes

were found in petioles [74]. This expression pattern, with a strong upregulation in response to

various abiotic stresses, is similar to that on other plants. It is possible that the less expressed

genes PdCLO1 and 5 have different roles, such as in abiotic stress or seed development, that

were not tested in this transcriptome panel.

Evolution of the CLO/PXG gene family in the Viridiplantae

The occurrence of CLO/PXG-like genes is depicted in the evolutionary tree shown in Fig 5. In

all currently sequences Archaeplastida, CLO/PXG-like genes are only found in the Viridiplan-

tae, which is one of four taxa that make up this group. The Archaeplastida (Plantae) are widely,

albeit not universally, recognised as a monophyletic group of photosynthetic organisms des-

cended from an endosymbiotic association between a heterotrophic eukaryote and a cyano-

bacterium that took place >2 Bya [75]. This supergroup includes all extant red and green algae

plus the land plants [76]. It is now recognised that several other groups of non-Archaeplastidal

photosynthetic organisms, most notably the Stramenopiles, which include diatoms and brown

algae, originated separately from non-plant/algal ancestors that secondarily acquired red or

green algal endosymbionts [77]. These organisms include diatoms, the genomes of which defi-

nitely lack CLO/PXG orthologs, although some species have recently been shown to contain a

very different class of LD-binding proteins that appear to play analogous roles to CLO/PXG in

LD accumulation in response to stress [78–80].

The two major groups that make up the Archaeplastida are the Viridiplantae (from Latin

for ‘green plants’), and the Rhodophyta (red algae) plus a third much smaller group, the Glau-

cophyta [81]. These groups of photosynthetic organisms are estimated to have diverged from

each other between 1–1.6 Bya [6, 82]. The Rhodophyta crown group diverged relatively early,

at 1.0–1.6 Bya [75] but the earliest divergence times of the major two clades of the Viridiplan-

tae, the Chlorophyta and the Streptophyta, both of which are generally but not universally rec-

ognised as monophyletic taxa, is less certain [6, 82]. While most estimates of divergence times

of these two groups are in the range of 0.85–1.2 Bya [6, 77, 83], a more recent study suggests a
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later divergence at about 0.5–1.0 Bya [75]. Although molecular clocks place the origins of the

Archaeplastida at between 0.9 and 1.9 Bya [75], evidence from recent molecular fossil data sug-

gest that Cyanobacteria remained the dominant group of photosynthetic organisms until as

recently as about 650 Mya, after which the eukaryotic Archaeplastida rapidly emerged as

major components of aquatic, and later terrestrial, ecosystems [84].

The CLO/PXG gene family in the Chlorophyte algae

Since CLO/PXG-like genes are widely distributed in both Chlorophyta and Streptophyta, the

gene family probably dates from>1 Bya in a common ancestor of the entire Viridiplantae

taxon. Interestingly, it is now emerging that at this stage of algal evolution many of the Viridi-

plantae species, including all of those that express CLO/PXG-like genes, began to occupy low-

salt, i.e. freshwater, habitats [75]. Given the virtually universal upregulation of CLO/PXG-like

genes in response to salt stress [14, 17, 85], it is possible that one of the primary reasons for the

evolution of CLO/PXG-like genes is related to a move towards non-saline environments. One of

the characteristic features of higher plant CLO/PXGs is the occurrence of both H- and L- iso-

forms [12, 40, 64, 86] and this was found in at least one of the Chlorophyte species, Auxeno-
chlorella protothecoides (Fig 1B), which indicates that CLO/PXG-like genes had already diverged

Fig 4. Transcriptome analysis of CLO/PXG gene expression in date palm and oil palm tissues. (A) The oil palm genome P5-build was used

to read map the RNA seq data from Roche 454 reads (a full dataset is available from NCBI BioProject PRJNA201497). Reads from Roche/

454-derived libraries were assembled into isotigs, which were blasted onto Arabidopsis thaliana gene models with a threshold of E-value< 10

