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AIMS

This study aimed to determine the effect of food intake on uracil and dihydrouracil plasma levels. These levels are a promising
marker for dihydropyrimidine dehydrogenase activity and for individualizing fluoropyrimidine anticancer therapy.

METHODS

A randomized, cross-over study in 16 healthy volunteers was performed, in which subjects were examined in fasted and fed state
on two separate days. In fed condition, a high-fat, high-caloric breakfast was consumed between 8:00 h and 8:30 h. Whole blood
for determination of uracil, dihydrouracil and uridine plasma levels was drawn on both test days at predefined time points
between 8:00 h and 13:00 h.

RESULTS

Uracil levels were statistically significantly different between fasting and fed state. At 13:00 h, the mean uracil level in fasting state
was 12.6 + 3.7 ng ml™' and after a test meal 9.4 + 2.6 ngml~' (P < 0.001). Dihydrouracil levels were influenced by food intake as
well (mean dihydrouracil level at 13:00 h in fasting state 147.0 + 36.4 ng ml~' and in fed state 85.7 + 22.1 ng ml~', P < 0.001).
Uridine plasma levels showed curves with similar patterns as for uracil.

CONCLUSIONS

It was shown that both uracil and dihydrouracil levels were higher in fasting state than in fed state. This is hypothesized to be an
direct effect of uridine plasma levels, which were previously shown to be elevated in fasting state and reduced after intake of food.
These findings show that, when assessing plasma uracil and dihydrouracil levels for adaptive fluoropyrimidine dosing in clinical
practice, sampling should be done between 8:00 h and 9:00 h after overnight fasting to avoid bias caused by circadian rhythm
and food effects.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

¢ Dihydropyrimidine dehydrogenase (DPD) is the main metabolic enzyme for fluoropyrimidines.

e The endogenous substrate and its product, uracil and dihydrouracil, can be measured as a surrogate of DPD activity and
are considered promising markers for individualizing fluoropyrimidine therapy.

e Currently, the effect of food intake on uracil/dihydrouracil levels is unclear.

WHAT THIS STUDY ADDS

e We showed that uracil and dihydrouracil levels were significantly lower after food intake than in fasting state, which is

thought to be a direct effect of uridine homeostasis.

e This implies that sampling should be done in the morning and in the fasted state to avoid bias caused by food effects.

Introduction

The fluoropyrimidine anticancer drugs 5-fluorouracil (5-FU)
and its oral prodrug capecitabine are commonly used in the
treatment of solid tumours, including early and advanced
breast, colorectal, gastric and head-and-neck cancer. The en-
zyme dihydropyrimidine dehydrogenase (DPD), encoded by
the gene DPYD, plays an important role in the metabolism
of fluoropyrimidines. Over 80% of the administered dose of
5-FU is inactivated in the liver by DPD, which makes DPD
the key metabolizing enzyme of fluoropyrimidines [1, 2].
DPD enzyme activity is known to have a high interindividual
variability and reduced DPD activity is present in up to 5% of
the population. DPD deficiency is an important risk factor for
developing severe, potentially fatal, fluoropyrimidine-related
toxicity when patients are treated with a standard
fluoropyrimidine dose [3-6].

DPD deficiency is often caused by single nucleotide poly-
morphisms (SNPs) in the DPYD gene. Pre-treatment DPYD
screening and dose individualization based on DPYD poly-
morphisms have shown to significantly improve patient
safety [7]. However, as not all DPD deficiency can be attrib-
uted to genetic DPYD variants, other methods to identify
DPD-deficient patients at risk of fluoropyrimidine-related
toxicity are being investigated, including DPD phenotyping
approaches.

A frequently used phenotyping method is measuring DPD
activity in peripheral blood mononuclear cells (PBMCs), as
liver DPD activity correlates relatively well with DPD activity
in PBMCs [8]. However, this method seems less suitable for
routine clinical use, as this method is expensive, laborious,
logistically difficult, and requires specific equipment which
is not available in most hospitals [9].
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Figure 1

Metabolism of uridine, uracil and dihydrouracil
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Another promising phenotyping approach to identify
DPD-deficient patients is determining the levels of uracil
(U), the endogenous substrate for DPD, and its product
dihydrouracil (DHU). Multiple studies have shown an associ-
ation between high endogenous U levels or a low DHU/U ra-
tio and severe fluoropyrimidine-associated toxicity [10-15].
These results support the idea that U and DHU levels could
be used to individualize fluoropyrimidine therapy in order
to increase patient safety. However, an important uncertainty
is that there is limited information on potential factors
influencing the U and DHU levels and DHU/U ratio, such as
circadian rhythm [16] or intake of food containing high
levels of U. Therefore, the aim of this study was to determine
the effect of oral food intake on plasma U and DHU levels, in
order to investigate if a fasting state is necessary when U and
DHU levels will be used as a diagnostic marker for DPD activ-
ity in routine clinical practice.

