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The insulin-like growth factor system has long been considered a pathway that promotes
cell proliferation, survival, and transformation, and is thus a promoter of tumorigenesis.
However, recent failure of clinical trials for IGF-1R inhibitors reveals the need for a better
understanding of how this pathway functions in specific tumor subtypes. Ongoing studies
are designed to uncover biomarkers and downstream targets to enhance therapeutic
strategies. Other approaches in specific tumor models reveal complex interactions
between IGF signaling and other tumor initiating pathways. Here, we review relevant
background and recent studies suggesting that inhibiting the IGF-1R can amplify Wnt
and Notch signaling pathways in a model of triple negative breast cancer.
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IGF System in Breast Cancer

The insulin/IGF system has very potent mitogenic, survival, and pro-migratory properties for breast
cancer cells in vitro and in animalmodels [for reviews, see Ref. (1–3)].Moreover, high serum levels of
IGF-I are correlated with an increased risk for breast cancer, particularly in premenopausal women
(4, 5). Collectively, these findings led to development of multiple monoclonal antibodies designed
to target the IGF-1R or the IGF ligands, and tyrosine kinase inhibitors to target both the IGF-1R and
insulin receptor (IR) [for reviews, see Ref. (6, 7)]. Despite the preclinical findings, the usefulness of
disrupting IGF-1R/IR signaling in clinical trials has been less than promising and in some cases has
led to worse outcomes (6, 7).

The failure of these trials illuminates the need to better understand patient cohorts that will
best be served by disrupting the IGF signaling pathway. Recent studies have demonstrated that
an “IGF gene signature” correlating to a set of genes that are up and down regulated by IGF-I is
present in human breast cancers, specifically luminal B and triple negative breast cancer (TNBC)
(8). Another approach to establish the function of IGF-1R in different types of breast cancers is
to disrupt IGF-1R in mouse tumor models with distinct phenotypes. Early studies reported that
expression of the IGF-1R predicted a favorable phenotype and a correlation with estrogen receptor
(ER) expression (9, 10). Numerous studies have further confirmed crosstalk between the ER and
IGF-1R [for reviews, see Ref. (11, 12)]. Consistent with these data, loss of IGF-1R has been associated
with breast tumor progression into amore undifferentiated phenotype (13). The studies establishing
the IGF-1R as growth promoting for breast cancers suggests some complexity concerning IGF-1R
function in breast cancers. One question that has not been well addressed is whether IGF-1R has
distinct functions in breast tumors depending on other active signaling pathways and/or the specific
mutation(s) or oncogene driving the tumor. We have recently begun to examine this question using
a mouse model of TNBC, theMMTV-Wnt1mouse.
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The Wnt Signaling Pathway in Mammary
Tumorigenesis in Mice

A variety of studies support the conclusion that Wnt path-
way hyperactivation contributes to mammary/breast cancers in
rodents and humans [for reviews, see Ref. (14–16)]. The Wnt
pathway in mammals was first investigated by Nusse and Varmus
in 1982, with the observation that overexpression of Wnt-1 in
the mammary gland from the mouse mammary tumor virus
(MMTV) promoter resulted in mammary hyperplasias by early
puberty and mammary tumors between 3 and 8months (17, 18).
The MMTV-Wnt1 tumor model has been well-characterized as
a basal tumor model (19–22). Using flow cytometry markers to
label the mammary epithelial lineages in preneoplastic epithe-
lium, Shackelton and colleagues observed a significant increase in
the mammary stem cell (MaSC)/myoepithelial (CD24+CD29hi)
population in MMTV-Wnt-1 epithelium compared to wild type
epithelium (23). Other studies suggested that the overexpression
of Wnt-1 via the MMTV promoter led to the expansion of mam-
mary progenitor populations, based on the increase in the side
population and Sca1+ population (20, 21). The overexpression
of Wnt-1 in mammary progenitor cells appears to confer radiore-
sistance (24). More recently, isolation of luminal progenitors
from MMTV-Wnt-1 mice were found capable of reconstituting a
mammary gland upon transplantation into a cleared fat pad (25).
These studies led investigators to raise the interesting possibility
that Wnt-1 regulates the MaSCs, which then change their cell
surface phenotype during or after oncogenic transformation (25).
However, other studies now support the hypothesis that it is the
expanded luminal progenitor population that gives rise to Wnt1
tumors in this mouse model (26). Similarly, recent studies have
defined the luminal progenitor as the cell of origin for BRCA
tumors in bothmouse and human (27–29). These studies strongly
support the hypothesis that the basal phenotype of both theWnt1-
driven and the BRCA mutated tumors is acquired subsequent to
transformation of a luminal progenitor cell.