−5. The best-hit A. thaliana gene model was assigned to the homologue of the query isotig. To estimate expression levels of genes in mesocarp

and kernel tissues, Illumina HiSeq 2000 reads from each library were mapped to assembled isotigs from all Elaeis guineensis reads by using the

Burrows–Wheeler Aligner. Gene group expression levels were calculated as the number of mapped reads on each isotig divided by the total

number of isotigs, multiplied by 100,000, and scaled by the number of genes in each gene group. Both copy number and read coverage were the

mean of measures from two biological replicates. Data were analysed as described above for Roche/454 data, except that expression levels were

calculated as transcripts per million tags. Identification of expression caleosin in oil palm was done using open source Tuxedo suite software

[50]. (B) Transcriptional analysis of CLO/PXG gene expression in date palm tissues and treatments as follows: a) exposure to 0, 10 and 100 ng.

L-1 of the dioxin, TCDD; b) drought for 2, 4 and 6 days; c) exposure to 0, 150 and 300 ng.L-1 NaCl. Seedlings with a radicle length of 0.5 or 2 or

4.5 cm were referred as stage I, II and III respectively.

https://doi.org/10.1371/journal.pone.0196669.g004
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into the two isoforms at a very early stage of their evolution. Although genome sequence data

are still much less complete in green algae compared with land plants, the available information

Fig 5. Presence of CLO/PXG sequences across the Viridiplantae and their estimated evolutionary divergence times. The major

taxa that contain CLO/PXG sequences are shown as blue-shaded boxes. Individual species with one or more CLO/PXG sequences are

shown in blue while other species where CLO/PXG sequences are definitely absent from their genomes are shown in brown. The

estimated evolutionary divergence times of selected key taxa are shown as the number of million years ago (My). Starred major taxa are

those with good evidence of monophyletic status while non-starred taxa are probably polyphyletic or paraphyletic.

https://doi.org/10.1371/journal.pone.0196669.g005
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enables us to trace the presence, and sometimes the absence of CLO/PXG-like genes in a way

that allows some evolutionary inferences to be made.

The Chlorophyta are conventionally divided into four groups, namely Trebouxophyceae,

Chlorophyceae, Ulvaphyceae and Prasinophyceae. There is good evidence for the Chlorophy-

ceae being a monophyletic clade while the other three groups are highly paraphyletic[5, 83].

CLO/PXG-like genes are present in at least four species of Chlorophyceae (Chlamydomonas
reinhardtii, Gonium pectorale, Monoraphidium neglectum and Volvox carteri) and four species

of Trebouxophyceae (Auxenochlorella protothecoides, Chlorella variabilis, C. vulgaris and Coc-
comyxa subellipsoidea). Furthermore, in at least five of these algal species the biological activity

of these genes is supported by transcriptome and/or biochemical studies [14, 20, 44, 87]. How-

ever, CLO/PXG-like genes appear to be absent from several other sequenced genomes in both

the Chlorophyceae (e.g. Dunaliella and Haematococcus spp.) and Trebouxophyceae (e.g. Lobo-
sphaera spp.) [88, 89]. To date no genomes of the Ulvaphyceae have been sequenced and at

present only a few complete genome sequences are available from the Prasinophyceae (e.g.

Ostreococcus tauri, Micromonas spp. and Bathycoccus prasinos), none of which contain CLO/
PXG-like genes. However, this does not necessarily mean that the CLO/PXG gene family is

absent from other unsequenced members of these taxa. Overall, the most parsimonious inter-

pretation of the currently available data is that CLO/PXG-like genes were originally present in

the ancestor of the putatively monophyletic [83] Chlorophyta clade. Similar genes are still pres-

ent in several of the present day descendants of these ancestral Chlorophyta, most notably in

some, but not all, Chlorophyceae and Trebouxiophyceae. However the CLO/PXG genes appear

to have been lost in other Chlorophyta species during the>1 billion years of their subsequent

evolution.

