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Abstract
Burkitt lymphoma (BL) is one of the most aggressive forms of non‐Hodgkin's lym-
phomas that affect children and young adults. The expression of genes and other mo-
lecular markers during carcinogenesis can be the basis for diagnosis, prognosis and the
design of new and effective drugs for the management of cancers. The aim of this study
was to identify genes that can serve as prognostic and therapeutic targets for BL. We
analysed RNA‐seq data of BL transcriptome sequencing projects in Africa using standard
RNA‐seq analyses pipeline. We performed pathway enrichment analyses, protein–protein
interaction networks, gene co‐expression and survival analyses. Gene and pathway
enrichment analyses showed that the differentially expressed genes are involved in tube
development, signalling receptor binding, viral protein interaction, cell migration, external
stimuli response, serine hydrolase activity and PI3K‐Akt signalling pathway. Protein–
protein interaction network analyses revealed the genes to be highly interconnected,
whereas module analyses revealed 25 genes to possess the highest interaction score.
Overall survival analyses delineated six genes (ADAMTSL4, SEMA5B, ADAMTS15,
THBS2, SPON1 and THBS1) that can serve as biomarkers for prognosis for BL
management.
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1 | INTRODUCTION

Burkitt lymphoma (BL) is one of the most aggressive forms of
non‐Hodgkin's lymphomas that affect children and young
adults. Overall, BL accounts for 1%–5% of all non‐Hodgkin's
lymphomas and clinically presents as a conspicuous accumu-
lation of tissues in the cheek and jaws of its victims [1]. The
pattern and distribution of BL vary depending on age, sex and
geographical location, suggesting the roles of both genetic and
environmental factors in the development of the disease. BL is
more common in males than in females with a ratio of 4:1 [2],
accounts for 36% of all childhood cancers (2–16 years), 70% of
childhood lymphomas and 5% of lymphomas for both adults
and children [3]. In equatorial Africa, BL is usually associated
with Plasmodium falciparum and Epstein‐Barr virus in-
fections, where the latter is seen in 90% of BL cases [4].

Although BL can be treated if detected early, identifying reli-
able biomarkers has the added advantage of outcome
assessment.

Identifying biomarkers associated with BL is important as
it gives detailed information about the likely outcome of a
treatment regimen. Panea et al. [5] identified BCL7A and
BCL6 as potential predictive biomarkers in a Kenyan BL
cohort. Kaymaz et al. [6] also found four members of the
Proteasome 20S Subunit Beta (PSMB9, PSMB10, PSMB8 and
PSMB2) to be associated with BL progression. The signature
translocation event in BL involving the MYC and its deregu-
lation has also been revealed by Kaymaz et al. [6], Abate et al.
[7] and Panea et al. [5] through RNA‐seq analyses. LEF1 has
been reported as a biomarker for assessing prognosis in mul-
tiple human cancers, including BL [8]. However, the following
gaps persist in the current BL biomarkers; [1] there is no
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established consensus regarding the identified biomarkers
implicated in BL progression across the various geographic
locations; [2] there is limited information about the interactions
among the identified biomarkers; and [3] there is inadequate
information on how the biomarkers compare with biomarkers
from other human cancers. The present study leverages these
gaps by analysing a pool of RNA‐seq data from different
geographical locations in Africa. This work provides a broader
picture of the genetic landscape of BL in Africa, and the
identified biomarkers could serve as a more representative
biomarker associated with BL progression. Ultimately, the
biomarkers could be further explored as potential targets for
the diagnostic and prognostic makers for management of BL.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

In this study, we downloaded and analysed RNA‐seq data
obtained from National Centre for Biotechnology Information
Short Read Archive (NCBI‐SRA) that met our set criteria of [1]
the data being generated from African patients with BL within
the last 10 years, [2] diagnosis of BL being conducted and

confirmed by two experienced oncology pathologists and [3]
data is available as paired‐end sequences. We excluded patients
with either immunodeficient BL or sporadic BL. With these
criteria, we arrived at three different sets of RNA‐seq data
generated by Abate et al. [7], Lombardo et al. [9] and Kaymaz
et al. [6]. The raw RNA‐seq data was downloaded from the
NCBI‐SRA under the Accession numbers SRP062178,
SRP099346 and SRP009316. Overall, 100 RNA‐seq data were
included in the analysis; 50 cases and 50 control groups.
Figure 1 provides an overview of the steps undertaken in this
study.

