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Abstract: Depression is a common but easily misdiagnosed disease when using a self-assessment
scale. Electroencephalograms (EEGs) provide an important reference and objective basis for the
identification and diagnosis of depression. In order to improve the accuracy of the diagnosis of
depression by using mainstream algorithms, a high-performance hybrid neural network depression
detection method is proposed in this paper combined with deep learning technology. Firstly, a
concatenating one-dimensional convolutional neural network (1D-CNN) and gated recurrent unit
(GRU) are employed to extract the local features and to determine the global features of the EEG signal.
Secondly, the attention mechanism is introduced to form the hybrid neural network. The attention
mechanism assigns different weights to the multi-dimensional features extracted by the network, so
as to screen out more representative features, which can reduce the computational complexity of the
network and save the training time of the model while ensuring high precision. Moreover, dropout is
applied to accelerate network training and address the over-fitting problem. Experiments reveal that
the 1D-CNN-GRU-ATTN model has more effectiveness and a better generalization ability compared
with traditional algorithms. The accuracy of the proposed method in this paper reaches 99.33% in a
public dataset and 97.98% in a private dataset, respectively.

Keywords: depression; electroencephalogram (EEG); one-dimensional convolutional neural network
(1D-CNN); gated recurrent unit (GRU); attention mechanism

1. Introduction

Depression is a common and serious mental illness. According to WHO, there are
more than 350 million people worldwide suffering from depression [1]. Among them,
two-thirds of the patients have had thoughts of suicide, and more than half of the patients
have tried self-harm behavior. It is estimated that by 2030, depression will be the largest
burden of disease in the world [2]. In addition, the incidence of depression is beginning
to show a younger trend. According to surveys and studies, nearly 30 million children
and adolescents have suffered or are suffering from depression [3]. If the screening and
diagnosis of depression can be conducted in the early stage, psychological or drug treatment
can be carried out in time for patients. However, due to insufficient medical resources in
the field of mental health, the recognition rate of mental health diseases such as depression
is only 21%. Nearly 80% of patients with depression have not been discovered [4]. The
main reason for this is the lack of an objective evaluation index and efficient detection
method. In most cases, doctors ask patients some questions in combination with scales,
such as the Self-Rating Depression Scale (SDS) [5] and Beck Depression Inventory (BDI) [6],
but this method lacks objectivity. For example, the patient may not answer the doctor’s
questions truthfully in order to conceal the condition, or the patient’s limited education
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level may not allow them to accurately describe their own situation, which may lead to
misdiagnosis. Depression seriously affects people’s work, study, and life. Therefore, it is
necessary to find an objective and accurate diagnosis method for depression.

Electroencephalograms (EEGs) have been explored as an effective biomarker and
diagnosis tool for the detection of neurological disorders such as depression, epilepsy,
seizure, Alzheimer’s, and Parkinson’s and in the analysis of emotions in comparison to
other tools because of their non-invasive and economical nature [7–9]. EEG signals are
the overall response of the electrophysiological activity of human brain nerve cells in
the cerebral cortex or scalp surface [10]. Clinical studies have shown that EEG signals
contain a lot of physiological and pathological information [11], and different mental states
will affect the changes of EEGs, which provides an important basis for the diagnosis of
depression and other brain diseases. Campisi, P. et al. [12] pointed out that the brain regions
of patients with depression have changed, which reduces the decision-making ability of
patients with depression. Koller-Schlaud et al. [13] discovered that, in the resting state, theta
activity at the central electrode site is highly distinct, and they were able to discriminate
between healthy controls and bipolar depressed controls using an analysis of the variance
model. Kang et al. [14] found that the greatest performance for the classification model
for diagnosing depression was achieved using alpha asymmetry images. For depression
patients, Liu et al. [15] found a substantial link between the long-distance edge of the beta
band, which was distributed largely within the frontal brain areas and between the frontal
and parietal–occipital brain areas.