The CLO/PXG gene family in the Streptophyte algae

The Streptophytes, including the Charophytes and Embryophytes are a monophyletic clade that

diverged from the Chlorophytes>1.0 Bya [90, 91]. To date, full genomic sequence data are only

available for one species of the Charophyta, namely the terrestrial and freshwater filamentous

alga, Klebsormidium nitens, where as many as five CLO/PXG-like genes are also present. In addi-

tion, transcriptome data from the related species, K. crenulatum show the desiccation-induced

expression of no fewer than six CLO/PXG-like genes [92]. Klebsormidium algae have primitive

body plans and are made up of multicellular non-branching filaments that can survive on the

land with substantial tolerance to novel stresses, such as drought and freezing, which do not

normally occur in aquatic environments [93]. Therefore it is possible that as some Streptophyte

algae became increasingly adapted to terrestrial conditions, new functions emerged for the

CLO/PXG proteins inherited from their marine ancestors. Given the ubiquity of the occurrence

of CLO/PXG-like genes in the Embryophytes (see below), it seems likely that similar genes will

be found in other Charophyte species once more sequence data become available in the future.

The CLO/PXG gene family in the Embryophytes

Embryophytes are a monophyletic group probably diverged from Charophytes about 500 Mya

and there is robust fossil evidence of their presence in a variety of terrestrial environments by

430–490 Mya [4, 94–98]. The most basal groups of Embryophytes are the Liverworts and Bryo-

phytes (mosses) each of which is represented by just one sequenced genome, namely Marchan-
tia polymorpha and Physcomitrella patens. In both cases their genomes contain only L isoform

CLO/PXG-like sequences, suggesting that the H isoform has been lost in these relatively primi-

tive non-vascular, multicellular plants. However, both L and H CLO/PXG isoforms are present

in lycophyte, Selaginella moellendorfii, which is a fern-like seedless vascular plant that can form
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true roots and has the kind of ABA signalling pathways for which the A. thaliana CLO/PXG

isoform, ATCLO4, acts as a negative regulator [98, 99]. Although no true fern genomes have

been sequenced, such data are available for four species of Gymnosperm, which are seed-bear-

ing vascular, but non-flowering, higher plants. In all cases, only H isoform CLO/PXG are pres-

ent in these genomes (Fig 1B). Therefore, in the case of this admittedly small sample of non-

flowering land plants, most species contain only one of these two CLO/PXG isoforms.

To date CLO/PXG-like genes have been found in all of the>300 angiosperm species for

which sequence data are available. The split between Angiosperms and other vascular plants

occurred>200 Mya [100] and the former now make up the majority of the terrestrial flora in

terms of biomass and species diversity[101, 102]. In all of these species our analysis suggests that

there is at least one copy each of the L and H isoforms of CLO/PXG and that in many cases

these genes have become highly duplicated to form relatively large families of CLO/PXG-like

genes, many of which are differentially expressed in various developmental and/or environmen-

tal conditions. We and others have previously shown that in a range of higher plants including

Arabidopsis, maize, and rice, some CLO genes are induced by a variety of biotic and abiotic

stresses (e.g. RD20, AtPXG1, AtPXG2, EFA27, OsCLO-2, OsCLO-6, ZmCLO7) while other CLO
genes are unresponsive to such stresses but may be highly expressed in lipid-storing tissues such

as seeds [8, 28, 69, 70]. It is also possible to divide higher plant CLO/PXGs into two functional

groups, one of which has very low epoxygenase activity when expressed under standard condi-

tions and tends to be seed specific, while the other has high epoxygenase activity and is exp-

ressed throughout the plant[28]. In many well-characterised higher plant genomes there are

large numbers of CLO/PXG-like genes, such as six in Arabidopsis, 11 in the diploid Brassicas,

nine in rice and 12 in maize. These sequences include highly conserved regions also found in

algae, plus more variable regions some of which may have arisen after the monocot/dicot diver-

gence of about 150–160 Mya [13]. In some cases the annotated CLO/PXG sequences appear to

be pseudogenes as they are not expressed and in some cases lack crucial CLO domains and may

also contain additional non-CLO domains. An example of the latter is the presence of bZIP and

PKinase domains in the non-expressed putative maize sequences, ZmCLO1 and ZmCLO2a [13]

and in an Arabidopsis CLO sequence [103].