Information on food containing high levels of U or its pre-
cursor uridine is limited. Uridine can be converted in vivo to U
by a phosphorolysis reaction. This reaction is catalysed by the
enzyme uridine phosphorylase [17] (see Figure 1). U is also
one of the four bases in RNA, so intake is also influenced by
RNA contents in food. Daily RNA and DNA intake is typically
in the range of 0.1-1 g person™' day ' [18]. In the gastroin-
testinal tract, RNA is broken down into nucleic bases in-
cluding U. Relatively high concentrations of RNA and
DNA can be found in edible offal, animal muscle tissues
and mushrooms, whereas plant-derived foods contain lower
concentrations [18, 19].

In this study, a breakfast containing food expected to have
a high U content was consumed by healthy volunteers in a
randomized, cross-over study. It was hypothesized that U
levels, and potentially also DHU levels, would increase after
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consumption of the test breakfast, compared to the fasting
state. The basis of this hypothesis was the assumption that
the U present in food would increase the U plasma concentra-
tions after absorption.

Methods

Study design and sample collection

Sixteen healthy volunteers participated in the study. Enrolled
subjects were aged 18 or older, not pregnant and able and
willing to consume the prescribed breakfast and undergo
blood sampling. The study (clinical trials.gov identifier:
NCT02718664) was approved by the Medical Ethics Commit-
tee of The Netherlands Cancer Institute, Amsterdam, The
Netherlands, and was conducted in accordance with the Dec-
laration of Helsinki. All participants provided written in-
formed consent prior to study assessments. The study had a
randomized, cross-over design, consisting of two test days:
day A (fasting state, no food allowed from 22:00 h the previ-
ous night until 13:00 h on the test day) and day B (a test meal
was consumed between 8:00 h and 8:30 h, no other food
allowed from 22:00 h the previous night until 13:00 h). On
both test days, consumption of tap water was allowed during
the study period. The test days were planned on two consec-
utive days and participants were 1:1 randomized for the order
of the test days (AB or BA).

Blood for determination of U, DHU and uridine plasma
levels was collected on both days on 11 predefined time
points between 8:00 h and 13:00 h (8:00 h, 8:45 h, 9:00 h,
9:15 h, 9:30 h, 10:00 h, 10:30 h, 11:00 h, 11:30 h, 12:00 h,
13:00 h). On one of the test days, an additional blood sample
was taken at 8:00 h for determination of DPD enzyme activity
in PBMCs. Also, a blood sample was collected for DPYD

genotyping.

Determination of U, DHU and uridine plasma
levels
Peripheral blood for assessment of U and DHU was drawn in a
heparin tube (4 ml) and centrifuged directly (1500 g, 10 min,
4°C). Plasma was stored at —80°C until analysis. A validated
ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) assay was used for quantifica-
tion of U and DHU levels as described by Jacobs et al. [20].
As an exploratory analysis, uridine levels were determined
in the plasma samples that were drawn for determination of
U and DHU levels. The same UPLC-MS/MS assay developed
by Jacobs et al. [20] was used for quantification of uridine
levels, using the same sample pre-treatment methods and an-
alytical system settings. The concentration range for uridine
was 50-5000 ng ml ! and uridine-2-'3C-1,3-°N, was used
as internal standard.

Determination of DPD enzyme activity in
PBMCs

Ten millilitres of peripheral blood, drawn in a heparin tube,
was collected for assessment of DPD activity in PBMCs.
PBMCs were isolated directly, using Ficoll-Paque density
gradient centrifugation as described previously [21]. Isolated
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PBMCs were stored at —80°C until further analysis. A
validated radio-assay was used, where DPD activity was
expressed as the amount of *H-dihydrothymine formed per
mg of protein of PBMC after 1 h of ex vivo incubation with
3H-thymine [21].