According to the frequency property of EEG signals, we can complete the diagnosis
and treatment of neurological diseases by detecting and recording human EEG signals. In
order to distinguish patients with depression from normal people, Erguzel et al. [16] used a
genetic algorithm to select the multidimensional features of EEG signals, and then input
the selected features into a back propagation neural network classifier. The accuracy of
this method was 89.12%. Hosseinifard et al. [17] analyzed the effectiveness of extracting
non-linear features from the EEGs of depression patients and normal subjects. The study
performed feature selection on the extracted non-linear features, and then input them into
the logistic regression classifier for the classification of normal and depression categories.
Mumtaz et al. [18] used a support vector machine classifier to distinguish between normal
and depressed EEG signals and extract specific clinical features from EEG signals. Liao
et al. [19] used the public space pattern of the nuclear feature filter bank and principal
component analysis to extract features from EEG signals for classification. They reported
a diagnostic accuracy of 81.23%. The authors of [20] calculated the fuzzy entropy of 16-
channel EEG signals as the feature, and designed a fuzzy function based on the neural
network as the classifier based on the existing neural network, which achieved an accuracy
of 87.5% in the classification task of patients with severe depression and normal people.

In recent years, in biomedical signal processing, methods based on deep learning
have replaced traditional machine learning methods. Compared with traditional machine
learning, deep learning includes multi-layer hidden structures that can automatically
extract effective features [21]. In addition, deep learning can better approximate complex
functions and effectively process high-dimensional and nonlinear data, so as to avoid the
problem of insufficient diagnostic capabilities. In 2018, Acharya et al. [22] used a deep
learning method to detect depression with a 13-layer CNN and obtained a high accuracy.
In 2019, Nagabushanam et al. [23] proposed a two-layer long short-term memory (LSTM)
network to extract statistical features from the input EEG signal collected from the database,
namely the mean, standard deviation, kurtosis, and skewness. Then, the features were
applied to the LSTM classification model, and a better performance than that of traditional
methods was achieved. In the same year, Ozal et al. [24] proposed a deep hybrid model
combining CNN and LSTM to detect depression through EEG signals. The experiment
achieved a high accuracy in both the left and right brains.

In this paper, a method for depression prediction based on CNN, GRU, and the
attention mechanism is proposed to improve the accuracy of depression diagnosis.
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2. Materials and Methods
2.1. Data Sources and Data Preprocessing

There were two datasets used in this study: (1) the public dataset for depression
analysis provided by Lanzhou University (MODMA dataset) [25] and (2) a private dataset.

• MODMA dataset

A total of 53 participants were included in the experiment, including 24 outpatients
(13 men and 11 women, 16–56 years old) diagnosed with depression and 29 healthy controls
(20 men and 9 women, 18–55 years old). The experiment used a 128-channel HydroCel
geodetic sensor network and Net Station acquisition software to record continuous EEG
signals. The sampling frequency was 250 Hz. The reference electrode was Cz. The experi-
ment recorded the EEG signals of the resting state with eyes closed for 5 min. Participants
were asked to remain awake and stationary without any physical movement, including
head or legs, as well as any unnecessary eye movements, such as eye jumps and blinks.
For the consideration of the time performance and calculation efficiency, we selected
16 electrodes among them (Fp1/2, F3/4, C3/4, P3/4, O1/2, F7/8, T3/4, T5/6) instead of
128 electrodes. Depression diagnosis using these electrodes has also been demonstrated in
previous studies [26].

• Private dataset

There were a total of 32 participants in the experiment, of which 16 patients with
depression (7 men and 9 women, 18–35 years old) were confirmed cases from a tertiary
hospital in China and the 16 healthy controls (9 men and 7 women, 18–26 years old)
were college students who filled out the SDS before the experiment, and the scores were
all below 30. The experiment used OpenBCI, a relatively common physiological signal
acquisition platform in the world. A 16-channel EEG cap was used in the experiment.
The positions of the electrodes were placed in accordance with the international standard
10–20 system, with Cz as the reference electrode, as shown in Figure 1 [27]. The resting-state
EEG signal of each subject was collected for 3 min, and the sampling frequency of the signal
was 250 Hz. All subjects signed an informed consent form before the experiment and were
paid after the experiment was completed. Table 1 describes the two datasets in detail.
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Table 1. Properties of datasets with data.

Dataset Properties Values

Public Dataset
(MODMA)