2.2 | Data pre‐processing, trimming and
alignment

The raw RNA‐seq datasets in the FASTQ format were
evaluated for gastric cancer (GC)‐content, k‐mer distribution,
sequence counts, quality scores, base quality, adaptor content
and sequence duplication levels with FastQC v0.11.8 [10].
MultiQC v1.9 [11] was used to summarise all the reports
generated by FastQC. Trimmomatic v0.39 [12] was used to
trim off adaptors, low‐quality bases and short sequences.
Sequences that passed the quality trimming stage were

F I GURE 1 A diagrammatic representation of
the various analyses performed in this study.
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mapped to the human reference genome (GRCh38) using
STAR v2.7.7a [13]. featureCounts v1.6.1 was used for gene
quantification.

2.3 | Differential expression analysis (DEA)
and gene ontology (GO) analyses

Differential expression analysis (DEA) was performed within
the R statistical tool's environment using DESeq2 under the
default settings. Genes with adjusted p‐values less than 0.05
were considered as differentially expressed between the two
conditions (cases vs. controls). Gene ontology (GO) analysis
was performed using the ShinyGO online platform [14]. GO
achieves high throughput annotation of genes based on the
biological process, molecular function, cellular component and
biological pathway analyses. Pathways and biological processes
(BP) with adjusted p values less than 0.05 were considered
statistically significant.

2.4 | Protein–protein interaction (PPI)
network

STRING [15] was used to retrieve the complex interactions
between the genes and visualised with Cytoscape [16].
MCODE [17], a Cytoscape‐based software that topologically
clusters a network to locate areas of dense connectedness was
used to identify hub genes.

2.5 | Hub genes expression in tumours and
survival analysis

The expression of the hub genes in other human cancers was
assessed using the Gene Expression Profiling Interactive
Analysis 2 (GEPIA2) online tool [18]. GEPIA2 is an

interactive resource that enables researchers to gather valuable
information from genes using gene expression data from The
Cancer Genome Atlas (TCGA) and Genotype‐Tissue
Expression (GTEx) projects. Patient survival analysis was
performed using the GEPIA2.

3 | RESULTS

3.1 | Selecting differentially expressed genes

In the present study, we analysed 100 RNA‐seq data generated
from patients with BL and geographically matched healthy
controls. Compared with the normal samples, 21,286 genes
were differentially expressed (Figure 2). Setting the fold
change threshold to �2, a total of 6314 genes were arrived
at, of which 4291 and 2023 were down‐ and up‐regulated
respectively.

3.2 | Gene ontology (GO) and pathway
enrichment analyses

We used the ShinyGO online tool to establish the GO classifi-
cations and pathways for the detected DEGs to elucidate their
functions. The GO terms were grouped as BP, molecular func-
tions (MF) and cellular components (CC), together with the
Kyoto Encyclopaedia of Genes and Genomes (KEGG) was
used to map the molecular pathways (Figure 3). The results
showed that the DEGs were primarily enriched in BP, such as
tube development (4.1 � 10−56), circulatory system develop-
ment (1.7 � 10−55), anatomical structure formation involved in
morphogenesis (2 � 10−53), cell migration (1.8 � 10−72) and
biological adhesion (2 � 10−69). The DEGs for MF were
enriched in signalling receptor binding (3.8 � 10−32), extracel-
lular matrix binding (6.5� 10−14), extracellular matrix structural
constituent (3.8 � 10−32), cytokine receptor activity

F I GURE 2 A volcano plot of the RNA seq results. In all 6314 differentially expressed genes were determined. The blue and yellow dots represent down‐
regulated and up‐regulated genes respectively. The black dots are not differentially expressed genes, and all dots below the red line are non‐significant genes.
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(2.8 � 10−13), integrin binding (1.9 � 10−16) etc. The results
from the CC analysis showed that the genes are involved in
collagen trimer (3.8 � 10−17), collagen‐containing extracellular
matrix (1.9� 10−73), extracellular matrix (1.6� 10−82), external
encapsulating structure (1.6 � 10−82), receptor complex
(6.5 � 10−28) etc. The DEGs were significantly enriched in the
following pathways; Malaria (3 � 10−11), ECM‐receptor inter-
action (2.0 � 10−14), viral protein interaction with cytokine and
cytokine receptor (4.9 � 10−16), haematopoietic cell lineage
(3.7� 10−9), protein digestion and absorption (8.8� 10−11) etc.
(Figure 3).