The expansion and increasing complexity of CLO/PXG-like gene families in land plants is

consistent with the evolution of a wider range of functions by the various CLO/PXG protein

isoforms. Some of the functions relating to nutrient stress responses and LD packaging are

also seen even in unicellular green algae and are probably universal for CLO/PXGs [43, 87,

104]. However, other functions such as oxylipin-based signalling [105, 106] are unique to mul-

ticellular organisms and probably evolved later, while other peroxygenase activities are related

to the production of extracellular waxes such as cutin [107–109] and desiccation tolerance [35,

92, 110] so these functions would not have been required until plants became terrestrial. It is

also becoming evident that CLO/PXGs have central roles in plant-pathogen responses, espe-

cially with fungi where the proteins may be involved in both host and pathogen crosstalk via

oxylipin pathways [8, 9, 15, 98, 111]. In summary, the evolution of the CLO/PXG gene family

in the Viridiplantae involves over one billion years of gradually expanding functions as these

organisms increased in size and complexity and had to adapt to new forms of biotic and abiotic

stress as they colonised new habitats and faced new challenges both in the sea and on land.

Putative CLO/PXG genes/proteins in a bacterium and a basal opisthokont

We found that public databases contain several DNA sequences with weak to moderate simi-

larity to CLO/PXG in other major taxa apart from Viridiplantae or Fungi. In the majority of

cases these can be dismissed as being potential functional members of the CLO/PXG family
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because the derived proteins lack canonical domains required for biological functions, such as

calcium-, haem- or lipid-binding motifs. However, there are several database entries that do

contain the major CLO/PXG motifs and these may be non-orthologous versions, i.e. xenologs,

of the well-established Viridiplantae and Fungal sequences [112]. In particular, there are sev-

eral annotated putative CLO/PXG-like sequences in the genomes of the myxobacterium, Sor-
angium cellulosum, and the basal opisthokont, Capsaspora owczarzaki. As shown in Fig 6A, 6B

and 6C, the derived protein sequences from these two organisms contain a calcium-binding

EF hand motif plus the two invariant histidine residues involved in heme binding and a lipid-

binding domain, all of which are in the same locations in the protein as in the well established

plant and fungal sequences. There are additional smaller regions of sequence similarity, inc-

luding in putative kinase domains, which may indicate that these proteins may be regulated by

phosphorylation and the predicted proteins are also of similar length to most verified CLO/

PXGs. One notable absence in the S. cellulosum and C. owczarzaki sequences is the H-domain,

a motif that is found close to the N terminus of many, but not all, algal and land plant CLO/

PXGs (see Fig 6B). This may indicate that if these sequences were acquired via horizontal gene

transfer (HGT) then they originated as plant-derived L-caleosins.

Interestingly, no CLO/PXG-like sequences were found in the genomes of any of the close

relatives of either S. cellulosum, C. owczarzaki or Panagrolaimus spp for which data are avail-

able. This may indicate that the genes were originally acquired as isolated instances of HGT

and then became duplicated and were retained as multiple-copy gene families due to their use-

fulness for the particular lifestyles of these organisms. For example, S. cellulosum.

Soce56 is a highly unusual aerobic myxobacterium that has the largest bacterial genome

sequenced to date at 14.8 Mb [113]. The genome of this bacterium has undergone massive

expansion due to gene endo-duplication and HGT, and its lifestyle involves high levels of social

behaviour and production of a wide range of secondary metabolites with complex regulatory

networks including many kinases that facilitate responses to rapidly fluctuating environments

[113]. With their known roles in stress responses, signal transduction, and oxylipin metabo-

lism it can be seen why the presence of as many as seven CLO/PXG genes might be adaptive

for S. cellulosum.