Number of subjects 53

Number of subjects with depression 24

Male/female ratio 33/20

Number of channels 128

Sampling rate (Hz) 250

Private Dataset

Number of subjects 32

Number of subjects with depression 16

Male/female ratio 16/16

Number of channels 16

Sampling rate (Hz) 250

In EEG research, data preprocessing is an indispensable step, because the EEG signal is
very weak, and the noise and interference in the collected signal are often stronger than the
real EEG signal. Subsequent series of analyses may have large errors. After preprocessing,
a relatively ideal high-quality EEG signal can be obtained, and subsequent analysis can be
performed on this basis. Figure 2 shows the flow of EEG signal preprocessing.
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For the EEG signal, the most obvious interference is the 50 Hz/60 Hz power frequency
signal (50 Hz in China). Therefore, firstly, a 50 Hz notch filter was selected to filter the
signal for the first time to remove the interference caused by the power frequency. The
EEG signal is mainly concentrated between 0.5 and 50 Hz, so the IIR or FIR filter can be
applied as the band-pass filter. In electrophysiology, the Butterworth or Chebyshev IIR
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filter is commonly used; the design of FIR is complex, and it is difficult to set a reasonable
order for EEG signal analysis. The Butterworth filters have no passband and stopband
ripple, having the shallowest roll-off near the cutoff frequency compared to the other
commonly used Chebyshev and elliptic IIR filters [28]. In this study, considering the time
performance for real-time signal calculation, the fourth-order Butterworth band-pass filter
was selected to filter the signal in the second stage to remove the baseline drift of low
frequency, electrocardiogram (ECG) interference, and other high-frequency noise.

Since the EEG signals and the electrooculogram (EOG) signals and electromyogram
(EMG) signals overlap in the frequency band, only two filterings cannot completely remove
the interference of the EOG and EMG. In this study, fast independent component analysis
(Fast ICA) [29] was applied to remove EOG and EMG artifacts [30]. The Fast ICA algorithm
is derived from the cocktail party problem. It can effectively solve the problem of blind
source separation by estimating the linear equations. All independent components in the
EEG signal are regarded as “signal sources”, and the original signal collected by the device
is regarded as “microphones”. The core of the Fast ICA algorithm is to find a matrix that
can be de-mixed to make the new signal after de-mixing as close to the original signal
as possible.

In this paper, the MNE library in Python was used to remove the artifacts, and each
component is visualized. The independent components of the EOG artifacts have typical
characteristics, that is, front-end distribution and high-amplitude spikes, so the EOG
artifacts can be easily removed. After obtaining clean EEG signals, the EEG signal data of
all subjects were cut into 1 s time segments. The purpose of this operation was to increase
the number of samples that could be used in the experiment to make the experiment
more convincing.

Power spectral density (PSD) [31] is an important indicator of resting-state EEG signals,
and PSD can reflect the energy of EEG signals in different bands and channels. Studies have
shown that there are differences in certain bands between the EEG signals of depressed
patients and normal people [32,33]. Therefore, the PSD of EEG signals was selected as the
feature to identify patients with depression and normal people. This paper uses Welch’s
method to extract the power spectrum features of EEG signals. For the EEG signal x(n)
of a certain channel, it is first divided into L small fragments. Each small fragment has M
sampling points, then the ith small fragment xi(n) can be recorded as

xi(n) = x(m + iM−M), 0 ≤ m ≤ M, 1 ≤ i ≤ L (1)

After that, each segment of data is windowed. In this study, a Hamming window
w(n) with a length of 100 is applied, because the main lobe of the rectangular window is
narrow, and the frequency resolution is high. After windowing, the periodogram Ii(ω) of
each segment of data is obtained, where the periodogram of the ith segment is [31]

Ii(ω) =
1
U

∣∣∣∣∣M−1

∑
n=0

xi(n)w(n)e−jωn

∣∣∣∣∣
2

, (2)

where

w(n) =

{
1, 0 ≤ n ≤ 99
0, otherwise

(3)

U =
1
M

M−1

∑
n=0

w2(n), (4)

Then, the power spectral density is [34]

Pxx

(
ejω
)
=

1
L

L

∑
i=1

Ii(ω), (5)
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This paper uses the above calculation method to extract the PSD features of 5 bands of
16 channels in the EEG signals as the input samples of the depression detection model.

2.2. Model Preparation

In this part, the components of the proposed network model are introduced, respec-
tively, and then the proposed network structure is described.

2.2.1. CNN

Convolutional Neural Network (CNN) was first proposed by LeCun et al. and
achieved success in the recognition of handwritten digits [35]. CNN is a feed-forward
neural network, which has a deep structure of convolution calculation. It is one of the
representative algorithms of deep learning. CNN can reduce the number of parameters by
local receptive fields and shared weights to avoid over-fitting. The typical CNN architecture
is shown in Figure 3.
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The convolution kernel of the convolution layer can fully extract features, and the
pooling layer can compress features, reducing the number of training parameters. The
convolution process of a 1D-CNN is shown in Figure 4.
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Suppose X = [x1, x2, · · · , xn] ∈ Rm×d is the input sequence data of the network, in
which n indicates the length of the input sequence, and d represents the dimension of
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the sequence. The essence of the convolution layer is that multiple filters (or convolution
kernel) are convoluted with the input. The convolution operation is defined as Equation (6):

ci = ϕ(w·xi:i+m−1 + b) (6)

where w ∈ Rm×d represents the convolution kernel, xi:i+m−1 represents a sliding window of
length m, ϕ represents the network activation function, and b represents the offset parameter.

