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ABSTRACT: A technique for monitoring chemical oxygen
demand (COD), total nitrogen (TN), ammonia (N-NH4), and
phosphate (P-PO4) in surface water with a targeted signal
multielectrode system (Cu, Ir, Rh, Co(OH)2, and Zr(OH)4
electrodes) is proposed for the first time. Each water quality
index is specifically detected by at least two electrodes with distinct
selectivity sensing mechanisms. Cyclic voltammetry and electro-
chemical impedance measurements are employed for multidimen-
sional signal acquisition, complemented by normalization and
Least Absolute Shrinkage and Selection Operator (LASSO) for
principal feature extraction and dimension reduction. Multiple
linear regression (MLR), partial least-squares (PLS), and eXtreme
Gradient Boosting (XGBoost) were employed to evaluate the
established prediction model. The precisions of the multielectrode system are ±10%/±5 ppm of COD, ±10%/±0.2 ppm of TN,
±5%/±0.1 ppm of N-NH4, and ±5%/±0.01 ppm of P-PO4. The analysis time of the multielectrode system is reduced from hours to
minutes compared with traditional analysis, without any sample pretreatment, facilitating continuous online monitoring in the field.
The developed multielectrode system offers a feasible strategy for online in situ monitoring of surface water quality.

1. INTRODUCTION
Assessing the quality of environmental water and soil is
paramount for the health, economy, and sustainability of any
region.1 Pollutants from industrial, agricultural, and residential
areas are discharged into various water resources, necessitating
facile analytical techniques for their detection.2 While
innovative devices for online monitoring, such as dissolved
oxygen, temperature, turbidity, pH, and conductivity, have
made rapid progress in the past two decades,3−6 traditional
spectroscopy is employed for measuring the four conventional
indices of chemical oxygen demand (COD), ammonia (N-
NH4), total nitrogen (TN), and phosphates (P-PO4). Despite
the advantages of spectroscopic methods, including sensitivity
and reproducibility, their high cost and complex analysis
procedures hinder achieving “online monitoring”.7 Given the
challenges posed by the diverse and abundant compounds in
surface water monitoring, electronic tongues (ETs) are
emerging as a promising tool for facile, sustainable, and
environmentally friendly online monitoring of water resour-
ces.8 ET involve the utilization of sensor arrays with
stoichiometry processing.

In recent years, a plethora of studies has documented the
widespread application of ET in environmental water quality
monitoring, encompassing the detection and classification of
heavy metals,9,10 inorganic pollutants,11,12 organic pollu-

tants,13,14 and microorganism contamination.15,16 Mimendia
et al.10 applied an 11-electrode potential sensor array for
monitoring Cd(II), Cu(II), Pb(II), and Zn(II) in open
streams. Belikova et al.17 conducted continuous online
monitoring of ammonium and nitrate in aeration plant treated
water using a sensor array of 23 electrodes. Campos et al.18

explored the use of an 8-metal electrode sensor array in
influent and effluent samples from wastewater treatment plants
to determine ammonium, sulfates, and phosphates. Wang et
al.19 employed a nanoparticle-modified voltammetry sensor
array for evaluating COD in farmland wastewater. Ceto et al.20

utilized a 4-electrode voltammetry sensor array to monitor the
photodegradation of catechol, m-cresol, and guaiacol mixtures
in wastewater. Legin et al.21 applied multisensor arrays to
assess water environmental safety at two different wastewater
treatment plants in St. Petersburg. Regretfully, there have been
scarce reports on the online monitoring of COD, TN, N-NH4,
and P-PO4 in recent years.
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In summary, the characteristics of the above-mentioned
studies are as follows: First, the lack of a targeted (specific)

detection mechanism for sensor arrays. While it is reported
that electronic tongues are mainly associated with the

Figure 1. Schematic diagram of the fundamental strategy for simultaneously monitoring COD, TN, N-NH4, and P-PO4 in surface water using a 5-
electrode multielectrode system.

Figure 2. Electrochemical response characteristics of Cu, Co(OH)2, Zr(OH)4, Ir, and Rh electrodes to glucose, nitrate, ammonia, and phosphorus.
(a) Response evaluation curves of Cu and Rh electrodes to nitrate nitrogen. (b,c) Corresponding cyclic voltammetry curves. (d) Response
evaluation curves of Cu and Ir electrodes to ammonia and (e,f) corresponding cyclic voltammetry curves. (g) Response evaluation curves of
Co(OH)2 and Zr(OH)4 electrodes to phosphate and (h,i) corresponding cyclic voltammetry curves. (j) Response evaluation curves of Cu and
Co(OH)2 electrodes to glucose and (k,l) corresponding cyclic voltammetry curves.
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nonspecific use of sensors,22 the reality is that initial research
was based on ion-selective electrode arrays. Second, a singular
mode of electrochemical measurement. Sensors are categorized
into potential sensors and voltammetry sensors based on
practical applications,22,23 leading to limited data dimensions
being collected. Third, an emphasis is placed on data
processing. The goal is to employ machine learning methods
to compensate for sensor interference, drift, or nonlinearity,
aiming to achieve classification of different samples or multiple
species determination. From a practical perspective, the
selection of a sensor array is crucial, directly influencing the
detection sensitivity and complexity of the chemical
quantitative model. A recent trend to enhance the performance
of ETs involves combining sensors with different properties to
gather more comprehensive information about the sample.