DPYD genotyping

Genotyping for four DPYD variants was performed. DPYD
variants tested were DPYD*2A (c.1905+1G>A, IVS14+1G>A,
1s3918290), c.1679T>G (rs55886062), c.2846A>T
(rs67376798) and ¢.1236G>A (rs56038477, in haplotype
B3). DNA was isolated from 4 ml EDTA peripheral blood,
and DPYD genotyping was performed with real-time PCR,
using the Roche LightCycler® 480II platform and commer-
cially available primers and probes.

Test meal

On day B of the study (fed condition), a standardized break-
fast had to be consumed. This test meal was in accordance
with a high-fat (approximately 50% of total caloric content
of the meal) and high-caloric (approximately 800-1000 kcal)
meal as described in the guidance on food-effect bioavailabil-
ity and fed bioequivalence studies of the US Food and Drug
Administration (FDA) [22]. The breakfast consisted of two
slices of whole-wheat bread, two boiled eggs, two tomatoes,
one portion (30 g) of liverwurst (liver sausage), one portion
(30 g) of steak tartare, one portion (30 g) unsalted butter
and 200 ml of whole milk. The total breakfast contained ap-
proximately 820 kcal, of which 490 kcal was provided by
fat. Ingredients were included which were expected to have
a potentially large effect on U levels, e.g. liverwurst contain-
ing pig liver. The test meal had to be consumed between
8:00 h and 8:30 h and whether the whole meal was finished
within this time period was monitored. We estimated that
the test meal would contain at least 15 mg of U, and based
on the published value of 474 1 for the volume of distribution
divided by the bioavailability (Vd/F) [23], we calculated that
intake of this amount of U could potentially result in plasma
levels of 32 ng ml™' (15/474 = 0.032 mg 1'), and therefore
might significantly increase U levels.

Sample size calculation and statistical analyses
The primary objective of the study was to determine the effect
of oral food intake on plasma U and DHU levels. A required
sample size of 16 was calculated, which is also in compliance
with the FDA guidance, where it is stated that a minimum of
12 subjects should be included in food-effect studies [22]. For
sample size calculation, two null hypotheses were taken into
account: first, that the difference in mean for U levels in both
conditions is below —4 ng ml ! and, second, that it is above
4 ng ml~'. A 90% power was chosen to reject both null hy-
potheses in favour of the alternative hypothesis that the
means of the two conditions (A and B) are equivalent. This as-
sumed that the expected difference in means is zero, the
crossover ANOVA root mean squared error is 3.16 (so the
standard deviation of differences is 4.47), and that each test
is made at the 5.0% alpha level. The standard deviation of
differences was calculated assuming that the standard
deviation is two under the first condition (A), four under
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the second condition (B) and that the correlation between
the two is zero.

Descriptive statistics were used to describe DPD activity in
PBMCs, U, DHU and uridine levels and DHU/U ratio. Paired
t-tests were used for comparison of U levels, DHU levels and
DHU/U ratio between condition A and B at different time
points (8:00 h, 10:30 h, 13:00 h). Pearson correlation coeffi-
cients were estimated to examine the association between
DPD activity in PBMCs and U levels, DHU levels, DHU/U ra-
tio and uridine. The threshold for statistical significance was
set at P < 0.05.

Results

A total of 16 participants (eight females, eight males) were in-
cluded, with a median age of 27 years (range 25-46 years). All
participants were Caucasian. Participants were equally ran-
domized for the order of the test days (eight subjects random-
ized as AB, eight as BA). Baseline characteristics are
summarized in Table 1.

DPD activity in PBMCs was shown to have a relatively
high interindividual variability, with a mean value of
14.2 nmol ' (mg*h) and standard deviation (SD) of
5.5 nmol ' (mg*h); individual values for PBMC DPD activity

Table 1

Baseline characteristics of participants

Characteristic

Participants (n = 16)

Gender
Male (%) 8 (50%)
Female (%) 8 (50%)

Weight (kg)

Mean (range) 73 (58-96)

Randomization

AB (%) 8 (50%)

BA (%) 8 (50%)

“Wild-type for four DPYD variants: DPYD*2A, c.1236G>A,
c.2846A>T and c.1679T>G
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are presented in Table S1. The participant with the lowest
PBMC DPD activity (subject six; 3.4 nmol ' (mg*h)) was
identified as a heterozygous carrier of the DPYD*2A variant.
Another participant (subject eight) carried the DPYD
¢.1236G>A variant heterozygously. This variant, however,
did not result in decreased DPD activity in PBMCs for this
subject (value of 13.4 nmol ! (mg*h)). All other participants
were tested as wild-type for the four DPYD variants analysed
in this study.