In the case of the nematode genus, Panagrolaimus spp, a BLAST search with the five puta-

tive CLO/PXG sequences gave both higher plants and fungal CLO/PXGs in the top few hits.

Therefore, if the original gene was acquired via HGT, as seems likely it is not clear whether the

donor was a plant or a fungus. One interesting feature of the putative CLO/PXG genes from

the nematodes is that they were only found in parthenogenetic species in the genus and are

functionally linked to cryptobiosis and especially to desiccation tolerance [114]. As discussed

above, the algal caleosins are highly upregulated following salt stress and may also have played

a role in the transition of more complex plants from aquatic to terrestrial environments with

the concomitant requirement for improved tolerance to desiccation.

A third well-supported putative CLO/PXG gene family is present in another unusual organ-

ism, namely the eukaryote, C. owczarzaki, which is a filose amoeboid symbiont of the pulmo-

nate snail, Biomphalaria glabrata. Genomic sequence data suggest that C. owczarzaki is a

member of an opisthokont lineage, the Holozoa, which is more closely related to the Metazoa

than to the other major multicellular opisthokont group, the Fungi [115]. Interestingly, during

specific phases of its life cycle, C. owczarzaki cells accumulate and then extrude LDs, although

it is not known whether these extracellular LDs contain CLO/PXGs as is found in several algae

(see above) [116, 117].

A less likely candidate CLO/PXG protein has been reported in the dinoflagellate, Symbiodi-
nium [43] In this case an LD-associated 20kDa protein in Symbiodinium cells cross-reacted

with anti-CLO/PXG antibodies generated against purified sesame and cycad proteins, which
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could possibly imply the presence of a CLO/PXG protein in this species. However, Symbiodi-
nium, which is a photosynthetic endosymbiont within the reef building coral, Euphyllia glab-
rescens is a dinoflagellate that is unrelated to either the Viridiplantae or Fungi, having acquired

its plastids from red algae, which do not have CLO/PXG genes (see above). Therefore, in the

absence of definitive sequence data for the 20kDa LD protein or its gene, it cannot be assumed

to be a bona fide CLO/PXG.

Finally, we found a few isolated database entries of CLO/PXG-like sequences in genomes of

taxa from which these genes are thought to be absent, most notably the Metazoa. For example,

we found a CLO/PXG-like sequence with very strong identity to higher plants in the genome

entry for the Gulf Coast tick, Amblyomma maculatum (GenBank: AEO32378.1). These ticks

are parasites of small mammals and birds. The entry was from a shotgun transcriptome assem-

bly that had involved the collection of several hundred million sequences from ticks kept in

culture. Correspondence with the lab concerned established that the ticks used in the study

also harboured some algal growths on their external surfaces and that this may have been the

source of the CLO/PXG-like sequence. It can be concluded that this particular CLO/PXG-like

database entry is highly likely to be erroneous and due to contamination from plant or algal

sequences rather than to HGT. The take-home messages from the two examples of Symbiodi-
nium and A. maculatum, are that a) considerable caution should be exercised in the use of anti-

body cross reactivity in the absence of sequence data and b) anomalous sequence entries in

databases should be carefully scrutinised before definite conclusions are drawn.

Conclusions

The distribution of CLO/PXG-like genes is consistent with their origin >1 billion years ago in

at least two of the earliest diverging groups of the Viridiplantae, namely Chlorophyta and

Streptophyta but the Viridiplantae from other Archaeplastidal groups such as the Rhodophyta

and Glaucophyta. The algal CLO/PXGs have roles in lipid packaging and stress responses,

especially related to dehydration and salinity. In contrast, the Embryophyte CLO/PXG pro-

teins have a much wider spectrum of physiological roles including oxylipin signaling pathways,

and may have been instrumental in the colonisation of terrestrial habitats and the subsequent

diversification as the major land flora.

