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In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading
the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a
limited number of projections.However, conventional CS-based algorithms are computationally intensive and time-consuming.We
propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform
and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior
approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on
the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning
interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and
interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom
when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed
method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard
desktop computer without numerical optimization.

1. Introduction

Compared to conventional radiography, CT results in a
relatively large radiation dose to patients, which is of serious
long-term concern in its potential for increasing the risk of
developing cancer [1, 2]. As a result, low dose CT imaging
that maintains the resolution and achieves good contrast
to noise ratio has been the goal of many CT developments
over the past decade. However, low dose CT images recon-
structed with conventional filtered back projection (FBP),
which directly calculates the image in a single reconstruc-
tion step, suffer from low contrast to noise ratios. Iterative
reconstruction approaches, namely, Algebraic Reconstruc-
tion Technique (ART) [3–5] and statistical iterative recon-
struction (SIR) [6, 7], have been proposed to improve the

reconstruction quality and to decrease image artifacts. The
iterative algorithms improve the quality by considering more
accurate models for the CT images and geometries. However,
they significantly increase the computational complexity,
compared to the FBP based methods.

Iterative reconstruction methods have progressed with
the introduction of compressed sensing (CS) [8, 9]. Such
methods are capable of reconstructing high quality images
from a substantially smaller number of views than those
needed in FBP [10], thereby permitting the use of a much
lower dose scanning protocol than that needed in conven-
tional reconstruction methods. However, conventional CS-
based CT reconstructions are computationally expensive and
the statistics of CT measurements are not usually incorpo-
rated in the problem formulation [11–16].
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In this paper, we propose a fast weighted CS-based CT
reconstruction algorithm, the weights of which are direct
consequences of the geometry and the CT statistics. The
first part of this paper leads to the proposed weighted CS
formulation, which is solved by a computationally efficient
method discussed in the second part.

2. CS-Based CT Reconstruction and
Its Challenges

Compressed sensing prescribes solving the ℓ1 optimization
problem that can be represented by

x̂ = argmin
𝑥
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or other similar forms, for example, the ℓ1 norm of the image
gradient, such as

x̂ = argmin
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to recover a sparse signal from few samples. In these
equations, 𝜇 acts as a regularization parameter specifying
a trade-off between the image prior model and the fidelity
to observations, A is the measurement matrix, x is the
column vector representation of the desired image (𝑓),
y is the measured data, 𝑊𝑇 is a sparsifying transform,
‖𝑥‖
𝑞

= (∑
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|
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)
1/𝑞, and TV denotes the total variation
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, where ∇
𝑥
and ∇

𝑦
are the first

derivatives in the 𝑥 and 𝑦 directions of the desired image.
The main challenge in solving these optimization prob-

lems within a reasonable amount of time arises from the size
of the measurement matrix A. Currently, in most available
CS-based reconstruction methods, the measurement matrix
A is a projectionmatrix whichmodels the rays going through
the patient. To reconstruct a 512 × 512 pixel image from 900
sensors and 1200 projection angles, A would be a 1080000 ×
262144 matrix. Although this matrix is sparse, each iteration
typically requires two multiplications by A and AT, resulting
in a very significant increase in the computation burden for
reconstructing a 512 × 512 image [11, 12] as compared to FBP
based methods. To enable the CS-based CT reconstruction
to be done in a reasonable computation time, GPU based
algorithms have been proposed [17].

2.1. Complexity Reduction Using the Pseudopolar Fourier
Transform (PPFT). To reduce the computational burden on
the Radon transform, the central slice theorem (CST) or
direct Fourier reconstruction (DFR) has been used [18]. This
relates the 1D Fourier transform of the projections to the 2D
Fourier transform of the image. Such a method requires the
interpolation of polar data onto a Cartesian grid followed by
an inverse FFT on the same grid to reconstruct the CT image.
Since interpolation does not have a known analytical adjoint,
its use in iterative algorithms is not a practical option. In
addition, inclusion of a gridding and regridding step at each
iteration increases the overhead computational complexity.

This problem has been extensively studied in non-Cartesian
magnetic resonance imaging reconstruction algorithms [19].

An equally sloped tomography (EST) method was orig-
inally proposed for electron beam tomography [20–22] to
improve the DFR-based algorithms. EST is an iterative
method that makes use of the pseudopolar Fourier transform
(PPFT) [23]. It calculates the Fourier coefficients of an
image directly on pseudopolar grids, which contain two
types of samples: basically horizontal (BH) and basically
vertical (BV), as can be seen in Figure 1. To reconstruct an
𝑁 × 𝑁 image from its PPFT coefficients, 4𝑁2 samples are
needed (2𝑁 samples on 2𝑁 equally sloped radial lines). A
fast algorithm has been proposed by Averbuch et al. [23]
to calculate the PPFT and its adjoint with complexity of
𝑂(𝑁

2log𝑁). This algorithm can then be used to implement
a fast and efficient 2D Radon transform on the equally sloped
radial lines. The PPFT has three important properties which
makes it a good alternative to conventional DFR methods:
(1) it is closer to a polar (equiangular line) grid than to a
Cartesian grid, which significantly decreases the gridding
error, (2) it has both a fast forward and a fast backward
calculation algorithm [23], which enables our proposed
algorithm to avoid the regridding step used in iterative non-
Cartesian Fourier based reconstruction methods, and (3) it
has an analytical adjoint function. As a result, it can efficiently
be used in iterative algorithms, including compressed sensing
[24, 25]. However, it should be noted that Fourier-based
reconstruction algorithms, for example, ESR and DFR, are
only valid for parallel X-ray projections.