Wnt Signaling in Breast Carcinogenesis

In breast cancer, Wnt signaling is activated in the absence of
downstream mutations and can occur via autocrine or paracrine
mechanisms (30, 31). A multitude of Wnt ligands and Fzd recep-
tors are overexpressed in breast cancer cell lines and primary
human breast tumors (32–34). Secreted frizzled-related protein
1, a negative regulator of the Wnt pathway, is lost in 46–80% of
breast cancers and is associated with a poor prognosis (35). Up to
50% of breast tumors have hypermethylation of the adenomatous
polyposis coli (APC) promoter, and transcript loss leads to hyper-
activation of the Wnt pathway (36). APC is a negative regulator
of β-catenin (see Figure 1). Thus, hyperactivation of the Wnt
pathway is common in breast carcinomas. More recently, TNBCs
have been classified into six subtypes based on gene expression
profiles; Wnt pathway activation was identified in several of the
TNBC subtypes (37).

The Wnt signaling pathway is complex and there are still many
questions about how to interfere with this pathway in breast and
other cancers. Several therapeutic treatments are being explored,

FIGURE 1 | Wnt/β-catenin pathway regulates stem cell pluripotency
and cell fate decisions during development. The Wnt pathway is
activated when Wnt ligand binds to a Frizzled receptor, which then is brought
into complex with the co-receptor LRP5/6. The activation of the Wnt pathway
leads to stabilization of β-catenin through inactivation of the destruction
complex (containing Axin, CK1, Gsk3β, and Apc). β-catenin can then
translocate to the nucleus and interact with LEF/TCF to regulate Wnt target
genes. The stimulation of the insulin receptor isoform A (IR-A) in IGF-1R null
(R-/IR-A) fibroblasts by insulin was shown to increase levels of β-catenin
through a mechanism that is currently unknown.

such as monoclonal antibodies that target Wnt ligand–receptor
interaction and small molecule inhibitors designed to down-
regulate Wnt secretion; for review, see Ref. (38, 39). Understand-
ing pathways that interact with and potentially inactivate Wnt
signaling, however, is of vital importance to developmore effective
therapeutic treatments.

IGF-1R and Wnt Pathway Crosstalk

In recent studies, we attenuated IGF-1R signaling in the MMTV-
Wnt1 tumor model and demonstrated decreased tumor latency,
increased tumor incidence, and development of a metastatic
tumor phenotype (40). These results were surprising given that the
IGF-1Rhas been considered predominantly a positive-mediator of
breast cancer growth. Moreover, transgenic mice overexpressing
or with constitutive activation of the IGF-1R develop mammary
tumors as early as 8weeks of age (41–43). A recent study fur-
ther demonstrated that the ability of a Wnt pathway inhibitor
to reduce tumor growth in the MMTV-Wnt1 model was due
to upregulation of the IGF-binding protein-5 (44). The authors
of this study further suggested that part of the mechanism for
IGFBP-5 in reducing tumor volume after acute treatment with
theWnt pathway inhibitor was due to down-regulation of IGF-1R
signaling. However, our data suggest an opposing role for the IGF-
1R in the context of active Wnt signaling in a chronic model and
support the conclusion that the IGF-1R is protective against Wnt-
mediated oncogenesis. In the remainder of this review, we focus
on the possible mechanisms for and implications of our data on
the function of the IGF-1R in theMMTV-Wnt1 tumor model and
in TNBCs.
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One explanation for our findings is that the loss of the IGF-
1R alters mammary epithelial lineages leading to amplification of
the luminal progenitor population responsible for Wnt-mediated
tumors. Support for the IGF-1R in maintaining normal MEC
lineage distribution is our observation that the attenuation of the
IGF-1R in the normalmammary epithelium leads to an accumula-
tion of luminal progenitors that are enriched in theCD61+CD29lo
flow cytometry profile (40). The mechanism for this shift in
lineage is likely due to the dysregulation of Notch signaling with
down-regulation of the IGF-1R in both normal mammary epithe-
lium and the MMTV-Wnt1 hyperplasias (40). In addition, we
showed a decrease in Elf-5 expression in bigenic tumors compared
to MMTV-Wnt1 tumors. Loss of Elf-5 leads to an increase in
the CD61+ luminal progenitors and hyperactive Notch signaling
(45, 46). Finally, previous data demonstrated that Wnt-mediated
oncogenic conversion of breast epithelial cells is Notch-dependent
(33). Taken together, these data support the hypothesis that dys-
regulation of Notch signaling with down-regulation of IGF-1R
signaling leads to accelerated tumor development in the presence
of active Wnt signaling. How the attenuation of IGF-1R signaling
leads to dysregulation in Notch signaling is not entirely clear.
Previous studies have demonstrated that the IGF-1R is a substrate
of, and upregulated by, Notch1 signaling in T-ALL cells (47) and
in lung adenocarcinomas (48). However, no studies to date have
shown regulation of Notch signaling by IGF-1R activation.