Fig 6. Alignments of anomalous CLO/PXG sequences from two non-Viridiplantae species. (A) Alignments of

seven CLO/PXG sequences from S. cellulosum. (B) Alignments of two CLO/PXG sequences from C. owczarzaki with a

range of green algal sequences. (C) Alignments of five putative CLO/PXG sequences from the Metazoan nematode

genus, Panagrolaimus spp, with sequences from A. thaliana.

https://doi.org/10.1371/journal.pone.0196669.g006
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77. Derelle R, López-Garcı́a P, Timpano H, Moreira D. A Phylogenomic Framework to Study the Diversity

and Evolution of Stramenopiles = Heterokonts). Mol Biol Evol. 2016; 33(11):2890–8. Epub 2016/08/

10. https://doi.org/10.1093/molbev/msw168 PMID: 27512113; PubMed Central PMCID:

PMCPMC5482393.

78. Shemesh Z, Leu S, Khozin-Goldberg I, Didi-Cohen S, Zarka A, Boussiba S. Inducible expression of

Haematococcus oil globule protein in the diatom Phaeodactylum tricornutum: Association with lipid

droplets and enhancement of TAG accumulation under nitrogen starvation. 2016; 18(Supplement

C):321–31.

79. Yoneda K, Yoshida M, Suzuki I, Watanabe MM. Identification of a Major Lipid Droplet Protein in a

Marine Diatom Phaeodactylum tricornutum. Plant Cell Physiol. 2016; 57(2):397–406. Epub 2016/01/

06. https://doi.org/10.1093/pcp/pcv204 PMID: 26738549.

80. Maeda Y, Nojima D, Yoshino T, Tanaka T. Structure and properties of oil bodies in diatoms. Philos

Trans R Soc Lond B Biol Sci. 2017; 372(1728). https://doi.org/10.1098/rstb.2016.0408 PMID:

28717018; PubMed Central PMCID: PMCPMC5516117.

81. Qiu H, Yoon HS, Bhattacharya D. Red Algal Phylogenomics Provides a Robust Framework for Infer-

ring Evolution of Key Metabolic Pathways. PLoS Currents. 2016; 8:ecurrents.

tol.7b037376e6d84a1be34af756a4d90846.

82. Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, et al. Red and green algal mono-

phyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol. 2011; 21

(4):328–33. https://doi.org/10.1016/j.cub.2011.01.037 PMID: 21315598.

83. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, et al. Phylogeny and Molec-

ular Evolution of the Green Algae. Critical Reviews in Plant Sciences. 2012; 31(1):1–46.

84. Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T. The rise of algae in Cryo-

genian oceans and the emergence of animals. 2017; 548(7669):578–81. https://doi.org/10.1038/

nature23457 PMID: 28813409

85. Partridge M, Murphy D. Roles of a membrane-bound caleosin and putative peroxygenase in biotic and

abiotic stress responses in Arabidopsis. Plant Physiol Biochem. 2009; 47. https://doi.org/10.1016/j.