A major objective of this paper is to accelerate the CS-
based CT reconstruction by decreasing the CS complexity
using PPFT-based Radon transform proposed in [26]. The
application of the proposed method is extended to equian-
gular parallel and nonparallel geometries using rebinning.

2.1.1. Rebinning Process. To enable use of the PPFT-based
Radon transform for nonparallel geometries, the projected
rays must first be transformed to parallel beams [27]. This
requires two interpolation steps. At first, projections are
interpolated on equally sloped radial lines on the following
angles:

𝜑BH = tan−1 (2𝑚
𝑁
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(3)

This step makes use of the following relationships between
fan and parallel beams:

R (𝛾, 𝛽) = 𝑔 (𝑅 sin 𝛾, 𝛽 + 𝛾) ,

𝑙 = 𝑅 sin 𝛾,

𝜑 = 𝛽+ 𝛾,

(4)

where 𝛾, 𝑅, 𝜑 = 𝜑BH ∪ 𝜑BV, and 𝛽 are geometry parameters
defined in Figure 2. Moreover, R(𝛾, 𝛽) is the fan beam
projected data and 𝑔(𝑅 sin 𝛾, 𝛽 + 𝛾) is the corresponding
rebinned parallel ray. In the second interpolation step, the
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Figure 1: (a) Pseudopolar grids: red lines are basically horizontal (BH) and the black lines are basically vertical (BV). (b) Polar grids (red
dots) on the pseudopolar grids (gray dots).
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Figure 2: (a) Parallel beam geometry and (b) fan beam geometry with a curved detector.

radial samples are interpolated on the pseudopolar grids
shown in Figure 1(b). To reduce the interpolation error, these
radial lines are zero-padded and the 1D Fourier transforms
of the zero-padded radial lines are interpolated. This is
equivalent to oversampling in the Fourier domain, which
makes the interpolation error manageably small.

2.2. Measurement Noise and CS-Based CT Reconstruction.
The measurement noise in CT scanners can best be mod-
eled by a Poisson distribution [27], while the noise that

is considered in classical CS formulations, such as those
given by (1) and (2), is white additive Gaussian noise [8, 9].
Therefore, to enable a more accurate low dose CS-based
CT reconstruction, the classical CS formulations should be
modified. To address this problem in prior studies different
approaches have been used. For instance, in [14, 28, 29] to
account for the statistical properties associated with low-dose
measurements, an iterative SIR based technique followed
by TV denoising was used. The penalized weighted least
squares (PWLS) formulation of statistical CT reconstruction
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was used in [30, 31] to improve the quality of reconstructed
images. This PWLS formulation can be characterized as a
weighted ℓ1 minimization problem as proposed by Candès
et al. [32], who showed that by using appropriate weights
the quality of the recovered signal can be improved. In this
modified CS formulation, the weights could account for the
statistical characteristics of the signals.

In this paper, a fast CS-based CT reconstruction is
proposed using a pseudopolar based Radon transform to
decrease the complexity of the CS recovery. The method
requires the projections to be rebinned on equally sloped
lines. We propose a weighted CS formulation in the frame-
work of statistical CT image reconstruction algorithms. The
weight, denoted by error adaptation weight (EAW), is a
function of the rebinning interpolation error [25] and the
Poisson noise of the CT projections [31] calculated from a
maximum a posteriori (MAP) model of CT reconstruction,
described in next section.

3. Maximum a Posteriori (MAP) Model of CT

X-ray projections of the parallel beam CT can be expressed
as the Radon transform of the object. The Radon transform
is defined as [33]

𝑔 (𝑙, 𝜑)

= ∫

∞

−∞

∫

∞

−∞

𝑓 (𝑥, 𝑦) 𝛿 (𝑥 cos𝜑+𝑦 sin𝜑− 𝑙) 𝑑𝑥 𝑑𝑦,
(5)

which is the integral along a ray at angle 𝜑 and at the distance
𝑙 from the origin, 𝛿(𝑥, 𝑦) is Dirac delta function, and 𝑓(𝑥, 𝑦)
is the object attenuation at (𝑥, 𝑦). However, this is not what
the scanners directlymeasure. Scanner detectorsmeasure the
number of photons that hit the detector, 𝜆(𝑙, 𝜑), which is
usually modeled by Poisson distribution with expected value
of 𝜆(𝑙, 𝜑) [6, 27]. The relation between 𝑔(𝑙, 𝜑) and 𝜆(𝑙, 𝜑)

is 𝑔(𝑙, 𝜑) = −log(𝜆(𝑙, 𝜑)/𝜆
𝑇
), where 𝜆

𝑇
is the number of

radiated photons from the X-ray source. It should be noted
that 𝜆(𝑙, 𝜑) is usually corrupted with two kinds of noise:
electrical noise of the detectors (with variance of 𝜎2