The individual and mean day curves for U levels, DHU
levels, DHU/U ratio and uridine levels are shown in
Figure 2. Results are shown separately for condition A
(fasting state) and condition B (consumption of test meal
between 8:00 h and 8:30 h). As shown in Figure 2A, mean
U levels at 8:00 h were higher for fasting state compared
to fed state (14.5 + 4.3 ng ml~! for fasting state and 13.4
+3.5ng ml ! for fed state, P = 0.03), but with a difference
of 1.1 ng ml™"' between the two conditions; this was not
considered clinically relevant. At this time point, partici-
pants were in fasting state on both days. In both
conditions, U levels declined during the day. However,
after consumption of the test meal (condition B), U
levels declined significantly more than in fasting state
(condition A). A drop between 8:45 h and 10:30 h was
observed after consumption of the test meal, after which
the mean value remained relatively constant. At 10:30 h,
mean U levels in fasting state were 13.5 + 4.7 ng ml '
and in fed state 9.2 + 2.4 ng ml™" (P < 0.001). At
13:00 h, the U level had a mean value of 12.6 + 3.7 ng ml~"
for fasting state and 9.4 + 2.6 ng ml™' for fed state
(P < 0.001).

For DHU levels, results are summarized in Figure 2B.
Mean DHU levels at 8:00 h, when participants were in a
fasting state on both days, were not significantly different
between both test days (102.2 + 25.2 ng ml™' for fasting
state and 111.0 + 23.6 ng ml™" for fed state, P = 0.23). How-
ever, in the fasting state, mean levels were found to increase
over the day, with a maximum of 147.0 + 36.4 ng ml ' at
13:00 h, and in the fed state mean levels declined over the
day, to a mean level of 85.7 + 22.1 ng ml™ " at 13:00 h. This
difference at 13:00 h was found to be statistically significant
(P < 0.001). At 10:30 h, mean DHU levels in fasting state
were 121.0 + 32.1 ng ml ' and in fed state 87.3 +
26.9 ng ml~' (P = 0.003).

When combining U and DHU levels into the DHU/U
ratio, as depicted in Figure 2C, both at 8:00 h and 13:00 h
the mean DHU/U ratio values were significantly different
(8:00 h: fasting state = 7.5 + 2.2, fed state = 8.6 £ 2.1,
P =0.012; 13:00 h: fasting state = 12.6 + 4.7; fed state = 9.6 +
3.1, P =0.012), but not at 10:30 h (fasting state = 9.7 + 3.0,
fed state = 10.1 + 4.0, P = 0.65). Individual results per subject
for U levels, DHU levels and DHU/U ratio are included as sup-
plemental information (Table S1 and Figure S1).

In an exploratory analysis, uridine levels were measured
in the same plasma samples in which U and DHU levels were
quantified. For nine plasma samples, insufficient plasma was
available to determine uridine levels. Uridine measurements
showed that curves for uridine showed similar patterns as
for U, with higher (stable) levels in the fasting state, and a
drop in levels after intake of the breakfast. The uridine results
are depicted in Figure 2D and individual results in Figure S1.
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Uracil levels (A), dihydrouracil levels (B), dihydrouracil/uracil ratio (C) and uridine levels (D) in plasma. Levels were determined at predetermined
time points between 8:00 h and 13:00 h in 16 participants in a fasting state (arm A) and after consuming a standardized breakfast between 8:00 h
and 8:30 h (arm B). Individual levels are depicted and the mean values (bold line). DHU: dihydrouracil; U: uracil

Associations between DPD activity in PBMCs and U
plasma levels, DHU plasma levels, DHU/U ratio and uridine
plasma levels were investigated (Figure S2). There was a sig-
nificant negative correlation coefficient between PBMC DPD
activity and U plasma levels (r* = 0.4220; P = 0.0065) and a
significant positive correlation between PBMC DPD activity
and DHU/U ratio (* = 0.6162; P = 0.0003). DHU levels were
not significantly correlated with PBMC DPD activity

(r* = 0.1402; P = 0.153), nor were uridine levels (* = 0.2018;
P =0.093).