3.3 | PPI network analyses and module
selection

Cytoscape was used to generate the protein‐protein interaction
(PPI) network plot of all the DEGs (Figure 4a). The most

highly interconnected regions were selected using the MCODE
plugin in Cytoscape. Based on the interaction score, the
resulting PPI networks were ranked. Figure 3b shows the
network with the highest interaction score (24.92) among all
the 78 networks. It contained 25 nodes (genes) and 299 edges
(interactions). Through GO and KEGG analysis, the 25 hub
genes were found to be enriched in metalloendopeptidase ac-
tivity, extracellular matrix organisation, extracellular matrix,
Malaria etc. (Table 1).

3.4 | Hub gene verification and
co‐expression analysis

We verified the hub genes using GEPIA2 with data from the
TCGA and GTEx projects. Figure 5 depicts the levels of
expression of the individual genes within the various human
cancer types. Among the cancer types, Acute Myeloid

F I GURE 3 Gene ontology (GO) and pathway
enrichment analysis of the DEGs. (a) GO
biological process, (b) GO cellular component,
(c) GO molecular function and (d) Kyoto
Encyclopaedia of Genes and Genomes (KEGG)
pathway. The dot size represents the number of
DEGs implicated in the respective GO term. The
colour intensity represents the significance level;
red is more significant than blue.
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Leukemia and Diffuse Large B‐Cell (DLBC) lymphoma were
the closest to BL, and in both cases, there was a relatively low
expression of the hub genes.

Gene co‐expression analysis with STRING also revealed
the interactions between the hub genes (Figure 6). RNA
expression patterns and protein co‐expression values from the

F I GURE 4 Protein–protein interaction (PPI) network of the differentially expressed genes. (a) Interactions between all the 6314 genes. (b) Interactions
between the highly interconnected genes. Circles and dark lines represent genes and interactions respectively.

TABLE 1 Gene ontology and KEGG
enrichment analyses of the 25 hub genes

GO category Term ID Description Adjusted p‐value No. of genes

MF GO:0004222 Metalloendopeptidase activity 5.74 � 10−31 17

MF GO:0008237 Metallopeptidase activity 2.52 � 10−26 17

MF GO:0004175 Endopeptidase activity 5.34 � 10−20 17

MF GO:0008233 Peptidase activity 3.26 � 10−17 17

MF GO:0016787 Hydrolase activity 6.32 � 10−08 17

BP GO:0030198 Extracellular matrix organisation 6.17 � 10−20 17

BP GO:0019538 Protein metabolic process 8.15 � 10−4 20

BP GO:0045229 External encapsulating structure 6.98 � 10−20 17

BP GO:0006508 Proteolysis 6.53 � 10−12 19

BP GO:0016043 Cellular component organisation 7.5 � 10−4 21

CC GO:0031012 Extracellular matrix 2.01 � 10−24 20

CC GO:0030312 External encapsulating structure 2.09 � 10−24 20

CC GO:0005576 Extracellular region 2.25 � 10−10 23

CC GO:0071944 Cell periphery 3.14 � 10−6 22

CC GO:0005788 Endoplasmic reticulum lumen 1.10 � 10−2 5

KEGG KEGG:05144 Malaria 1.69 � 10−2 2

Abbreviations: BP, Biological process; CC, Cellular component; GO, Gene ontology; KEGG, Kyoto Encyclopaedia of
Genes and Genomes; MF, Molecular function.
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F I GURE 5 Hub gene expression in multiple human cancers. Deeper colours represent the overexpression of the respective genes. The cancer type
abbreviations can be found here: https://gdc.cancer.gov/resources‐tcga‐users/tcga‐code‐tables/tcga‐study‐abbreviations.

F I GURE 6 Co‐expression analysis of the 25
hub genes. The deeper the colour, the stronger
the association.
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ProteomeHD database were utilised to construct the confi-
dence scores used to generate the relationships. Figure 6 shows
that more than half of the genes positively interact.