In this study, a multielectrode system composed of five
electrodes (Cu, Ir, Rh, Co(OH)2, and Zr(OH)4) is proposed
for configuration of a sensor array to monitor COD, TN, N-
NH4, and P-PO4 in surface water. The characteristics of our
research are highlighted in three aspects: First, the selection of
sensor electrodes is based on specific signals for each indicator.
Each of the four water quality indicators is selectively detected
by at least two electrodes, each employing distinct selectivity
mechanisms. Second, a diversity of electrochemical measure-
ment methods is employed. Due to the differing principles of
specific response among different electrodes, various electro-
chemical measurement modes are utilized, including cyclic
voltammetry, potential measurement, and impedance spec-
troscopy. Third, the establishment of the quantitative
recognition model relies on extracting important signals. In
complex samples without pretreatment or preconcentration
steps, sensors are susceptible to interference from electrode
material transformation and sample matrix differences,
resulting in a multitude of nontargeted (nonspecific) signals
in the collected electrochemical data. The application of the
Least Absolute Shrinkage and Selection Operator (LASSO) for
dimensionality reduction and extraction of essential signals is
employed. The obtained data are then evaluated using
multivariate calibration methods, such as Multiple Linear
Regression (MLR), Partial Least Squares (PLS), and eXtreme
Gradient Boosting (XGBoost). Figure 1 outlines the
fundamental strategy for simultaneously monitoring COD,
TN, N-NH4, and P-PO4 in surface water using a 5-electrode
multielectrode system. This study presents a novel technique
for the development of online water quality monitoring
equipment.

2. RESULTS AND DISCUSSION
2.1. Electrode Selection. The selection of electrodes is

crucial, directly impacting detection sensitivity and the
complexity of the chemical quantitative model.24−26 Before
performing experiments with multielectrode systems, we
conducted voltammetry studies to understand the electro-
chemical behavior of nitrate, ammonium, phosphate, and
glucose on various electrodes�typical ions found in surface
water. The electrochemical response of a compound is known
to be influenced by both the intrinsic chemistry of the
electrode and the redox behavior of the substance.27 Copper
(Cu), cobalt (Co), zirconium (Zr), iridium (Ir), and rhodium
(Rh) electrodes were chosen for voltammetric measurements,
with their response characteristics illustrated in Figure 2. All
studies involving these ions were conducted in water at room
temperature, utilizing 0.01 M sodium sulfate as the electrolyte.

(COD measurements were carried out in 0.01 M sodium
sulfate and 0.067 mM sodium hydroxide systems.)

Numerous studies have documented the utilization of metal
electrodes to catalyze the reduction of NO3

− for detecting
nitrate nitrogen in water.28−30 Metals such as Cu and Rh have
proven effective in catalyzing the electric reduction of
NO3

−,31,32 leading to their selection as targeted detection
electrodes for nitrate nitrogen. The cyclic voltammetry of the
Cu electrode was conducted in 1−11 ppm potassium nitrate
solution with a potential range of −1.15 V to −0.1 V. As
depicted in Figure 2b, around −1.15 V, the reduction current
increases with the rise in NO3

− concentration, attributed to the
reduction of Cu(I) to Cu(0) and the catalytic reduction of
NO3

− to NO2
−. To assess the targeting characteristics of the

Cu electrode for nitrate, a calibration curve was generated
using the reduction current at −1.15 V against the nitrate
nitrogen concentration (Figure 2a). The curve exhibited a
sensitivity of 1.806 μA/ppm, a coefficient of determination
(R2) of 99.72%, and a detection limit of 0.189 ppm. The Rh
electrode undergoes cyclic voltammetry scanning in a 1−11
ppm potassium nitrate solution with a potential range of −1 V
to +0.8 V. As depicted in Figure 2c, at approximately −0.9 V,
the reduction current increases with the elevation of NO3

−

concentration. This is attributed to the adsorption of NO3
− on

the electrode surface during the desorption process of
adsorbed H, leading to its reduction into other nitrogen
species. To assess the targeting characteristics of the Rh
electrode for nitrate, a reduction current of −0.9 V was used to
create a calibration curve for the nitrate nitrogen concentration
(Figure 2a). The curve exhibited a sensitivity of 1.262 μA/
ppm, a coefficient of determination (R2) of 98.39%, and a
detection limit of 0.211 ppm. Although both Cu and Rh
electrodes catalyze the reduction of the NO3

−, the mechanisms
differ fundamentally. The Cu electrode’s process involves its
own reduction alongside the catalytic reduction of NO3

−,
whereas the valence state of the Rh electrode remains
unchanged during this process, resulting in distinct electrode
refreshment approaches.

Cu and Ir electrodes were determined as targeted electrodes
in response to N-NH4. In our earlier research, we observed
that the complexation of ammonia with Cu alters the reduction
potential of Cu(II). The cyclic voltammetry of the Cu
electrode was conducted in a 1 to 11 ppm ammonium sulfate
solution with a potential range of −1.15 V to −0.1 V. As
illustrated in Figure 2e, with increasing ammonia concen-
tration, the reduction peak potential of Cu(II) decreases from
−0.645 V to −0.571 V. This phenomenon is attributed to the
complexation of CuO with NH3, forming [Cu(NH3)4]2+,33,34

which enhances CuO dissolution and simultaneously promotes
the NH4

+ ion hydrolysis to NH3. Additionally, the pH at the
Cu electrode interface undergoes changes, leading to a shift in
the Cu(II) reduction potential. The calibration curve relating
reduction potential to ammonia concentration is depicted in
Figure 2d. The sensitivity of the curve is 4.3 mV/ppm, with a
coefficient of determination (R2) of 98.99% and a detection
limit of 0.192 ppm. Ir possesses excellent dehydrogenation
capabilities and high oxygen affinity, enabling effective
promotion of the oxidation reaction of ammonia.35,36 The Ir
electrode undergoes cyclic voltammetry scanning in a 1 to 11
ppm ammonium sulfate solution with a potential range of −1
V to +1 V. As depicted in Figure 2f, with increasing ammonia
concentration, the oxidation peak current around +0.45 V
gradually rises due to Ir−OH catalyzing the oxidation of
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ammonia. The calibration curve relating the oxidation current
to the ammonia concentration is presented in Figure 2d. The
sensitivity of the curve is 1.099 μA/ppm, with a coefficient of
determination (R2) of 98.79% and a detection limit of 0.356
ppm. In summary, the response mechanisms of Cu and Ir
electrodes to N-NH4 are distinctly different.