plaphy.2009.04.005 PMID: 19467604

Evolutionary and genomic analysis of caleosin/peroxygenases in the Viridiplantae

PLOS ONE | https://doi.org/10.1371/journal.pone.0196669 May 17, 2018 23 / 25

https://doi.org/10.1186/1756-0500-4-265
http://www.ncbi.nlm.nih.gov/pubmed/21798037
https://doi.org/10.1093/pcp/pcq155
http://www.ncbi.nlm.nih.gov/pubmed/20952421
https://doi.org/10.1186/1475-2859-10-91
http://www.ncbi.nlm.nih.gov/pubmed/22047615
https://doi.org/10.1016/j.gpb.2012.08.006
http://www.ncbi.nlm.nih.gov/pubmed/23317702
https://doi.org/10.1093/gbe/evv090
http://www.ncbi.nlm.nih.gov/pubmed/25977457
https://doi.org/10.3389/fpls.2016.02025
http://www.ncbi.nlm.nih.gov/pubmed/28111588
https://doi.org/10.1073/pnas.1620089114
https://doi.org/10.1073/pnas.1620089114
http://www.ncbi.nlm.nih.gov/pubmed/28808007
https://doi.org/10.1093/molbev/msw168
http://www.ncbi.nlm.nih.gov/pubmed/27512113
https://doi.org/10.1093/pcp/pcv204
http://www.ncbi.nlm.nih.gov/pubmed/26738549
https://doi.org/10.1098/rstb.2016.0408
http://www.ncbi.nlm.nih.gov/pubmed/28717018
https://doi.org/10.1016/j.cub.2011.01.037
http://www.ncbi.nlm.nih.gov/pubmed/21315598
https://doi.org/10.1038/nature23457
https://doi.org/10.1038/nature23457
http://www.ncbi.nlm.nih.gov/pubmed/28813409
https://doi.org/10.1016/j.plaphy.2009.04.005
https://doi.org/10.1016/j.plaphy.2009.04.005
http://www.ncbi.nlm.nih.gov/pubmed/19467604
https://doi.org/10.1371/journal.pone.0196669


86. Hyun TK, Kumar D, Cho YY, Hyun HN, Kim JS. Computational identification and phylogenetic analysis

of the oil-body structural proteins, oleosin and caleosin, in castor bean and flax. Gene. 2013; 515

(2):454–60. Epub 2012/12/08. https://doi.org/10.1016/j.gene.2012.11.065 PMID: 23232356.

87. Ouyang LL, Chen SH, Li Y, Zhou ZG. Transcriptome analysis reveals unique C4-like photosynthesis

and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC

Genomics. 2013; 14:396. Epub 2013/06/13. https://doi.org/10.1186/1471-2164-14-396 PMID:

23759028; PubMed Central PMCID: PMCPMC3686703.

88. Davidi L, Katz A, Pick U. Characterization of major lipid droplet proteins from Dunaliella. Planta. 2012;

236(1):19–33. Epub 2012/01/10. https://doi.org/10.1007/s00425-011-1585-7 PMID: 22231009.

89. Yao L, Tan KWM, Tan TW, Lee YK. Exploring the transcriptome of non-model oleaginous microalga

Dunaliella tertiolecta through high-throughput sequencing and high performance computing. BMC Bio-

informatics. 2017; 18(1):122. https://doi.org/10.1186/s12859-017-1551-x PMID: 28228091

90. Delwiche C. The Genomes of Charophyte Algae. Advances in Botanical Research. 2016; 78:255–70.

91. De Vries J, M Archibald J. Plant evolution: landmarks on the path to terrestrial life. New Phytologist.

2017; 217:1428–34.

92. Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B. Transcriptomics of des-

iccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reac-

tion. PLoS One. 2014; 9(10):e110630. Epub 2014/10/23. https://doi.org/10.1371/journal.pone.

0110630 PMID: 25340847; PubMed Central PMCID: PMCPMC4207709.

93. Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M, et al. Klebsormidium flaccidum

genome reveals primary factors for plant terrestrial adaptation. Nat Commun. 2014; 5:3978. Epub

2014/05/28. https://doi.org/10.1038/ncomms4978 PMID: 24865297; PubMed Central PMCID:

PMCPMC4052687.

94. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB. Molecular evidence for the

early colonization of land by fungi and plants. Science. 2001; 293(5532):1129–33. https://doi.org/10.

1126/science.1061457 PMID: 11498589.

95. Sanderson MJ, Thorne JL, Wikström N, Bremer K. Molecular evidence on plant divergence times. Am

J Bot. 2004; 91(10):1656–65. https://doi.org/10.3732/ajb.91.10.1656 PMID: 21652315.
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