2.2.2. GRU

Recurrent Neural Network (RNN) is a network that takes sequence data as input,
recursively in the evolution direction of the sequence, and all nodes are connected in
a chain [36]. However, the RNN has a long-term dependencies problem, that is, when
learning a long sequence, the RNN will have gradient vanishing or gradient explosion
phenomena, which makes it impossible to master the long-term non-linear relationship of
span [37]. In order to solve the above problems, Hochreiter and Schmidhuber proposed
Long Short-Term Memory (LSTM) network in 1997 [38]. In 2014, K. Cho proposed the
Gated Recurrent Unit (GRU) based on LSTM [39]. It combines the forget gate and the input
gate in LSTM into an update gate. In addition, it also has a reset gate. The update gate
defines the amount of the previous memory saved to the current time step, and the reset
gate determines how to combine the new input information with the previous memory.
The update gate, reset gate, output candidate of GRU, and output of the current hidden
layer are calculated using the following equations [40]:

zt = σ(Wxzxt + Whzht−1 + bz) t = 1, 2, . . . , T, (7)

rt = σ(Wxrxt + Whrht−1 + br) t = 1, 2, . . . , T, (8)

h̃t = tanh(Wxxt + Wh(ht−1 ∗ rt) + b) t = 1, 2, . . . T, (9)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t t = 1, 2, . . . , T, (10)

where σ represents the sigmoid activation function, W denotes recursive weight matrices, b
denotes bias vectors, and subscripts z, r, and h represent the update gate, reset gate, and
output of the current hidden layer, respectively.

2.2.3. Attention Mechanism

The attention mechanism originated from the study of human visual function and
was initially used for machine translation [41]. In recent years, it has been widely used
in different deep learning tasks such as natural language processing, image recognition,
and speech recognition [42]. In a classification task, not all features contribute equally to
classification. The attention mechanism devotes more attention resources to the target area
that needs to be focused on to obtain more detailed information about the target, and to
suppress other useless information.

The attention mechanism in deep learning is to assign different weights to inputs
or features. Important information is assigned more weight, and relatively unimportant
information is assigned less weight. The workflow of the attention mechanism is first
to score the hidden state of each unit in the encoder, then use the softmax function to
normalize the scores to obtain the weight. Finally, the weighted summation of the hidden
states of all time steps is performed to obtain the input variables of the next layer.

The general expression of the attention mechanism is [43]

O = softmax
(

QKT
)
·V (11)

where Q is the query item matrix, K is the corresponding key item, and V is the value item
to be weighted average.
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2.2.4. Proposed Depression Diagnosis Approach

CNN is widely used in practice to extract spatial features of data, but it often ignores
the temporal correlation of data [44], while recurrent neural network and its variants have
advantages in processing temporal data. Therefore, in order to extract features with spatial
and temporal correlations from a given EEG signal, this paper combines both 1D-CNN
and GRU networks. In addition, to improve the classification performance, this study also
introduces an attention mechanism to form a hybrid network together with a 1D-CNN and
GRU, and names the entire network model as the 1D-CNN-GRU-ATTN model.

The basic idea of building a hybrid neural network model is to combine two deep
learning models, 1D-CNN and GRU, with their own advantages in series, where 1D-CNN
is the first sub-network of the hybrid network, and GRU is the second sub-network of the
hybrid network. Then, an attention mechanism, a fully connected layer, and an output
layer are added behind the GRU network to form a hybrid network.

Subnet I in the hybrid neural network: 1D-CNN consists of two convolutional layers
and one pooling layer. The convolutional layer is used to learn the high-level features
of the EEG, and the size and number of convolution kernels are determined by the grid
search method. The pooling layer selects max pooling to reduce the number of trainable
parameters, and the size is determined by a grid search. Sub-network II: GRU is a gated
recurrent unit, in which the number of hidden units is also determined by the grid search
method, and then an attention mechanism is connected to screen the feature allocation
weights output by the previous layer of the network. This is followed by a fully connected
layer that combines all relevant features that are assigned more weights. The last layer is
a classifier function, which maps the output of the neurons in the previous layer to the
(0, 1) interval as the probability of each category, so as to achieve binary classification or
multi-classification.