Co(OH)2 and Zr(OH)4 electrodes were selected as targeted
electrodes in response to P-PO4. Cobalt is a resilient metal that
exhibits distinctive selectivity for phosphates and is often
chosen as a selective electrode for PO4

3− ions. However, all
cobalt-based sensors are constrained by interference from
dissolved oxygen and chloride ions, impeding their application
in surface water environments. In our prior research, we
developed a Co(OH)2 electrode with high sensitivity and long-
term stability for phosphate electrochemical sensing. The
voltammetry behavior of the electrode in a phosphate solution
of 1 to 11 ppm is illustrated in Figure 2h. The PO4

3− ion
accelerates the oxidation of Co(II) to Co(III), leading to an
increase in the oxidation peak current near +0.7 V. Figure 2g
demonstrates a well-linear relationship between the oxidation
peak current and phosphorus concentration (R2 = 0.9961),
with a detection sensitivity of 0.117 μA/ppm and a detection
limit of 0.019 ppm. The substantial affinity, good biocompat-
ibility, and high chemical inertness to acids and bases of ZrO2
and Zr(OH)4 for phosphate ions render them effective green
phosphorus adsorbents.37,38 The synthesized Zr(OH)4 elec-
trode underwent cyclic voltammetry scanning in a 1 to 11 ppm
ammonium sulfate solution with a potential range of 0 V to
+1.65 V. In Figure 2i, the oxidation current near +1.3 V
increases with the rise in phosphorus concentration. This is
due to the acceleration of the oxidation of adsorbed oxygen on
the electrode surface caused by the formation of zirconium
phosphate, resulting from phosphate adsorption on the
Zr(OH)4 electrode surface. The linear relationship between
the oxidation current and phosphorus concentration is
depicted in Figure 2g. The sensitivity of the curve is 0.271
μA/ppm; the coefficient of determination (R2) is 98.85%; and
the detection limit is 0.026 ppm. The advantage of Co(OH)2
and Zr(OH)4 electrodes lies in the self-cleaning nature of the
reduction process measured by voltammetry, eliminating the
need for an additional refresh process.

Cu and Co(OH)2 electrodes were chosen as targeted
electrodes for the COD response. The Cu electrode exhibits a
commendable ability to generate the active substance Cu(III)-
O(OH), showcasing superior redox performance for the
oxidation of refractory organic compounds.39 Cyclic voltam-
metry was conducted in a glucose solution ranging from 10 to
110 ppm, with a potential range of −1.05 V to +0.55 V. In
Figure 2k, Cu(III) catalyzes the oxidation of glucose near +0.4
V, leading to a distinct oxidation peak. The oxidation peak
current demonstrates a strong linear relationship with the
glucose concentration (Figure 2j). The curve’s sensitivity is
0.459 μA/ppm; the coefficient of determination (R2) is
99.49%; and the detection limit is 4.955 ppm. In Figure 2l,
Co(II) oxidizes to Co(III) near +0.1 V and further oxidizes to
Co(IV) near +0.4 V while catalyzing the oxidation of
glucose.40 Hence, the oxidation peak current near +0.4 V
increases with a rising glucose concentration. Figure 2j
illustrates the calibration curve of peak current and glucose
concentration with a sensitivity of 0.234 μA/ppm, a coefficient
of determination (R2) of 99.46%, and a detection limit of 4.217
ppm. In summary, each water quality index was specifically
detected by at least two electrodes with different selectivity

mechanisms, and the targeting performance characteristics of
the five electrodes were summarized in Table 1.

2.2. Collection of Multidimensional Signals. The final
current response observed by the electrode consists of two
contributions: non-Faraday and Faraday processes.41 The latter
relies on the presence of oxidation and reduction reactions,
while the former originates from the contribution of the
solution conductivity. Although the targeted current signal of
the multielectrode system is based on the Faraday process,
there exists a conductivity bias in the sample series.
Electrochemical impedance spectroscopy (EIS) reflects the
electron transfer rate at the electrode/electrolyte interface and
can effectively identify differences in the solution conductivity.
The information provided by the Bode plots significantly
compensates for the inherent limitations of the Nyquist
plots.42,43 Therefore, a series of synthetic water samples were
measured using a multielectrode system, including cyclic
voltammetry (CV) and EIS. For CV measurements, each
sample comprised 601-dimensional signals. This included 84
current values and 1 reduction peak potential for the copper
electrode in the CV range of −1.15 V to −0.1 V. The cobalt
hydroxide electrode recorded 80 current values within the CV
range of 0 V to +1 V. The zirconium hydroxide electrode
yielded 132 current values in the CV range of 0 V to +1.65 V.
The iridium electrode produced 160 current values within the
CV range of −1 V to +1 V. Lastly, the rhodium electrode
generated 144 current values within the CV range of −1 V to
+0.8 V. For EIS measurements with 60 frequency points, we
obtain 900 dimensions (180 per electrode), covering real and
imaginary impedance parts, along with phase angle data. In
summary, each sample provides a comprehensive data set with
a dimensionality of 1501.

The 160 synthetic water samples were supplemented with
other ions commonly found in surface water (Cl−, CO3

2−, and
Mg2+), and their real concentrations of COD, N-NH4, TN, and
P-PO4 were determined using laboratory methods. Glucose
and potassium hydrogen phthalate were employed as standard
materials for COD analysis (1 ppm of glucose corresponds to
1.067 ppm of COD, 1 ppm of potassium hydrogen phthalate
corresponds to 1.176 ppm of COD). Ammonium sulfate was
utilized as the standard material for N-NH4 analysis, while
potassium hydrogen phosphate served as the standard material
for P-PO4 analysis. Ammonium sulfate and potassium nitrate
were used as TN standard substances (the total content of
nitrogen is the TN value). The types of added standard
substances along with their respective concentration ranges are
detailed in Table 4. A multielectrode system was employed for

Table 1. Targeting Performance Characteristics of Five
Electrodes

Electrode Target
Linear working
ranges/ppm R2

Limit of
quantitation/

ppm

Cu
Nitrate 1−11 0.984 0.189
Ammonia 1−11 0.989 0.192
COD 10−110 0.995 4.955

Co(OH)2
Phosphate 1−11 0.996 0.019
COD 10−110 0.995 4.217

Zr(OH)4 Phosphate 1−11 0.989 0.026
Ir Ammonia 1−11 0.988 0.356
Rh Nitrate 1−11 0.997 0.211
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sample characterization. Notably, the signal acquisition study
spanned several weeks, potentially leading to corrosion
processes on the metal electrode during measurements over
time. Hence, careful examination of baseline drift was
conducted for each electrode. Prior to daily measurements,
the multielectrode system underwent refreshing in a 0.01 M
sodium sulfate solution (as described in section 4.4) for
baseline measurements. Figure S1a−e presents the normalized
baseline measurements of five electrodes over 8 days,
accompanied by their respective original voltammetry curves,
demonstrating that the baseline remained relatively stable after
normalization treatment.