Discussion

As far as we know, this is the first study to investigate the
effect of oral food intake on U and DHU plasma levels. U
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levels and DHU/U ratio are promising biomarkers for DPD
enzyme activity, 5-FU clearance and as a predictor of
fluoropyrimidine-related toxicity [10-15, 24-27]. Our
recent retrospective study in 550 patients showed that a
high pre-treatment U level (>16 ng ml ') was strongly
associated with severe fluoropyrimidine-related toxicity
(OR 5.3, P = 0.009) [14]. Additionally, several prospective
studies have been performed, in which dose reduction of
fluoropyrimidine-based chemotherapy was performed
based on DHU/U ratio [25, 28] or a combination of DPYD
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genotype and DHU/U ratio [29], resulting in lower inci-
dence of severe fluoropyrimidine-related toxicity. However,
a concern is that U and DHU levels might not only be
influenced by systemic DPD activity, but also by other
factors, e.g. circadian rhythm [16] or food containing high
levels of U or uridine. In several studies investigating DHU
and U levels, blood is therefore drawn in the morning and
after a fasting period [12, 24, 26, 30]. However, direct evi-
dence showing the effect of oral food intake on U and
DHU levels was not yet available.



In this study, we showed that U and DHU levels were not
only influenced by interindividual variation and the time of
the day (indicating a circadian rhythmicity), but that, indeed,
intake of food was a statistically significant contributing fac-
tor as well. However, the influence had the opposite direction
to what was initially hypothesized. Instead of an increase in
U levels after food intake, we found that U levels both de-
clined from 8:00 h to 13:00 h in a fasting state and after food
intake, but that the decline was more pronounced after food
intake compared to the fasting state. For DHU levels, the ef-
fect of oral food intake seemed even more pronounced, as
the levels from 8:00 h to 13:00 h increased in the fasting state
and decreased after the intake of the test breakfast. When
combining U and DHU levels into the DHU/U ratio, the effect
of food status is most significant after 12.00 h, influenced by
the big difference between DHU levels in fasting and fed state
at this time period.

These effects of food intake on U and DHU levels have not
been shown previously and the exact mechanism behind
these findings is uncertain. The results of our study suggest
that certain metabolic processes in the body which are influ-
enced by a prolonged fasting state or, conversely, the intake of
a high-caloric meal, influence plasma U and DHU levels. In
the fasting condition, participants had to abstain from food
from 22:00 h to 13:00 h the following day, meaning a period
of 15 h. For uridine, the precursor of U, it has recently been
shown by Deng et al. that plasma uridine levels are elevated
during fasting state and show a rapid drop in a post-prandial
state [31], thus showing a similar pattern as U levels in our
study. Adipose tissue dominates uridine biosynthetic activity
in the fasted state, resulting in elevated plasma uridine levels,
but after food intake, a rapid reduction of plasma uridine is
seen, both caused by reduction of uridine synthesis in adipo-
cytes and enhancement of its clearance through the bile [31].
Assuming that endogenous U plasma levels are largely depen-
dent on uridine homeostasis and not on the intake of U by
food, this phenomenon could be an explanation for the find-
ings in our study. It has been shown that uridine homeostasis
is tightly regulated by the enzyme uridine phosphorylase, the
enzyme which converts uridine to U [17, 32, 33]. This sup-
ports the hypothesis that U levels are mainly dependent on
uridine homeostasis. When radioactively labelled *H-uridine
was administered intraperitoneally to mice, *H-uridine was
metabolized rapidly with a half-life of less than 2 min, and ra-
dioactive *H-uracil levels were detected in plasma already
5 min after administration [32]. For uridine present in food,
it was shown that gut-derived uridine is not released in the
systemic circulation, but subsequently circulates with bile
within the enterohepatic circulation [31]. This is also in line
with our findings that food intake did not result in an in-
crease in U levels.

The exploratory analyses in our study confirmed that uri-
dine levels showed a similar pattern as U levels, suggesting
that the differences between fed and fasted state of U and
DHU are indeed likely to be the direct result of the homeo-
static control of uridine. However, when comparing the uri-
dine and U curves over the day, uridine levels show a larger
drop in plasma levels after intake of food than the U levels,
where the drop is more modest. This could be caused by the
high uracil-containing test meal, from which potentially
some uracil is directly taken up in the systemic circulation,

Food effect-study on U and DHU levels
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resulting in higher U plasma levels. Another possible expla-
nation for this difference between uridine and U is that the
formation of U from uridine is rather slow, thereby limiting
the direct effect on plasma levels of U by uridine homeostasis.
This is, however, in contrast to the rapid conversion from uri-
dine to U described earlier [32].