𝑛
) and the

photon counting noise (observed counts are drawn from a
Poisson distribution of mean 𝜆). If we consider the discrete
formulation in which y denotes the vectorized 𝑔(𝑙, 𝜑), x
denotes the vectorized𝑓(𝑥, 𝑦), andA is the projectionmatrix,
using the second order Taylor series expansion of the Poisson
distribution, the log likelihood of the measurements is given
by [34, 35]

log𝑝 (y | x) ≈ −

1
2
(y −Ax)𝑇𝐷(y −Ax) +𝑂 (y3) , (6)

in which 𝑂(y3) is a function which depends upon measured
data only and 𝐷 is a diagonal matrix. For the purpose of
the MAP estimation 𝑂(y3) may be ignored since it does not
depend on x. Ignoring this term, (6) describes a simplifiedCT
model that can be written as

y = Ax +n, (7)

in which n is Gaussian distributed noise with a covariance
matrix 𝐷−1 and 𝑑

𝑖
, the 𝑖th diagonal element of 𝐷, is propor-

tional to the detector counts, corresponding to themaximum
likelihood of the inverse of the variance of the projection
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To reconstruct the image from the projections, the MAP
estimator can be used:

x̂ = argmax
𝑥

log𝑝 (y | x) + ℎ (x) . (10)

Here ℎ(𝑥) = log𝑝(x) acts as a penalty function, which is used
to statistically model the wavelet coefficients distribution and
the piecewise constant (locally constant) nature of CT images.

3.1. Piecewise Constant and Sparsity of the CT Images in MAP
Model. Many studies [36, 37] have shown that the wavelet
transform of a variety of images, 𝜃 = 𝑊

𝑇x, can be modeled
by generalized Gaussian distribution (GGD), that is, by

𝑝 (𝜃
𝑖
) = 𝐾 (𝑠, 𝑞) ⋅ exp(−
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where 𝜃 is the wavelet coefficients of the image x = 𝑊𝜃,
𝑊 is inverse wavelet transform, 𝑠 and 𝑞 are the parameters
of the GGD, and 𝐾(𝑠, 𝑞) is the normalization parameter. It
should be noted that when 𝑞 = 1, the GGD is equivalent
to Laplacian distribution and when 𝑞 = 2, it describes a
Gaussian distribution. Using (6), (10), and (11), the MAP
model for CT images can be expressed as

x̂ = argmax
𝑥
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where ‖y−Ax‖2
𝐷
= (y−Ax)𝑇𝐷(y−Ax),𝜇 is a function ofGGD

parameters, and 𝑞 is typically in the range 0 < 𝑞 ≤ 1. Another
prior on 𝑝(𝑥) is that the objects being imaged are piecewise
constant. A 𝜌 variation distribution can be used to describe
the piecewise constant functions [38]. If 𝑥

𝑛
(𝑡) = ∑

𝑛

𝑗=1 𝑥
𝑛

𝑗
Ψ
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is a piecewise function spanned by the roof-top basis Ψ𝑛
𝑗
(𝑡),
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the following class of probability distribution can be used to
describe it:
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where 𝑎
𝑛
> 0, 𝑥𝑛0 = 𝑥

𝑛

𝑛+1 = 0, 𝜐
𝜌,𝑛

is normalizing factor,
and [𝑥𝑛1 , . . . , 𝑥

𝑛

𝑛
]
𝑇 is aR𝑛-valued random vector. When 𝜌 = 1,

this yields the total variation norm. Using 𝜌 = 1 in (13), (10)
becomes the following MAP model for CT images:

x̂ = argmin
𝑥
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As can be seen, (14) and (12) are generalized forms of the
CS models given by (2) and (1), respectively. It has been
shown that the quality of the reconstructed image can be
improved by combining the sparsity and total variation
penalty terms [39]. Therefore, both penalty functions were
used in the proposed method to reconstruct CT images from
the undersampled data, that is, from

x̂ = argmin
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where 𝜇1 and 𝜇2 are regularization parameters.

4. Proposed CS Formulation: Measurement
Noise and Interpolation Error

In Section 3, it was shown that the MAP estimator of CT is
a form of the weighted CS problem given by (15), in which
the weight is a function of noise variance and is denoted by
𝐷 in (9). To avoid the computational burden associated with
the huge projection matrix of CS-based CT, our proposed
algorithm makes use of the fast PPFT-based Radon trans-
form described in Section 2.1. This not only accelerates the
computations by reducing the computational complexity, but
also substantially reduces the gridding error and eliminates
the regridding step (since it has a fast backward calculation
algorithm, there is no need to regrid the updated image to
pseudopolar grids at each iteration).

As described in Section 2.1.1, the proposed method is
generalized for use with nonparallel geometries by rebinning
the X-ray beams onto equally sloped radial lines as given
by (3). The rebinning step induces interpolation error to
the measured data, which propagates in each iteration of
CS-based CT reconstruction. This problem has not received
much attention in the literature. Fahimian et al. [24] proposed
an EST method for reconstructing fan beam and helical
cone beam images, in which they overcome the rebinning
interpolation problem at each iteration by using a nonlocal
total variation minimization smoothing step. In the method
proposed by Hashemi et al. [25], an ℓ2-TV optimization
scheme was used to reconstruct the CT images from fan
beam projections. To compensate for the interpolation error,
a confidence matrix was added to the CS scheme, enabling
control of the error propagation in successive iterations.