The voltammetry response and impedance response of the
multielectrode system to different samples are illustrated in
Figures S2 and S3, respectively, demonstrating the resolution
capability of the 5 electrodes toward diverse samples. Detailed
information regarding the 10 selected samples is presented in
Table S1. Each sample encompasses a multidimensional signal
encompassing CV current value, Cu electrode reduction peak
potential, real and imaginary components of the Nyquist
diagram, and the phase angle in the Bode diagram. To assess
the efficacy of this multielectrode system for synthetic water
sample measurements, principal component analysis (PCA)
was employed. PCA was conducted on all normalized
multidimensional signals from these samples, reducing 1501
signals to 2 principal components. The cumulative reliability of
these first two principal components reached 83.33%. The
resulting PCA score image is depicted in Figure S1f. Notably,
all 160 data points were evenly distributed throughout this
image without any discernible boundaries between regions

occupied by different colored points, thereby affirming the
validity of our collected data.

2.3. Establishment of the Quantitative Identification
Model. To address the issue of overfitting in multivariable
models, penalty regression estimation methods such as LASSO
have gained significant popularity as a feature variable
extraction technique.44 To implement the LASSO regression,
an L1 regularization term is incorporated into the objective
function. The L1 term represents the absolute value of the
regression coefficient multiplied by the sum of regularization
parameters, thereby controlling the strength of regularization.
Consequently, the regularized LASSO objective function is
expressed as follows:

= + | |
= =

l
m
ooo
n
ooo

|
}
ooo
~
oooJ

n
y X( ) min

1
2

( )
i

n

i i
j

p
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1

2

1 (1)

where β is the regression coefficient; Xiβ is the predicted value;
y is the actual target value; p is the number of features, i.e., the
number of variables to be determined; βj is the jth regression
coefficient term; and | |=j

p
j1 is to punish the absolute value

of the β.
As the regularization parameter λ increases, more

coefficients tend to become zero, leading to the exclusion of
unimportant features from the model. This reduces the
complexity of the model and mitigates the impact of noise.

For the multidimensional signals of 160 synthetic water
samples, feature selection and dimension reduction were
achieved by adjusting the regularization parameter λ using

Figure 3. Results of MLR prediction in the 48 validation samples of (a) COD; (b) TN; (c) N-NH4; and (d) P-PO4.
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the LASSO algorithm. Taking COD as an example, Figure S4a
depicts the relationship between λ and the regression
coefficient of characteristic variables during the LASSO
variable screening process. As λ increases, the coefficient
gradually converged toward zero, indicating the elimination of
certain variables. Employing cross-validation for parameter
selection, Figure S4b illustrates the association between values
and errors in the variable selection procedure. The two dashed
lines corresponded to λmin = 0.3487 (λ value with the lowest
mean error) and λ1se = 0.5059 (the maximum λ value within
one standard deviation of the mean error). Ultimately, λmin was
determined as the optimal λ value, resulting in the extraction of
77 features comprising the variable set for the COD prediction
model.

Specifically, 77, 90, 88, and 79 important features were
extracted for COD, TN, N-NH4, and P-PO4 to establish a
quantitative identification model. To confirm the effectiveness
of these signals, signal classification was performed, and an
analysis was conducted in conjunction with the targeted signals
outlined in Section 2.1. The electrode classification of the
signals was presented in Table S2. Clearly, the contribution of
the five electrodes to the COD, TN, N-NH4, and P-PO4 is
fairly uniform, indicating accurate electrode selection. Specif-
ically, Cu, Zr(OH)4, and Ir electrodes exhibit prominent
contributions to COD and Cu, Rh electrodes to TN and Cu, Ir
electrodes to N-NH4 and Co(OH)2, and Zr(OH)4 electrodes
to P-PO4. This alignment with the targeted electrodes for
different indices in Table 1 showed the correctness of the
electrode selection. Furthermore, among the 77 characteristic
signals of COD, 32 originate from EIS and 45 from CV. For

TN, out of the 90 characteristic signals, 42 are derived from
EIS and 48 from CV. In the case of N-NH4, 44 out of the 88
characteristic signals are from EIS, and 44 from CV. Regarding
P-PO4, 41 out of the 79 characteristic signals are from EIS and
38 from CV. The signals collected through different electro-
chemical measurement modes exhibit uniformity, emphasizing
the necessity of multidimensional signal acquisition. Predom-
inantly, the CV signals for COD are mainly contributed by
current values at the highest oxidation potential across the five
electrodes, aligning with the oxidation of organic matter and
adhering to COD’s response principle. TN’s CV signal
encompasses reduction currents of the Cu electrode (near
−1.1 V) and Rh electrode (near −0.9 V), corresponding to the
discussed response mechanism in Section 2.1. The concen-
tration of N-NH4 impacts the reduction peak potential of the
Cu electrode and the oxidation current of the Ir electrode
(near +0.45 V), all of which are included in the extracted CV
signal. Similarly, the concentration of P-PO4 affects the
oxidation current of Co(II) near +0.7 V and the oxygen
adsorption on the surface of Zr(OH)4 near +0.3 V, and both
signals are also present in the extracted CV signal. In summary,
these extracted important features encompass both targeted
feature signals and some ambiguous nontargeted signals,
demonstrating the effectiveness of the method.

MLR, PLS, and XGBoost analyses were employed to assess
the correlation between the predicted values and actual
concentrations of COD, TN, N-NH4, and P-PO4. A train-
ing/verification approach was applied to each parameter, with
160 samples randomly divided into 112 training and 48
validation sets, both of which covered all concentrations.