IR-A in Wnt-Mediated Tumorigenesis

A second potential mechanism for enhanced tumorigenesis of
MMTV-Wnt1 tumors with decreased IGF-1R signaling is through
enhanced IR signaling, in particular through the IR-A isoform
[for review of IGF-1R/IR isoform signaling, see Ref. (49, 50)] (see
Figure 1). Prior studies from the Yee laboratory demonstrated
that down-regulation of IGF-1R signaling in a variety of breast
cancer cell lines increases insulin sensitivity by increasing cell
surface expression of holo-IR due to a reduction in hybrid IR/IGF-
1R cell surface expression (51). Previous studies have shown that
the overexpression of IR-A is increased in breast tumor sam-
ples (52). Furthermore, IR-A has been suspected as one of the

possiblemechanisms responsible for resistance to IGF-1R targeted
therapies (53, 54).

Consistent with these findings, we found that theMMTV-Wnt1
tumors with decreased IGF-1R signaling have an increased IR-
A:IR-B ratio, as well as increased expression of IGF-II, a high-
affinity ligand for the IR-A. To determine if IGF-II signaling
through the IR-A can activate canonical Wnt signaling, we stimu-
lated IGF-1R null/IR-A overexpressing fibroblasts with IGF-II and
analyzed protein levels of β-catenin, that is stabilized by canonical
Wnt signaling (Figure 1). We found that levels of β-catenin are
increased in a dose-dependent manner by IGF-II stimulation of
IR-A expressing fibroblasts (40). TheWnt/β-catenin as well as IR-
A signaling pathways have been implicated in stem cell and cancer
stem cell renewal [for reviews, see Ref. (31, 55, 56)]. Although
both pathways are expressed in similar tissues and seem to have
overlapping actions, the interaction between these two pathways
remains unclear. Our data suggest a novel role for IR-A in Wnt-
mediated oncogenesis in the absence of IGF-1R signaling, and
further support the hypothesis that inhibiting the IGF-1R may
amplify this signaling cascade.

Relevance to Breast Cancer

The Wnt pathway is commonly altered in basal-like or TNBC
subtypes (37, 57). Our data suggest a complex interaction between
IGF-1R/IR and Wnt pathway signaling and support the need for
screening breast cancer patients for expression of Wnt pathway
components in combination with IGF-1R as well as the IR-A:IR-B
ratio and potentially IGF-II to better understand how inhibitors
of these pathways might be best employed in different tumor sub-
types. It is possible that inhibiting the IGF-1R or downstream sig-
naling will lead to amplification of more undifferentiated tumors
containing increased stem/progenitor populations with higher
self-renewal potential through induction of Wnt and/or Notch
pathway signaling. Dual inhibition of the IGF-1R/IR receptors or
downstream signaling targets in the IR-A pathway along withWnt
pathway inhibitors may be beneficial in specific TNBCs. Under-
standing the mechanism(s) responsible for IR-A stimulation of
the canonical Wnt pathway could prove helpful in designing
therapeutic targets in subclasses of TNBCs.
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