To control the interpolation error, we make use of a
MAP model of the CT reconstruction process. Denoting
the variance of interpolation error by 𝑒

𝑖
, the variance of the

measurements is

𝜎
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. (16)

Using (8), the effects of both the noise variance and interpo-
lation error can be lumped together into the form of an error
adaptation weight (EAW), denoted by a diagonal matrix C
with diagonal elements:

𝑐
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Assuming a nearest neighbor interpolation, the interpolation
error is linearly dependent on the distance between the
desired and the measured grids; that is, 𝑒

𝑖
= 𝜖
𝑖
× 𝜆
𝑖
in which

𝜖
𝑖
∈ [0,∞)models the interpolation distance. Consequently,

if the dose at each projection is high enough to ignore the
electric noise 𝜎

𝑛
, the EAW can be rewritten as
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Using this definition, our proposed CS formulation to recon-
struct the CT images can be expressed by

x̂ = argmin
𝑥
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This implicitly models the effect of polar and nonparallel
projections to pseudopolar gridding, which in turn affects the
noise in the data.This error is considered to be linearly depen-
dent on the interpolation distance, while it is typically smaller
usingmore accurate interpolationmethods, that is, in Kaiser-
Bessel based interpolation [19]. Therefore, the proposed CS
formulation can be thought of as a minimization of an upper
bound of the pseudopolar rebinning error. In addition, C in
this formulation acts similar to a Jacobi preconditioner and
therefore could accelerate the convergence rate [40].

4.1. Calculation of 𝜖. The value of 𝜖
𝑖
represents the error of

the interpolated samples. If the interpolated sample is close
to the original measurements, the value of 𝜖

𝑖
is small and the

confidence about the interpolated value is high. If the angular
distance of the measured data from the interpolated line is
more than the angular difference of the equally sloped lines,
the interpolation error is considered to be high (𝜖

𝑖
→ ∞):

this follows from the fact that the distance of points on the
line from the true measured values is maximal and therefore
the error is maximal. Using (18), this condition corresponds
to 𝑐
𝑖
→ 0. The closer the equally sloped lines are to the

rays on which the measurements are made, the smaller the
interpolation error will be, so that 𝜖

𝑖
s on that line get closer

to zero. Finally, if the desired equally sloped rays are exactly
on the polar lines, the interpolation error 𝑒

𝑖
is zero, which is

equivalent to 𝜖
𝑖
= 0. This process is illustrated in Figure 3.

In practice, (1/(1 + 𝜖
𝑖
)) can be estimated by rebinning an

all-ones matrix with the same size as the measured data onto
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Figure 3: An example of calculating the interpolation error in the error adaptation weight (EAW).

the equally sloped radial angles followed by an interpolation
on the pseudopolar grid. Note that this has to be calculated
only once before the reconstruction.

5. Solving the Proposed CS Formulation

To solve the proposed formulation, a fast composite splitting
algorithm (FCSA) [41–43] is used to decompose (19) into two
simpler subproblems given by

x̂1 = argmin
𝑥

𝑓1 (x) ,

𝑓1 (x) =
1
2




y −Ax



2
C +𝜇1






𝑊
𝑇x
𝑞
,

x̂2 = argmin
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(20)

in which y is the measured data interpolated/rebinned on the
equally sloped lines, A is the PPFT-based Radon transform,
and A𝑇 is its adjoint. By calculating x̂1 and x̂2, the FCSA
method proposes that the solution to the problem can be
obtained by a linear combination of the solutions of the two
subproblems; that is,

x̂ = Δx̂1 + (1−Δ) x̂2, (21)

in which Δ = 𝑓2/(𝑓1 + 𝑓2) is a function of the values
of the objective functions of the two subproblems. Each of
these subproblems can be solved by a subgradient-projection
based method [44]. The pseudocode of the proposed recov-
ery is shown in Algorithm 1, in which prox{𝑔(𝑥), 𝑧} =

argmin
𝑥
𝑔(𝑥) + (1/2)‖𝑥 − 𝑧‖

2
2. To find x̂1, the optimization

problem in step (2) of this algorithm can be solved by
a wavelet soft thresholding algorithm [36]. Moreover, to
calculate x̂2 in step (3), the split Bregman TV based denoising
algorithm as proposed in [45] was used. Finally, to estimate
x̂
𝑘
in the 𝑘th iteration, (21) was used.
In the proposed CT reconstruction algorithm, sum-

marized in Figure 4, the Daubechies wavelets with four
vanishing moments in 5 levels are used as the sparsifying
transform 𝑊. The regularization parameters are manually
tuned to𝜇1 = 0.05‖𝑊𝑇(A𝑇y)‖

∞
and𝜇2 = 1 × 10−3TV(A𝑇y).