The detailed design of 1DCNN-GRU-ATTN is shown in Figure 5. After extracting the
PSD of each band, the features are input into the convolution layer to extract the depth
features, then the max pooling layer to reduce the network size, and then they are input
into the convolution layer to continue the feature extraction. Then, the output of the CNN
layer is used as the input of the GRU to extract the long-term dependence features of the
signals. Next, the attention layer assigns different weights to the features extracted by the
network to make the network focus on the features with larger weights, and selects more
representative features from a large number of features to reduce the amount of calculation
of the network. Then, the Fully Connected (FC) layer maps the feature space to the sample
tag space. Finally, softmax implements classification.
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In this study, the hybrid network uses the most common activation function, the
rectified linear unit (ReLU), as the activation function of the hidden layer. Compared
with other activation functions, ReLU has more efficient gradient descent and reverse
propagation, avoiding the problems of gradient explosion and gradient disappearance [45].
In addition, the calculation process can be simplified. The expression of ReLU is as follows:

ReLU(x) =
{

x i f x > 0
0 i f x ≤ 0

(12)

In addition, in order to avoid over-fitting, the network also introduces dropout. In
the network model training phase, dropout will randomly delete nodes from the hidden
layer, and delete different nodes in each iteration, thereby effectively training different
networks. The network chooses softmax as the classifier, classifies the output of the GRU,
and displays the classification result in the form of probability.

In classification problems, especially when neural networks are used for classification
problems, cross entropy is often used as a loss function. In addition, since cross entropy
involves calculating the probability of each category, cross entropy appears in classification
tasks with the sigmoid (or softmax) function almost every time. Therefore, this study
adopts the cross entropy function as the loss function of the model. The cross entropy
function is defined as follows:

loss = − 1
m

m

∑
j=1

n

∑
i=1

yji log ŷji (13)

where m represents the number of samples, n represents the category, and yji represents the
true probability of the category, which represents the predicted probability.

The optimizer guides the parameters in the loss function to update in the correct
direction during the back-propagation process of the neural network to ensure that the
updated parameters can keep the loss function value close to the global minimum. The
optimizer is an important part of model training. Because the RMSProp algorithm declines
quickly and can adjust the learning rate adaptively, this paper chooses RMSProp as the
model optimizer, in which the learning rate is set to 0.005.

This research uses the grid search method to adjust and optimize network parameters
and hyperparameters.

(1) Network parameter tuning

For testing, 3000 samples of each record from the MODMA dataset are randomly
selected. First, the epoch and batch size are set to 10 and 200, respectively. Then, the number
of one filter in the convolutional layer, the number of two filters in the convolutional layer,
the size of the convolution kernel, and the number of neurons in the GRU are defined as
NFC_1, NFC_2, KSC, and NNG, respectively, for tuning. The grid search results are shown
in Table 2. It can be seen that the model numbered M18 has the best performance.

(2) Hyperparameter tuning

The hyperparameters epoch and batch size are essential parameters in the neural
network model, which are crucial to the classification results. After network parameter
tuning, the same method is used to find the best combination of hyperparameters. Accord-
ing to Table 2, the M18, M21, and M24 models all show similar high accuracy. Therefore,
the hyperparameters are optimized through experiments based on the different network
parameters of the three models. It can be seen from Table 3 that when epoch and batch size
are 100 and 256, respectively, the model produces the best performance.
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Table 2. Tuning of network parameters.

Model NFC_1 NFC_2 KSC NNG ACC Loss

M1 128 128 3 64 0.75 0.38
M2 128 128 3 128 0.75 0.31
M3 128 128 3 256 0.79 0.30
M4 128 256 3 64 0.77 0.31
M5 128 256 3 128 0.77 0.32
M6 128 256 3 256 0.75 0.29
M7 256 128 3 64 0.76 0.34
M8 256 128 3 128 0.75 0.33
M9 256 128 3 256 0.75 0.38

M10 256 256 3 64 0.74 0.36
M11 256 256 3 128 0.75 0.35
M12 256 256 3 256 0.75 0.28
M13 128 128 5 64 0.87 0.21
M14 128 128 5 128 0.88 0.20
M15 128 128 5 256 0.89 0.19
M16 128 256 5 64 0.90 0.27
M17 128 256 5 128 0.89 0.17
M18 128 256 5 256 0.92 0.16
M19 256 128 5 64 0.89 0.23
M20 256 128 5 128 0.89 0.17
M21 256 128 5 256 0.91 0.19
M22 256 256 5 64 0.89 0.21
M23 256 256 5 128 0.90 0.18
M24 256 256 5 256 0.91 0.17

Table 3. Tuning of hyperparameters.