Figure 4. Results of PLS prediction in the 48 validation samples of (a) COD; (b) TN; (c) N-NH4; and (d) P-PO4.
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Cross-validation was employed to search for the optimal
hyperparameters for the three algorithms.45 The training set
facilitated model coefficient derivation, while the validation set
assessed the model prediction capability. Figures 3, 4, and 5
depict standard-prediction graphs for each method. Addition-
ally, Table 2 presents predictive performance parameters (R2,
MAE, RMSE, and APRE) for different models applied to a
water quality parameter validation set of synthetic samples.
Furthermore, Table S3 displays the training set RMSE for the
three algorithms.

Multiple Linear Regression (MLR) and Partial Least Squares
Regression (PLS) stand out as prevalent methods for modeling
quantitative structure−property relationships.46,47 As depicted
in Figure 3, the RMSE values predicted by the MLR model for
COD, TN, N-NH4, and P-PO4 were 6.550, 1.280, 0.425, and
0.545, respectively. The relationship between the standard and
predicted concentrations of TN and P-PO4 deviated

significantly from linearity, with P-PO4’s APRE even exceeding
40%. PLS, as a generalization of regression, is adept at handling
data with noise or a large number of X variables, providing a
more robust solution compared to MLR. In Figure 4, in
contrast to MLR, the R2 of TN significantly increased from
0.941 to 0.988, and the RMSE decreased by 37.38%. However,
the predictive performance of the other three water quality
parameters decreased, particularly for COD and N-NH4
(RMSE increased by 97.40% and 63.06%, respectively),
suggesting the need for further optimization of the model.

The XGBoost algorithm stands out as an advanced
implementation of gradient-boosted machine learning, known
for its efficiency, flexibility, and portability, making it a
powerful tool across various forecasting tasks.48 It is considered
one of the top algorithms for supervised regression learning.
Currently, XGBoost has found applications in diverse fields
such as disaster event prediction, disease prognosis, and runoff

Figure 5. Results of XGBoost prediction in the 48 validation samples of (a) COD; (b) TN; (c) N-NH4; and (d) P-PO4.

Table 2. Predictive Performance Parameters of Different Models for Levels of COD, TN, N-NH4, and P-PO4

Data analysis Target R2 MAE RMSE Concentration range/ppm APRE

MLR COD 0.988 5.180 6.550 5−226 23.41%
TN 0.941 1.013 1.280 0.2−22 13.15%
N-NH4 0.989 0.326 0.425 0.1−11 13.81%
P-PO4 0.953 0.371 0.545 0.01−7 40.91%

PLS COD 0.957 10.010 12.930 5−226 21.04%
TN 0.988 0.606 0.801 0.2−22 11.78%
N-NH4 0.972 0.521 0.693 0.1−11 17.58%
P-PO4 0.957 0.280 0.518 0.01−7 32.53%

XGBoost COD 0.988 4.078 5.443 5−226 6.20%
TN 0.981 0.560 0.778 0.2−22 9.48%
N-NH4 0.996 0.198 0.288 0.1−11 7.62%
P-PO4 0.991 0.127 0.177 0.01−7 12.54%
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forecasting. 5-Fold cross-validation was employed to ensure
the stability of the model’s predictive ability, avoiding the
overfitting of the XGBoost model. This method uses the folds
of data for model construction, while the other fold is used for
model validation. Model selection based on the average
predicted value can reduce the occasionality caused by
overfitting. As illustrated in Figure 5, the predictive model
for the four water quality parameters established by the
XGBoost algorithm exhibits a significant improvement
compared to MLR and PLS. Compared with the MLR
algorithm, the predicted RMSE of COD, TN, N-NH4, and P-
PO4 decreased by 16.9%, 39.22%, 32.24%, and 67.52%,
respectively. The R2 values and APRE values for the prediction
models all surpass 0.98 and are below 15%. The predicted
ranges for the four water quality parameters are as follows:
COD, 5−226 ppm; TN, 0.2−22 ppm; N-NH4, 0.1−11 ppm;
P-PO4, 0.01−7 ppm. From the above results, the most notable
finding is the potential use of a multielectrode system for
monitoring COD, TN, N-NH4, and P-PO4 concentrations
without the need for intricate and time-consuming analytical
procedures. From an electrochemical research standpoint, the
strong correlation between data from multielectrode systems
and the concentrations of COD, TN, N-NH4, and P-PO4 is
attributed to variations in the electrochemical reactions of
electrode groups in the presence of these species.

Furthermore, the electrochemical targeting signal for COD
remains identifiable in an alkaline environment and is reliably
predicted, even within a neutral electrolyte. The substantial
correlation observed between COD and multisensor data is
likely attributed to the non-Faraday effect resulting from the
partial oxidation of organic products or the adsorption of
organic matter on the electrode surface during voltammetric
oxidation of metal electrodes. Consequently, the absence of a
well-defined redox process does not necessarily impede the
utilization of multielectrode systems. Effects such as the non-
Faraday effect due to chemisorption on the electrode or the
current generated by the reduction or oxidation of water,
influenced by the presence of chemical substances, may
contribute to the analysis of multidimensional signals. Hence,
the acquisition of multidimensional signals proves to be
indispensable.

Remarkably, the predictive accuracy for other ions in the
synthetic water sample exceeds 0.99, even though their specific
electrochemical characteristics have not been deliberately
studied. The facile coupling of multielectrode systems to
continuously monitor certain parameters, such as Cl−, CO3

2−,
and Mg2+, suggests the potential for their semiquantitative
determination in specific water quality scenarios in future
implementations.

2.40. Multielectrode System Applied in the Monitor-
ing of Surface Water. In order to assess the performance of
the developed multielectrode system, monitoring for COD,
TN, N-NH4, and P-PO4 concentrations in natural surface
water was implemented. Five river water samples and five lake

water samples were collected in this study. After a simple
filtration operation, the multielectrode system measured
multidimensional electrochemical signals. The laboratory
methods for the four water quality parameters were as follows:
COD determined by the dichromate method;49 TN
determined by ultraviolet spectrophotometry with potassium
persulfate digestion;50 N-NH4 determined by salicylic acid
spectrophotometry;51 and P-PO4 determined by ammonium
molybdate spectrophotometry.52 The concentrations of COD,
TN, N-NH4, and P-PO4 were predicted using the previously
established XGBoost model.