6. Simulation Methods

Fan beam simulations were performed using a Shepp-Logan
phantom available inMATLAB (MathWorks, Massachusetts,
USA), a custommade phantom that mimics different cardiac
plaques and a clinical patient. This study was approved
by our institutional (Toronto General Hospital, Toronto,
ON, Canada) review board and individual patient consent
was waived. X-ray projections of the phantoms and the
patient were taken using a Toshiba Aquilion ONE© scanner
(Toronto General Hospital, Canada). The scanner gathers
data from 900 projection angles in each 360∘ rotation. To
be compatible with the available hardware, when the images
were reconstructed from fewer than the 900 projections, the
projection views were selected equiangularly. For all the scan
protocols, the X-ray tube current-exposure time product was
50mAs and the peak voltage was 120 kV.This current/voltage
is high enough to ignore the electric noise in the simulations.
Data from the central row of a volumetric scan on one single
rotation served as the fan beam data.
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x̂ = min
x

1

2
‖y − Ax‖2C + 𝜇1‖Wx‖1 + 𝜇2TV(f)
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Figure 4: Flowchart of the proposed weighted CS-based CT reconstruction method.

7. Results and Discussion

In this section, the performance of the proposed method is
evaluated in terms of the reconstruction time and accuracy.
In addition, the effect of the EAW is evaluated in reducing
the influence of the interpolation error and the Poisson
measurement noise.

7.1. Reconstruction Time Acceleration. Compared to the other
CS-based reconstruction techniques, the primary improve-
ment of our proposed method is the major reduction in
the computational burden. The reconstruction time of the

proposed method is compared with a conventional ART-
TV based CT reconstruction algorithm. The convergence of
this method is justified by projection on convex set (POCS)
algorithm. As an example in [46], an ART-TV based CT
reconstruction method is proposed denoted by adaptive-
steepest-decent POCS (ASD-POCS), which has been used
by many other researchers [14, 29, 47, 48]. Here, we use a
simple method in which the updates are calculated using an
ART based method described below. This step is followed by
a TV minimization step to project the updated image on a
piecewise constant space. To solve the y = Ax problem in
ART step, a randomized Kaczmarz algorithm is used [4]. If
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Initialize: 𝜇1, 𝜇2, C, 𝑟1 = 0, 𝑡1 = 1, maxiter, tol
while ‖x̂

𝑘
− x̂
𝑘−1‖2/‖x̂𝑘‖ > tol or 𝑘 <maxiter do

(1) 𝛼
𝑘
= ‖A𝑟

𝑘
− A𝑟
𝑘−1‖
2

2
/‖𝑟
𝑘
− 𝑟
𝑘−1‖
2

2

(2) z = 𝑟
𝑘
+ 1/𝛼

𝑘
(A)𝑇C(y − A𝑟

𝑘
)

(3) x̂1 = 𝑊(prox{𝜇1/𝛼𝑘‖𝑊
𝑇x‖
1
,𝑊
𝑇z})

(4) x̂2 = prox{𝜇2/𝛼𝑘TV(x), z}
(5) x̂

𝑘
= Δx̂1 + (1 − Δ)x̂2

(6) 𝑡
𝑘+1 = (1 + √1 + 4𝑡2

𝑘
)/2

(7) 𝑟
𝑘+1 = x̂

𝑘
+ ((𝑡
𝑘
− 1)/𝑡

𝑘+1)(x̂𝑘 − x̂
𝑘−1)

(8) 𝑘 ← 𝑘 + 1
endwhile

Algorithm 1: Algorithm used to solve (19).

y = Ax is a linear system of equations and x0 is an arbitrary
initial approximation to the solution, randomized Kaczmarz
applies the following updating step at each iteration:

x
𝑘+1 = x

𝑘
+

y
𝑟(𝑖)

− ⟨𝑎
𝑟(𝑖)
, x
𝑘
⟩





𝑎
𝑟(𝑖)






2
2

𝑎
𝑟(𝑖)
, (22)

where 𝑟(𝑖) is chosen randomly from the set {1, 2, . . . , 𝑚}, with
probability proportional to ‖𝑎

𝑟(𝑖)
‖
2
2, 𝑎𝑖 is the 𝑖th row of A, and

⟨⋅, ⋅⟩ is the inner product of two vectors. Using this algorithm
followed by the split Bregman TV minimization (denoted
by SBROF in Algorithm 2), the ART-TV based method is
described in Algorithm 2. In our simulations, the number
of inner iterations used in Kaczmarz algorithm is 10 and the
number of outer iterations is 50.

Figure 5 compares the recovery time using (1) filtered
back projection (FBP), (2) the proposed method, and (3)
the ART-TV based method described in Algorithm 2 (the
ARTmethod implementation is based on the codes provided
in algebraic iterative reconstruction methods (AIR Tools)
and Tomobox packages). It can be seen that for a 512 ×

512 image the recovery time for the proposed method is
approximatively 10–30 sec, using MATLAB on an Intel(R)
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Figure 6: ART-TV reconstruction results: (a) Shepp-Logan phan-
tom reconstructed from 200 projections and (b) reconstruction
error.

Initialize: 𝑟1 = 0, inner, outer, 𝜇, tol
while ‖x

𝑘
− x
𝑘−1‖2/‖x𝑘‖2 > tol or 𝑘 < outer do

(1) 𝑟 = y − Axk
(2) 𝑥new = randKaczmarz(A, 𝑟, inner)
(3) x

𝑘
= SBROF(x

𝑘−1 + 𝑥new, 𝜇)

(4) 𝑘 ← 𝑘 + 1
endwhile

Algorithm 2: Pseudo-code of ART-TV based method used in
simulations.