Network Parameters Model Epoch Batch Size Accuracy

M18

M1 80 128 0.9776

M2 90 128 0.9760

M3 100 128 0.9770

M4 80 256 0.9780

M5 90 256 0.9753

M6 100 256 0.9797

M21

M7 80 128 0.9530

M8 90 128 0.9532

M9 100 128 0.9541

M10 80 256 0.9523

M11 90 256 0.9537

M12 100 256 0.9548

M24

M13 80 128 0.9533

M14 90 128 0.9531

M15 100 128 0.9536

M16 80 256 0.9540

M17 90 256 0.9542

M18 100 256 0.9547
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3. Results
3.1. Diagnosis Process

The process of depression diagnosis using the hybrid neural network is shown in
Figure 6.
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The diagnosis process can be divided into the following five steps:

Step 1: Collecting and labeling the EEG signals of different subjects to form a dataset.
Step 2: Preprocessing and extracting features of EEG signals.
Step 3: Dividing the dataset into the training set, validation set, and test set to evaluate the

performance of the depression diagnosis model.
Step 4: Training the network model and saving it.
Step 5: Verifying the effectiveness and sensitivity of the algorithm. The performance of the

depression diagnosis model is evaluated based on the predicted and true labels.

3.2. Evaluation Metrics

In the classification task, we usually select the following performance indicators to
evaluate the quality of the model.
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(1) Accuracy [46] is defined as the ratio of the number of correctly classified samples to
the total sample for a given test dataset.

Accuracy =
|TP|+ |TN|

|TP|+ |FP|+ |TN|+ |FN| (14)

However, in the case of unbalanced positive and negative samples, this indicator has
major flaws. For example, a set of test samples has a total of 1000, of which there are 900
positive samples and only 100 negative samples. Even if the classification model predicts
all samples as positive, the accuracy is 90%. However, this indicator itself is not convincing
because it cannot fully evaluate models.

(2) Precision [47] is the ratio of the number of correctly classified positive samples to the
number of classified positive samples.

Precision =
|TP|

|TP|+ |FP| (15)

(3) Recall [47] is the ratio of the number of correctly classified positive samples to the
actual number of positive samples.

Recall =
|TP|

|TP|+ |FN| (16)

(4) F1 score [48] is to evaluate the pros and cons of different algorithms. On the basis of
precision and recall, the concept of F1 value is proposed to evaluate precision and
recall as a whole.

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(17)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and
false negative, respectively. True positives represent the number of samples predicted
to be depression that are actually depression. False positives represent the number
of samples predicted to be depressed that are actually healthy. True negatives repre-
sent the number of samples predicted to be healthy that are actually healthy. False
negatives represent the number of samples predicted to be healthy that are actually
depressed.

3.3. Experimental Result

The sample distribution of the public dataset and the private dataset is shown in
Table 4.

Table 4. The sample distribution of public dataset and private dataset.

Dataset Depression Normal Samples

MODMA 7200 8700 15,900
Private dataset 4119 3114 7533

(1) Experimental results and analysis of the MODMA dataset

When training the model, the samples in the dataset are first divided into the training
set and test set according to the proportion of 9:1, and then one-tenth is randomly selected
from the training set as the verification set. Therefore, the ratio of the training set, verifica-
tion set, and test set is set to 0.81:0.09:0.1, respectively. The parameters of the model in the
diagnosis of depression are shown in Table 5.
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Table 5. Parameters in the diagnosis model of depression.