Our study shows that mean levels of uridine, U and DHU
clearly have a distinct pattern for fasting state and fed state.
The mean difference for U levels between fed and fasted state
was between 2 and 5 ng ml~" (depending on the time point),
showing the relevance of taking food status into account
when assessing U plasma levels. The results of our study also
suggest that findings of previous studies investigating U
levels or the DHU/U ratio in association with
fluoropyrimidine-related toxicity might have been influ-
enced by unknown food status. Results of our study also indi-
cate that both inter- and intra-individual variation of uridine,
U and DHU levels are high, even in a homogeneous healthy
volunteer group. This is in line with our previous study in
healthy volunteers, where high inter- and intra-individual
variation for U and DHU levels were identified as well [16].
When setting a threshold for dose individualization of
fluoropyrimidines based on U levels or the DHU/U ratio, it
is important to keep in mind this variation, as this can influ-
ence the chance of incorrectly classifying someone as DPD
deficient based on a measured plasma level. In general, influ-
ences of circadian rhythm and food, among other factors that
contribute to the high variation, complicate the implementa-
tion of DPD phenotyping in clinical practice, as it requires
strict settings for blood drawing in patients. This is contrary
to DPYD genotyping, where results inherently cannot be in-
fluenced by environmental factors. Another important aspect
to take into account for feasibility in clinical practice is the
method for quantification of U and DHU levels. We used a
validated mass spectrometry-based assay. Previously it was
shown that there is extensive variability in reported ranges
of endogenous DHU/U ratio in different studies, which is
thought to be largely dependent on the method used [34].
To increase the feasibility and implementation of this assay
in smaller hospitals, where it is likely that no UPLC-MS/MS
equipment will be available, samples could also be shipped
for quantification to another hospital if turnaround times
(i.e. time between sample collection and reporting of the re-
sult for deciding on treatment individualization) can be
limited.

In our study we used a relatively homogeneous group of
healthy volunteers and fixed test conditions. Results can
therefore not directly be extrapolated to a real-world setting
of cancer patients, where a higher interindividual variation
in uridine and U metabolism can be expected. Also, it is un-
known what the effect of cachexia, present in a proportion
of cancer patients, would be on the uridine and U homeosta-
sis. In addition, with our study settings, differences between
the fasting state (15 h of fasting) and the fed state (intake of
a high-caloric breakfast) were large, which can also not be di-
rectly extrapolated to a clinical setting of patients. However,
by using this controlled study setting, we were able to iden-
tify the significant influence of food on U and DHU levels,
which is expected to be of relevance in a daily care patient set-
ting as well. Validation of our findings in cancer patients in a
clinical care setting is, however, warranted.
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Of interest is the relationship between DPYD genotype
and DPD phenotype (e.g. measured by DPD enzyme activity
in PBMCs or U levels or DHU/U ratio). In our study we identi-
fied two DPYD variant allele carriers. The participant who car-
ried the DPYD*2A variant heterozygously had a significantly
decreased DPD enzyme activity and corresponding signifi-
cantly increased U levels. This is in line with expectations,
due to the known deleterious effect of the DPYD*2A variant
on the DPD enzyme, leaving a heterozygous carrier with ap-
proximately 50% remaining DPD activity. The other DPYD
variant allele carrier in our study was a heterozygous
€.1236G>A carrier. This DPYD variant is known to result in
decreased DPD enzyme activity as well, but the effect is
thought to be less strong than for DPYD*2A [35]. The partici-
pant in our current study had normal DPD enzyme activity in
PBMCs and U levels, comparable to the other participants in
our study. Therefore, this participant seems to have no func-
tional DPD deficiency, despite the presence of a DPYD vari-
ant. A previous case series including two homozygous
carriers of the c.1236G>A variant suggested that there is a rel-
atively high variation of the effect of this genotype on DPD
phenotype in patients. The exact mechanism behind this re-
mains unclear [36].

In conclusion, with this study we showed that both U
levels and DHU levels are generally lower after the intake of
a high-caloric breakfast, compared to a fasting state. This
means that oral food intake of patients should be taken into
account when blood is drawn for determination of U and
DHU levels. We recommend choosing fixed circumstances
for blood collection for measuring U and DHU levels, such
as a collection time between 8:00 h and 9:00 h after overnight
fasting, as this will minimize the effects of potential con-
founders as much as possible.
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