Core(TM) i5 (3.2 GHz) CPU desktop PC with 16GB of
RAM. Figure 6 shows the phantom reconstructed by ART-
TV described in Algorithm 2 from 200 projections. The
normalized reconstruction error ‖x − x̂‖2/‖x‖2 is 2 × 10−2.

7.2. Interpolation Error and Noise Correction Using EAW.
Equiangular fan beam projections of the Shepp-Logan phan-
tom were computed on 128 projection views. This data was
then rebinned to parallel rays on equally sloped angles as
described by (3). Figure 7 compares the reconstructed 512
× 512 images with the original image (1) using the inverse
pseudopolar Fourier transform (least squares method), (2)
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(a) (b) (c) (d)

Figure 7: Simulation results for a Shepp-Logan phantom. The bottom row shows an expanded view of the region marked in panel (a). (a)
Original phantom image. Reconstructions using 128 projections with (b) inverse PPFT-based Radon transform (normalized error ≈ 0.9), (c)
an iterative soft thresholding based method without considering EAW (normalized error ≈ 10−1), and (d) the proposed method (normalized
error ≈ 10−2). Rebinned parallel rays were used in all three methods to reconstruct the image.
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Figure 8:Normalized reconstruction error for the simulated Shepp-
Logan phantom reconstructed with the inverse PPFT-based Radon
transform, using an iterative soft thresholding based method with-
out including the EAWand the proposedmethod. Rebinned parallel
rays were used in all three methods to reconstruct the 512 × 512
image.

without using EAW weights and they were solved using an
iterative soft threshold-based method [49], and (3) using
the proposed method with EAW. Note that the lower row
consists of an expanded view of the marked central region,
from which it is clear that the proposed method yields
results very close to that shown in Figure 7(a). Based on

the same phantom, Figure 8 compares the accuracy of the
reconstruction error for all three methods as the number of
projections is varied from 50 to 1024. Both of these figures
show that the recovery accuracy is improved significantly
by the inclusion of EAW to correct for rebinning errors.
In particular, Figure 8 shows that the use of more than
300 projections for a 512 × 512 image does not significantly
affect the reconstruction accuracy. Since the purpose of this
particular study was to examine effects of EAW inclusion on
rebinning interpolation error, noise was not included in the
simulations.

To examine the effects of EAWonmeasurement noise, 128
equiangular projections through the Shepp-Logan phantom
were computed and Poisson noise was added to the projec-
tions. Figure 9 shows the effect of EAW inclusion for different
input peak signal-to-noise ratios (PSNR) on the PSNR of the
reconstructed images. Images were reconstructed with the
proposedmethod once with including EAW that is calculated
by (9) and once without EAW. As can be seen, the PSNR is
improved when the input noise is larger (small input PSNR)
and its effect is less when the noise is low (larger input PSNR).
The input PSNR was measured from the FBP reconstructed
images.

Results obtained from the custom fabricated cardiac
plaque phantom are shown in Figures 10(a)–10(c), which pro-
vides a comparison of reconstructions using FBP from 900
projections with the results obtained from 200 equiangular
projections. It should be noted that the number of projection
is chosen based on Figure 8, which shows that the error of the
images reconstructed from 200 projections is in an acceptable
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Figure 9: Effect of EAW on the PSNR of the reconstructed image.
Solid red line shows the results when EAWwas included and dashed
blue line shows the reconstructed image results when EAW is not
included.

range. Qualitative image evaluation was performed using a
continuous linear scale of 1–5 (Excellent). Statistical analysis
was performed using the paired Student 𝑡-test, which showed
no statistical difference in image quality between the cardiac
phantom images reconstructed from 200 projections using
the proposed method and the full projection FBP images
(𝑝 = 0.05).

Finally, Figures 10(d)–10(f) show reconstructions of a
chest CT scan from a hospital patient using FBP from 900
projections and the proposed method with 200 projections.
The image reconstructed with the proposed method has
almost the same quality as the FBP. Some small details
in bony structures and flat lung regions are removed or
have decreased contrast in the image reconstructed by the
proposed method. However, all the important details are
preserved. Thus, in comparison with FBP, the proposed
method uses about four times less projections; that is, the
radiation dose is decreased bymore than a factor of four (78%
dose reduction).

Current commercial CT scanners are unable to switch
their X-ray sources on and off fast enough to achieve the
proposed equiangular simulations. To overcome this prob-
lem, the mask used in Figure 11(a) is used that addresses
this concern by turning the X-ray source off in the black
areas over a range of angles and then turning it on in the
white areas. To reconstruct high quality CT images scanned
by this protocol, the reconstruction algorithm is modified by
stacking the similar patches into 3D stacks [50]. Applying 3D
wavelet thresholding/shrinkage on the 3D stacks of the sim-
ilar patches increases the sparsity of the wavelet coefficients,
which in turn improves the image reconstruction.The similar
patches are selected from overlapped 15 × 15 neighborhoods
and the patches are 6 × 6.