Description Value

Number of filters in convolutional layer 1 128
Number of filters in convolutional layer 2 256
Filter size in convolutional layers 1 and 2 5

Pooling size in the max pooling layer 2
Number of neurons in GRU 256

Dropout 0.2
Epoch 100

Batch size 256

Figure 7 is an iterative curve of the 1D-CNN-GRU-ATTN model in the training pro-
cess. The blue dotted line represents the accuracy of the training data, the blue solid line
represents the accuracy of the verification data, the red dotted line represents the loss of
training data, and the red solid line represents the loss of verification data. It can be seen
that the hybrid model performs well on the public dataset, with high accuracy and low loss.
In addition, the model can converge quickly without over-fitting. It shows that the model
has a good generalization ability.
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A confusion matrix is an effective visualization tool classification method for per-
formance. Each row in the confusion matrix represents the basic fact, and each column
represents the predicted label. The confusion matrix records the classification results on the
test set. This model was tested on 1590 samples. The confusion matrix is shown in Figure 8,
and the accuracy is 99.33%.
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In addition, Table 6 also lists the classification report of the public dataset on the
1D-CNN-GRU-ATTN model. It can be seen that the precision, recall, and F1-score of the
proposed model are close to or equal to 1, which proves that the method can effectively
identify depression with a high classification accuracy and good generalization ability.

Table 6. Classification report.

Label Description Precision Recall F1-Score Support

0 Depression 1.00 0.99 0.99 713
1 Health 0.99 1.00 0.99 877

In order to further evaluate the performance of the proposed 1D-CNN-GRU-ATTN
model, several groups of comparative experiments were carried out on the same public
dataset. The comparison models used were 1D-CNN, LSTM, GRU, 1D-CNN-LSTM, and
1D-CNN-GRU. The parameters of these models are shown in Table 7. The values of epoch
and batch size were set to the same as those of the 1D-CNN-GRU-ATTN model, which are
100 and 256, respectively.

Table 7. Parameters of comparison models.

1D-CNN LSTM GRU 1D-CNN-LSTM 1D-CNN-GRU

Conv1–5×128
Maxpool-2

Conv2–5 × 256
Maxpool-2

FullyConnected-
256

Softmax-2

LSTMcell-256
FullyConnected-

64
Softmax-2

GRUcell-256
FullyConnected-

64
Softmax-2

Conv1–5 × 128
Maxpool-2

Conv2–5 × 256
LSTMcell-256

Softmax-2

Conv1–5 × 128
Maxpool-2

Conv2–5 × 256
GRUcell-256

Softmax-2

Figure 9 shows the training curves of the six models on the public dataset, in which
the solid line represents the accuracy and the dotted line represents the loss. It can be seen
that the training effect of the hybrid network with the attention mechanism proposed in
this study is better than that of the other five traditional neural networks.
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In addition, the accuracy, loss, and training time of several different deep learning
algorithms on public datasets are compared, as shown in Figure 10.
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Figure 10. Results of comparative experiments on public dataset.

(2) Experimental results and analysis of the private dataset

Figure 11 is the training curve of the proposed 1D-CNN-GRU-GRU model and the
comparison models (1D-CNN, LSTM, GRU, 1D-CNN-LSTM, and 1D-CNN-GRU) on the
private dataset. The solid line represents the accuracy and the dotted line represents the
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loss. It can be seen that the accuracy of the model proposed in this study is significantly
higher than that of the other models, and the loss is the lowest.
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Similarly, the proposed 1D-CNN-GRU-ATTN model and the five mainstream models
(1D-CNN, LSTM, GRU, 1D-CNN-LSTM and 1D-CNN-GRU) were compared in the experi-
ment. The accuracy, loss, and training time of the private dataset on each model are shown
in Table 8.

Table 8. The accuracy, loss, and time of private dataset on different models.

Model Accuracy (%) Loss Train Time (s)

CNN 86.38 0.33 64.38
LSTM 88.22 0.30 253.62
GRU 88.65 0.30 227.43

1D-CNN-LSTM 90.08 0.27 178.32
1D-CNN-GRU 91.43 0.26 164.57

1D-CNN-GRU-ATTN 97.98 0.07 160.48

Figure 12 shows the precision, recall, and F1-score of the six models on the test set of
the private dataset. It can be seen from the figure that the three evaluation indexes of the
1D-CNN-GRU-ATTN model are higher than those of other comparable models.
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Compared with the public dataset MODMA, the amount of private data samples is
smaller. By comparing the evaluation metrics of different algorithms in the figure, it can be
seen that the performance of the method proposed in this paper is better.

Table 9 compares the results of several different methods for depression diagnosis on
public datasets. Sun et al. [49] extracted different types of EEG features, including nonlinear
and functional connectivity features (phase lag index, PLI), comprehensively analyzing the
EEG signals of major depressive patients. Although the nonlinear and PLI features have a
good explanatory power, the computation is complex, and the classification effect using the
machine learning classifier is not good. Wang et al. [50] used an alternative time-frequency
analysis technique based on intrinsic time-scale decomposition (ITD) with TCN and L-TCN
and obtained a better result than the literature [49]. Compared with the above features,
the PSD feature combined with the hybrid neural network has a better prediction effect on
depression, and its accuracy is higher than that of other studies. The 1D-CNN-GRU-ATTN
model proposed in this paper has achieved the better classification results, with the highest
classification accuracy of 99.33%.