Table S4 presents the relative errors between the model
predictions and the laboratory methods. The relative error of
the multielectrode system in measuring the concentrations of
the 4 water quality parameters is approximately 15%. Due to
the limited sample size (n = 10) and the absence of a normal
distribution, nonparametric tests (Wilcoxon Signed Rank Test)
were employed to assess differences between the multi-
electrode system and the laboratory method. The results of
this research hypothesis testing are presented in Table S5, and
the P values of 4 water quality parameters were all >0.05.
Additionally, the calculated RMSE statistics were as follows:
COD = 0.1962, TN = 0.6222, N-NH4 = 0.2304, and P-PO4 =
0.0228. Evaluation indicates that there was no significant
difference in the measured values between the two methods. In
conclusion, the developed multielectrode system demonstrates
the potential to replace laboratory methods in monitoring
water quality parameters, and the precisions of the proposed
multielectrode system are provided in Table 3.

In this study, electrode measurements in the multielectrode
system were conducted nonsynchronously, taking approx-
imately 20 min to test a water sample. However, in subsequent
implementation applications, modifications to the circuit
design enable the synchronized measurement of electrodes,
significantly reducing the measurement time to 5 min. The
analysis time of the multielectrode system is thereby reduced
from hours to minutes, facilitating continuous on-site online
monitoring.

3. CONCLUSION
In this study, a novel multielectrode system was developed for
the simultaneous determination of COD, TN, N-NH4, and P-
PO4 using multielement calibration. The results indicate that
the system was effectively employed for the quantitative
determination of COD, TN, N-NH4, and P-PO4 in both river
water and lake water. The multielectrode system comprises a
set of five metal electrodes (Cu, Ir, Rh, Co(OH)2, and
Zr(OH)4). Additionally, the electrodes are self-cleanable and
reusable. Each water quality index was specifically detected by
at least two electrodes with distinct selectivity mechanisms.
Voltammetry characteristics of nitrate, ammonium salt,
phosphate, and glucose at different electrodes were reliable.

The multielectrode system effectively provided multidimen-
sional electrochemical signals from synthetic water samples.

Table 3. Precisions of the Proposed Multielectrode System

COD TN N-NH4 P-PO4

Measurement range 5−226 ppm 0.2−22 ppm 0.1−11 ppm 0.01−7 ppm
Limit of quantitation 5 ppm 0.2 ppm 0.1 ppm 0.01 ppm
Precision ±10%/±5 ppm ±10%/±0.2 ppm ±5%/±0.1 ppm ±5%/±0.01 ppm
Reproducibility ±5% ±5% ±3% ±3%
Measuring time <20 min
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The extraction of important characteristic signals was achieved
through a combination of normalization and LASSO. The
XGBoost algorithm’s training set model was applied across
various samples (synthetic and real water samples) without
requiring complex preprocessing operations. The analysis time
of the multielectrode system has been reduced from hours to
minutes compared with traditional analysis, facilitating
continuous on-site monitoring. Meanwhile, the multidimen-
sional data model successfully predicted almost correct results
in the presence of potentially interfering ions (Cl−, CO3

2−, and
Mg2+). This suggests potential applications of multielectrode
systems in future implementations for semiquantitative
determination of water quality parameters in specific scenarios.

4. EXPERIMENTAL SECTION
4.1. Reagents. Cobalt sulfate heptahydrate was purchased

from Aladdin Biochemical Technology (Shanghai, China).

Sodium phosphate dibasic dodecahydrate, sodium sulfate,
sodium hydroxide, and anhydrous ethanol were supplied by
Titan Scientific Co., Ltd. (Shanghai, China). Zirconium nitrate
pentahydrate, magnesium sulfate heptahydrate, sodium
chloride, sodium carbonate, glucose monohydrate, potassium
nitrate, ammonium sulfate, and potassium hydrogen phthalate
were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). These reagents are commercially procured
and utilized without any additional purification treatment
throughout the experiment. All of the stock solutions were
prepared with deionized water.

4.2. Cyclic Voltammetry. Electrochemical experiments
were performed using a CorrTest electrochemical workstation
(Wuhan, China). The electrochemical characterization was
carried out using different concentrations of glucose,
phosphate, ammonium salt, and nitrate, and 0.01 M sodium
sulfate was used as the electrolyte. All measurements were
performed under ambient temperature conditions (25 ± 1
°C). A Hg/Hg2SO4 electrode was used as a reference
electrode, and a platinum wire electrode was utilized as the
auxiliary electrode during the measurements. The cyclic
voltammetry experiments were conducted at a scan rate of
50 mV s−1.

4.3. Preparation of a Multielectrode System. The
copper, rhodium, and iridium electrodes were fabricated from
commercially available wire (99.9% purity, 1 mm diameter)
and securely fixed within a polytetrafluoroethylene tube with a

diameter of 6 mm by using an epoxy resin, exposing an
effective length of 3 mm.

The preparation of cobalt hydroxide and zirconium
hydroxide electrodes consists of two processes: material
synthesis and drop coating. Material synthesis: 1.5 g of cobalt
sulfate (zirconium nitrate) and 4 g of sodium hydroxide were
dispersed into 50 mL of deionized water under magnetic
stirring for 20 min. Then, the product was centrifuged at 8500
rpm for 5 min to obtain and then washed with water and
ethanol 10 times. Finally, the synthesized cobalt hydroxide and
zirconium hydroxide were obtained by drying at 60 °C for 12
h. An amount of 2 mg of synthesized metal hydroxide was
evenly distributed in 5 mL of anhydrous ethanol to create a
uniform ink through ultrasonication treatment lasting for 30
min. Subsequently, a 5 μL volume of ink was applied onto the
cleaned glassy carbon electrode (GCE) measuring 3 mm in
diameter and finally dried at room temperature for 20 min.