8. Conclusion

It has been shown that CT reconstruction can be statis-
tically modeled as a weighted compressed sensing opti-
mization problem. Our proposed weighted CS-based CT

reconstruction algorithm was derived from the MAP model
of CT imaging, considering the sparsity of the wavelet
coefficients and piecewise constant nature of the CT images.
Subsequently, a fast CS recovery method was proposed in
which the pseudopolar based Radon transform was used
as the measurement function to reduce the computational
complexity. Moreover, to reconstruct CT images from non-
parallel projections, rebinning to parallel beams was used.
To remove the interpolation error caused by rebinning and
the measurement noise, a weighting approach (EAW) was
proposed. This enabled CT images to be reconstructed from
a reduced number of projections. It was shown that using
EAW improves the reconstruction quality substantially. For
instance, a lung CT image was reconstructed with 78%
lower dose but the same diagnostic quality as the image
reconstructed by FBP from full data. The greatly reduced
computational complexity of the proposed algorithm enabled
a 512 × 512 image to be reconstructed in less than 30 sec on
a desktop computer without numerical optimizations. Thus,
our proposed method may be among the first CS-based CT
reconstruction methods whose computational complexity is
sufficiently small to enable low-dose image reconstructions to
be performed without using either time-consuming compu-
tations or a complex computational system. Finally, it should
be noted that the proposed method can be extended to 3D
geometries by using the approaches described inAppendixA.

Appendix

A. Extending the Algorithm to
3-Dimensional Geometries

As discussed in Section 2.1.1, to be able to use our proposed
method for nonparallel geometries, the projections should be
transformed to the Radon transform data. Simple rebinnging
algorithms can be used for fan beam and helical cone
beam projections to redistribute the diverging beams into
parallel beams, for which the Radon transform and the 2D
projections are identical. However, this transformation is
more complicated in 3D cases, since the 3D Radon is very
different from the 3D X-ray projections.

In this appendix, we first describe a method, using which
the helical cone-beam projections can be transformed to fan
bean projections.This rebinning algorithm can be used in our
proposed method to reconstruct 3D images from the helical
cone beam projections.

In the second part, we describe amethod that converts the
3D cone beam projections to 3D Radon transform. The 3D
Radon transform of the object can be used in our proposed
method along with 3D PPFT transform to reconstruct the
cone beam images. This step is based on Grangeat’s [51]
formula, which can be used in our proposed method to
reconstruct the 3D cone beam images.

A.1. Helical Cone Beam Reconstruction and Preliminary
Results. To reconstruct the helically scanned objects, the
scanned cone beam data should first be converted to fan-
beam data and then to parallel beams.This rebinning process
is based on the method introduced in [52], called cone beam
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(d) (e) (f)

Figure 10: Comparison of FBP and the proposed method for the custom built cardiac plaque phantom (a–c) and from a patient chest CT
scan (d–f). (a, d) Image reconstructed from 900 projections with FBP, (b, e) image reconstructed from 200 projections with FBP, and (c, f)
image reconstructed from 200 projections with the proposed method.

(a) (b) (c)

Figure 11: Comparison of FBP and the modified proposed method for the cardiac plaque phantom reconstructed using the protocol shown
in (a), in which the projections are taken within the white areas, (b) FBP reconstructed image from the 450 projections gathered from the
mask shown in image (a), and (c) image reconstructed with the modified proposed method from projections shown in image (a).
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Figure 12: (a) Helical trajectory (adapted from Figure 1 in [52]) and (b) the fan beams in parallel 𝑧-slices.

single slice rebinning (CB-SSRB). CB-SSRB consists of the
following two steps:

(1) For each source position in the helical trajectory,𝜓, fix
the 𝑧-sampling distances.

(2) For each 𝑧-slice, calculate the complete fan-beam set,
from which the image can be estimated. This step uses the
following equation to interpolate the cone beam scanned data
on the fan beam points of interest:

𝑝
𝑧
(𝜑, 𝑢) ≃

√𝑢
2
+ 𝐷

2

√𝑢
2
+ V2 + 𝐷2

𝑔
𝜓
(𝑢, V) ,

V =
𝑢
2
+ 𝐷

2

𝑅𝐷

Δ𝑧,

(A.1)

where 𝑝
𝑧
(𝜑, 𝑢) is estimated fan beam projection at source

angle 𝜑 and axial position 𝑧, 𝑔
𝜓
(𝑢, V) is the cone beam

projections at helical position, 𝐷 is the distance between the
source and the origin of the detector, and 𝑢, V, and 𝑅 are
geometry parameters defined in Figure 12. Each interpolated
fan beam projection is weighted by

𝑤 (𝜙
𝑠𝑠
, 𝑢)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

sin2 (
𝜋𝜙
𝑠𝑠

2 (2𝛾
𝑇
+ 2𝛾)

) if 𝜙
𝑠𝑠
∈ [0, 2𝛾

𝑇
+ 2𝛾]

1 if 𝜙
𝑠𝑠
∈ [2𝛾
𝑇
+ 2𝛾, 𝜋 + 2𝛾]

sin2 (
𝜋 (𝜋 + 2𝛾

𝑇
− 𝜙
𝑠𝑠
)

2 (2𝛾
𝑇
− 2𝛾)

) if 𝜙
𝑠𝑠
∈ [𝜋 + 2𝛾, 𝜋 + 2𝛾

𝑇
] ,

(A.2)

where 𝜙
𝑠𝑠

= (𝜋/2 + 𝛾
𝑇
)(1 − Δ𝑧/𝑑), 𝑑 = 0.5𝑃(𝜋/2 +

𝛾
𝑇
)/(2𝜋), 𝑃 is the pitch of the helical trajectory, and 2𝛾

𝑇

is the maximum fan angle. The parallel beams 𝑔(𝑙, 𝜑) can
then be estimated from the weighted fan beams 𝑝