Table 9. The comparison of the classification results between the proposed method and previ-
ous works.

Author Year Features Methods Accuracy (%)

Shuting, S. et al. [49] 2020 Nonlinear + PLI LR + ReliefF 81.79
Wang, Y. et al. [50] 2021 ITD + statistical features TCN 85.23
Wang, Y. et al. [50] 2021 ITD + statistical features L-TCN 86.87

This paper 2022 PSD of 5 bands 1D-CNN-GRU-ATTN 99.33

4. Discussion

In this study, a high-performance hybrid neural network depression detection method
is proposed based on deep learning technology. Different from the previous studies, we
concatenated 1D-CNN and GRU, and introduced the attention mechanism to form the
hybrid neural network. Figure 8 shows that the model has the highest accuracy on the
public dataset, and the evaluation metrics in Table 6 are close to one, which indicates that
the model has an outstanding generalization ability. Table 8 and Figure 12 show that the
model is not only applicable to the public dataset, but also to the private dataset. The
evaluation metrics are higher than those of 1D-CNN, LSTM, GRU, 1D-CNN-LSTM, and
1D-CNN-GRU. In terms of training time, 1D-CNN has the shortest training time compared
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to the others because of its simple structure. The gate structure of GRU is simpler than
LSTM, which leads to a slightly faster training speed than LSTM. To summarize, the hybrid
network proposed in this study has a higher accuracy and shorter training time than other
comparison algorithms. Figure 11 can better reflect the advantages of the 1D-CNN-GRU-
ATTN model than Figure 9. The public dataset is “almost clean and perfect”, and all models
have a classification accuracy higher than 90%. The curves in Figure 9 are relatively close.
On the private dataset, the 1D-CNN-GRU-ATTN model shows outstanding advantages.

The proposed method has several advantages. First, it can achieve a higher classifi-
cation accuracy than the existing methods for classification between depression patients
and normal subjects based on the same dataset. Second, the network model introduces the
attention mechanism, which effectively reduces the training time. According to the results,
it can be explained that the attention mechanism focuses computing resources on features
with large weights, thereby reducing time overhead. Experimental results verify that the
hybrid model proposed in this paper achieves a high performance.

5. Conclusions

This research took EEG signals as the research object, the public dataset and private
dataset as the research basis, and used deep learning algorithms as the research theory to
deeply study the characteristics of EEG signals and propose a high-performance mental
state detection method. First, the network parameters and hyperparameters of the model
were optimized through experiments, and then the effectiveness and advancement of
the method were verified through comparative experiments. The experimental results
show that: (1) The proposed method in this paper is more effective in the diagnosis and
recognition of depression. (2) In the case of a small number of iterations, this method can
adaptively extract the features of the EEG signals to achieve a higher classification accuracy
than other methods. (3) This method has excellent performance on public and private
datasets and provides a technical basis for the diagnosis and screening of depression. The
effectiveness and advantages of the method were verified through comparative experiments.
The method proposed in this paper had an accuracy of 99.33% on the public dataset and a
satisfactory accuracy of 97.98% on the private dataset.

Although the improved hybrid network model achieved good results in mental state
detection, there are still some problems to be improved, as follows: (1) The dataset used
in this study can meet the research requirements in this paper; however, there were an
insufficient number of negative samples. We hope to collect more clinical data in the future
to improve the generalization ability of the model. In addition, this study only focused on
the detecting the depression state without treatment, and nondestructive therapy research
can be considered for future work. (2) In this study, when collecting EEG signals, the
subjects were equipped with heavy electrode caps which needed to be pressed to make
them fully contact with the scalp surface, which may have caused discomfort for some
users. In future research, we can consider using fewer and lighter electrodes with portable
acquisition devices, such as ear-BCI. (3) In this study, only qualitative analysis was carried
out on the psychological state, and no quantitative analysis. Quantitative analysis of the
psychological state can be added to the future research. For example, depression can
be detected according to the degree, which can be divided into normal, mild, moderate,
and severe; the attention mechanism can be set as an indicator to indicate the degree of
concentration; etc.
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