4.4. Measurement Procedure. The entire measurement
system comprises three components: the water inlet and outlet
systems, the electrochemical measurement system, and the
data transmission system. Seven electrodes, including five
working electrodes, one reference electrode, and one auxiliary
electrode, are sequentially inserted into the card slot of the
glass electrolyzer. The solution’s total volume of 5 mL is
quantitatively controlled for inflow and outflow by an
electronic valve. Before each electrochemical measurement,
the electrolytic cell undergoes three cleanings with 0.01 M
sodium sulfate to ensure minimal impact from the previous
sample on the current one. The measurement steps are
configured in the software, encompassing both the electro-
chemical measurement process and the solution inlet and
outlet process. The microcontroller receives data sent by the
PC, manages and selects the necessary working electrodes, and
performs electrochemical measurements at specified parame-
ters. Simultaneously, the microcontroller’s program samples
signals corresponding to voltage and current changes at the
selected working electrode. The collected data are then
transmitted to the PC for processing and storage.

Electrode refresh condition: Electrode refresh was carried
out with potentiostatic polarization for 120 s under different
potentials in 0.01 M sodium sulfate solution. The copper
electrode was at −0.8 V; the iridium electrode was at −1.5 V;
and the rhodium electrode was at −1.8 V. The refresh process
of the zirconium hydroxide electrode is unnecessary. The
cobalt hydroxide electrode needed to be reprepared every day.
Each sample was measured 3 times, and the mean was applied
in a preprocessing step.

Electrode measurement conditions: Cyclic voltammetry
measurements were performed at a scan rate of 50 mV.
Copper electrode: −1.15 V ∼ −0.1 V; Cobalt electrode: 0 V ∼
+ 1 V; Zirconium electrode: 0 V ∼ + 1.65 V; Iridium
electrode: −1 V ∼ + 1 V; Rhodium electrode: −1 V ∼ + 0.8 V.
The electrochemical impedance spectroscopy measurement
was carried out in the frequency range of 106 ∼ 0.1 Hz; the AC
amplitude was 10 mV, and 10 times were recorded every
decade. Each sample was measured 3 times, and the mean was
applied in a preprocessing step.

4.5. Synthetic Samples. The orthogonal table was used to
configure 160 synthetic water samples, including COD
(glucose and potassium hydrogen phthalate), N-NH4
(ammonium sulfate), TN (ammonium sulfate and potassium
nitrate), P-PO4 (potassium hydrogen phosphate), Cl− (sodium
chloride), CO3

2− (sodium carbonate), and Mg2+ (magnesium

Table 4. Concentration Range of Different Substances in a
Synthetic Water Sample

Target Concentration range/ppm

Substance Glucose 5−120
Potassium nitrate 0.1−11
Ammonium sulfate 0.1−11
Potassium hydrogen phosphate 0.01−7
Sodium chloride 5−60
Sodium carbonate 3−30
Potassium hydrogen phthalate 6−90
Magnesium sulfate 5−60

Index COD 5−226
TN 0.1−22
N-NH4 0.1−11
P-PO4 0.01−7
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sulfate). 0.01 M sodium sulfate was used as the electrolyte. The
concentration ranges of each ion are shown in Table 4.

4.6. Data Preprocessing and Multivariate Analysis.
The multivariable principal feature extraction was carried out
for all the measured data by LASSO. The 160 synthetic water
samples were divided into the training set (112 samples) and
the validation set (48 samples) in a 7:3 ratio. MLR, PLS, and
XGBoost were used to build a prediction model, and the
prediction ability of the test set was compared under these
three models. The model evaluation compared the real
concentration with the predicted concentration using the
correlation coefficient (R2), root-mean-square error (RMSE),
mean relative error (MAE), and average percentage relative
error (APRE). All data analysis was carried out in RStudio.
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noses and electronic tongues for the agricultural purposes. TrAC,
Trends Anal. Chem. 2023, 164, No. 117082.
(25) Gutiérrez-Capitán, M.; Brull-Fontsere,̀ M.; Jiménez-Jorquera,

C. Organoleptic Analysis of Drinking Water Using an Electronic
Tongue Based on Electrochemical Microsensors. Sensors 2019, 19
(6), 1435.
(26) Mhatre, G. R.; Daurai, B.; Mudhalwadkar, R. P. In

Development of electronic tongue for classification of wine with
sampling system, 2017 International Conference on Intelligent
Computing and Control (I2C2), 23−24 June 2017.
(27) Palit, M.; Tudu, B.; Dutta, P. K.; Dutta, A.; Jana, A.; Roy, J. K.;

Bhattacharyya, N.; Bandyopadhyay, R.; Chatterjee, A. Classification of
Black Tea Taste and Correlation With Tea Taster’s Mark Using
Voltammetric Electronic Tongue. IEEE Trans. Instrum. Meas. 2010,
59 (8), 2230−2239.
(28) Dima, G. E.; de Vooys, A. C. A.; Koper, M. T. M.

Electrocatalytic reduction of nitrate at low concentration on coinage
and transition-metal electrodes in acid solutions. J. Electroanal. Chem.
2003, 554−555, 15−23.
(29) Motaghedifard, M. H.; Pourmortazavi, S. M.; Alibolandi, M.;

Mirsadeghi, S. Au-modified organic/inorganic MWCNT/Cu/PANI
hybrid nanocomposite electrode for electrochemical determination of
nitrate ions. Microchimica Acta 2021, 188 (3), 99.
(30) Wang, J.; Zhang, Z.; Wang, S. Facile fabrication of Ag/GO/Ti

electrode by one-step electrodeposition for the enhanced cathodic
reduction of nitrate pollution. Journal of Water Process Engineering
2021, 40, No. 101839.
(31) Inam, A. K. M. S.; Costa Angeli, M. A.; Shkodra, B.; Douaki, A.;