𝑧
(𝜑, 𝑢)

using (4), from which y will be calculated by computing the
1D Fourier transform of 𝑔(𝑙, 𝜑)s. Figure 13 shows a simple
simulated phantom reconstructed by the proposed helical

reconstruction method. The helix source position is defined
as 𝜓 = [𝑅cos(𝜑), 𝑅sin(𝜑), 𝑃(𝜑/2𝜋)] and in this test pitch
factor 𝑃 = 0.5. As can be seen, aside from the start or end
of the scan, the reconstruction is almost perfect. However,
when the image is close to one of the endpoints, the error of
rebinning increases and as a result the image reconstruction
error increases.

A.2. Future Work: Volumetric Cone-Beam CT. While in 2D
geometries the X-ray projection and the Radon transform
can be used alternately, in higher dimensions (e.g., cone
beam geometry) the Radon transform and X-ray projections
are very different. This makes it impossible to use inverse
Radon transform and Fourier slice theorem to reconstruct 3D
images from the X-ray projections, directly. The 3D Radon
transformof a 3D function𝑓(⋅), shown in Figure 14, is defined
as

𝑅𝑓 (𝜌𝑛) = ∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

𝑓 (𝑥) 𝛿 (𝑥 ⋅ 𝑛 − 𝜌) 𝑑𝑥, (A.3)

where 𝑛 is the unit vector that passes through the origin
and the point of interest, which is described by (𝜌, 𝜃, 𝜑) in
spherical coordinate and 𝑥 = (𝑥, 𝑦, 𝑧). This means that the
Radon transform of an object 𝑓 at a point is equal to the
integral of the object on a plane that passes the point and is
normal to the vector that connects the origin to that point.

The Grangeat formula relates line integral of cone-beam
data to the Radon data in the whole Radon space for exact
image reconstruction [51].The link between the 3D radon 𝑅𝑓
and the X-ray projections can be expressed as follows:

𝜕

𝜕𝜌

𝑅𝑓 (𝜌𝑛) =

1
cos2𝛽

𝜕

𝜕𝑠

∫

∞

−∞

𝑆𝑂

𝑆𝐴

𝑋𝑓 [𝑠 (𝜌𝑛) , 𝑡] 𝑑𝑡, (A.4)

where𝑋𝑓[𝑠(𝜌𝑛), 𝑡] is the detector value at a distance of 𝑠 from
the center of detector 𝑂 along the line 𝑡 perpendicular to
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(a) (b) (c)

Figure 13: Helical scan tested on a simple simulated phantom. Pitch factor is 0.5 in this phantom data. (a) The original phantom. (b) Image
reconstructed with the proposed method. (c) Difference between the true image and the reconstructed image.
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Figure 14: 3D Radon transform of an object 𝑓(𝑥) at each point 𝐶 is the integral of a plain passing through 𝐶 and orthogonal to the vector
that connects the point to the origin, reproduced, with permission from [51].

𝑂𝐶
𝐷
(shown in Figure 15), 𝑆𝑂 denotes the source to origin

distance, and 𝑆𝐴 is the distance between the source and an
arbitrary point 𝐴 along line 𝑡. Other parameters are defined
in Figure 15.

To have an exact reconstruction, the Grangeat formula
requires the sources on a curve to contain at least one
source at each plane meeting support of the object, 𝑓(⋅).
This condition is obviously not satisfied for a plane circle for
which the FDK approximation has been derived. As shown in
Figure 16, some data needed for exact image reconstruction
aremissed in this geometry.Themissed data can be estimated
using compressed sensing and the error adaptation weights
proposed in this paper.

To reconstruct the cone beam images, the following
process is proposed. Using (A.4), the radial derivatives of
the 3D Radon transform of the object are estimated on 3D

pseudopolar grids.The 3D pseudopolar grids consist of three
groups of grids 𝑃 ≡ 𝑃1 ∪ 𝑃2 ∪ 𝑃3:

𝑃1 = {(𝑚, −

2𝑘
𝑁

𝑚, −

2𝑙
𝑁

𝑚)} ,

𝑃2 = {(−

2𝑘
𝑁

𝑚,𝑚, −

2𝑙
𝑁

𝑚)} ,

𝑃3 = {(−

2𝑘
𝑁

𝑚, −

2𝑙
𝑁

𝑚,𝑚)} ,

(A.5)

where 𝑘, 𝑙 = 𝑁/2, . . . , 𝑁/2, 𝑚 = 3𝑁/2, . . . , 3𝑁/2, and
𝑁 is the number of pixels of the 3D function in each
dimension. Similar to the 2D case, a fast 3D pseudopolar
Fourier transform is available [53] enabling a 3D object
𝑓(⋅) to be reconstructed from the Fourier transform of
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Figure 15: The Grangeat equation and the parameters used in it, reproduced, with permission from [51].
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the derivatives of the estimated 3D Radon transform. The
interpolation errors caused by numerical implementation of
the Grangeat equation are tracked and included in the EAW
tominimize their effect in the recovered images and to enable
the optimization algorithm to recover the missed data more
effectively.
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