Avancini, E.; Magagnin, L.; Petti, L.; Lugli, P. Flexible Screen-Printed
Electrochemical Sensors Functionalized with Electrodeposited
Copper for Nitrate Detection in Water. ACS Omega 2021, 6 (49),
33523−33532.
(32) Casella, I. G.; Contursi, M. Highly dispersed rhodium particles

on multi-walled carbon nanotubes for the electrochemical reduction
of nitrate and nitrite ions in acid medium. Electrochim. Acta 2014, 138,
447−453.
(33) Yang, S.; Zang, G.; Peng, Q.; Fan, J.; Liu, Y.; Zhang, G.; Zhao,

Y.; Li, H.; Zhang, Y. In-situ growth of 3D rosette-like copper
nanoparticles on carbon cloth for enhanced sensing of ammonia based
on copper electrodissolution. Anal. Chim. Acta 2020, 1104, 60−68.
(34) Valentini, F.; Biagiotti, V.; Lete, C.; Palleschi, G.; Wang, J. The

electrochemical detection of ammonia in drinking water based on
multi-walled carbon nanotube/copper nanoparticle composite paste
electrodes. Sens. Actuators, B 2007, 128 (1), 326−333.
(35) Wei, R.-L.; Liu, Y.; Chen, Z.; Jia, W.-S.; Yang, Y.-Y.; Cai, W.-B.

Ammonia oxidation on iridium electrode in alkaline media: An in situ
ATR-SEIRAS study. J. Electroanal. Chem. 2021, 896, No. 115254.
(36) Kapałka, A.; Fierro, S.; Frontistis, Z.; Katsaounis, A.; Frey, O.;

Koudelka, M.; Comninellis, C.; Udert, K. M. Electrochemical

behaviour of ammonia (NH4+/NH3) on electrochemically grown
anodic iridium oxide film (AIROF) electrode. Electrochem. Commun.
2009, 11 (8), 1590−1592.
(37) Ju, X.; Hou, J.; Tang, Y.; Sun, Y.; Zheng, S.; Xu, Z. ZrO2

nanoparticles confined in CMK-3 as highly effective sorbent for
phosphate adsorption. Microporous Mesoporous Mater. 2016, 230,
188−195.
(38) Luo, X.; Wu, X.; Reng, Z.; Min, X.; Xiao, X.; Luo, J.

Enhancement of Phosphate Adsorption on Zirconium Hydroxide by
Ammonium Modification. Ind. Eng. Chem. Res. 2017, 56 (34), 9419−
9428.
(39) Juska, V. B.; Maxwell, G. D.; O’Riordan, A. Microfabrication of

a multiplexed device for controlled deposition of miniaturised copper-
structures for glucose electro-oxidation in biological and chemical
matrices. Biosens. Bioelectron.: X 2023, 13, No. 100315.
(40) Hu, J.; Lu, H.; Li, M.; Xiao, G.; Li, M.; Xiang, X.; Lu, Z.; Qiao,

Y. Cobalt valence modulating in CoOx incorporated carbon nanofiber
for enhanced glucose electrooxidation. Materials Reports: Energy 2022,
2 (2), No. 100091.
(41) Barbosa, M. S.; Herrera, J. R.; Santato, C., In situ studies at

metal oxide/ionic medium interfaces for electronics and electro-
chemical energy storage. In Encyclopedia of Solid-Liquid Interfaces, 1st
ed.; Wandelt, K., Bussetti, G., Eds.; Elsevier: Oxford, 2024; pp 725−
742.
(42) Wang, F. M.; Rick, J. Synergy of Nyquist and Bode

electrochemical impedance spectroscopy studies to commercial type
lithium ion batteries. Solid State Ionics 2014, 268, 31−34.
(43) Vivier, V.; Orazem, M. E. Impedance Analysis of Electro-

chemical Systems. Chem. Rev. 2022, 122 (12), 11131−11168.
(44) Shao, Y.; Tang, J.; Liu, J.; Han, L.; Dong, S. Multivariable

System Prediction Based on TCN-LSTM Networks with Self-
Attention Mechanism and LASSO Variable Selection. ACS Omega
2023, 8 (50), 47798−47811.
(45) Qian, H.; McLamore, E.; Bliznyuk, N. Machine Learning for

Improved Detection of Pathogenic E. coli in Hydroponic Irrigation
Water Using Impedimetric Aptasensors: A Comparative Study. ACS
Omega 2023, 8 (37), 34171−34179.
(46) Riahi, S.; Ganjali, M. R.; Norouzi, P.; Jafari, F. Application of

GA-MLR, GA-PLS and the DFT quantum mechanical (QM)
calculations for the prediction of the selectivity coefficients of a
histamine-selective electrode. Sens. Actuators B 2008, 132 (1), 13−19.
(47) Roy, K.; Pratim Roy, P. Comparative chemometric modeling of

cytochrome 3A4 inhibitory activity of structurally diverse compounds
using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN
techniques. Eur. J. Med. Chem. 2009, 44 (7), 2913−2922.
(48) Wan, A.; Gong, Z.; Chen, T.; Al-Bukhaiti, K. Mass flow

characteristics prediction of refrigerants through electronic expansion
valve based on XGBoost. Int. J. Refrig. 2024, 158, 345−352.
(49) Xiao, H.; Yan, W.; Zhao, Z.; Tang, Y.; Li, Y.; Yang, Q.; Luo, S.;

Jiang, B. Chlorate induced false reduction in chemical oxygen demand
(COD) based on standard dichromate method: Countermeasure and
mechanism. Water Res. 2022, 221, No. 118732.
(50) Lin, K.; Xu, J.; Guo, H.; Huo, Y.; Zhang, Y. Flow injection

analysis method for determination of total dissolved nitrogen in
natural waters using on-line ultraviolet digestion and vanadium
chloride reduction. Microchem. J. 2021, 164, No. 105993.
(51) Jain, A.; Soni, S.; Verma, K. K. Combined liquid phase

microextraction and fiber-optics-based cuvetteless micro-spectropho-
tometry for sensitive determination of ammonia in water and food
samples by the indophenol reaction. Food Chem. 2021, 340,
No. 128156.
(52) Bermejo-Barrera, P.; Moreda-Piñeiro, A.; Bermejo-Barrera, A.
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