3.5 | Hub gene survival analyses

The Kaplan‐Meier plotter in GEPIA2 was used to assess the
predictive significance of 25 hub genes in the PPI network.
The high and low expression of each gene was used to evaluate
the overall survival (OS) of BL patients. From Figure 7, the
overexpression of ADAMTSL4 and THBS1 was negatively
associated with OS in BL patients. Low expression of SEMA5B,
ADAMTS15, THBS2 and SPON1 was associated with a better
OS in BL patients. The rest of the 25 hub genes had no sig-
nificant correlation (adjusted p > 0.05) in patients with BL.

4 | DISCUSSION

BL is one of the leading causes of facial disfigurations and
deaths among children in sub‐Saharan Africa and North-
eastern Asia. BL has substantial socio‐economic implications

for the patients, their families, and the society. Although the
genes implicated in the progression of BL have been exten-
sively explored, research on specific prognostic, diagnostic
and therapeutic markers for BL is limited. This study is novel,
as it explores common biomarkers that could be used in the
management of BL across Africa. In the present study, we
pooled and analysed RNA‐seq data from several African BL
sequencing projects. Our objective was to delineate a com-
mon gene expression pattern for BL patients across Africa
and explore genes that can be diagnostic and prognostic
markers for BL management.

We ran the data through a standard RNA‐seq analyses
pipeline, using DESeq2 as the DEA tool. We found 6314 genes
to be significantly differentially expressed (adjusted p‐value less
than 0.05 and fold change of �2). The downregulated genes
were 4291, whereas 2023 were upregulated. Gene and pathway
enrichment analyses showed that the DEGs were primarily
implicated in tube development, signalling receptor binding,
viral protein interaction, protein‐protein digestion and cell
migration, response to external stimulus, serine hydrolase ac-
tivity and PI3K‐Akt signalling pathway. Response to external
stimulus suggests that the organism faces a condition atypical
of the normal functioning of the tissues or organs, and it is

F I GURE 7 Kaplan–Meier overall survival (OS) analysis of the most significant hub genes. The x and y axes represent the time (in months) and percent
survival, respectively. (a) ADAMTSL4, (b) SEMA5B, (c) ADAMTS15, (d) THBS2, (e) SPON1 and (f) THBS1.
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directly linked to the occurrence and progression of numerous
human diseases [19].

Deregulation of the PI3K‐Akt signalling pathway, cell
migration and serine hydrolase activity has been reported as
critical in cancer development [20, 21]. It has been established
the role of serine hydrolases in multiple physiological processes
in humans, including cancer [22], oxidative stress [23], meta-
bolism [24] and bacterial infection [25]. Shields et al. [26]
unravelled the retinoblastoma‐binding protein 9 (RBBP9) as a
tumour‐associated serine hydrolase upregulated in pancreatic
carcinomas patients. RBBP9 suppresses the activity of TGF‐β,
which is implicated in carcinogenesis [27]. TGF‐β acts as a
tumour suppressor by promoting apoptosis and inhibiting cell
cycle progression [27].

We further investigated the interactions between the
differentially expressed genes by constructing a PPI network.
Attention was paid to the network module with the highest
connectivity degree among all the resulting 78 modules from
MCODE. This module contained 25 genes and 299 in-
teractions, with a score of 24.92. GO and KEGG pathway
analyses revealed the 25 genes to be enriched in metal-
loendopeptidase activity, metallopeptidase activity, hydrolase
activity and Extracellular matrix organisation. Cheng et al.
[28] underscored membrane metalloendopeptidase (MME) as
an essential player in prostate cancer (PC) development.
MME works in tandem with PTEN, a tumour suppressor, to
control the activities of prostate progenitor cells and ulti-
mately suppress PC progression [28]. Li et al. [29] also
delineated the functions of MME in oesophageal squamous
cell carcinoma progression. The roles of peptidases in
tumourigenesis have been extensively studied by Young et al.
[30] and Arrebola et al. [31].

The survival analyses of the 25 hub genes were performed
using GEPIA2, and the genes that gave statistically significant
results were ADAMTSL4, SEMA5B, ADAMTS15, THBS2,
SPON1 and THBS1. F‐spondin 1(SPON1) forms a significant
component of the extracellular matrix protein and promotes
nerve precursor differentiation [32]. SPON1 also promotes the
growth and development of axons in the peripheral nervous
system and spinal cord [32]. Previous studies have shown that
overexpression of SPON1 was linked to poor OS in bladder
cancer patients [33], GC cohort [34] and in a PC cohort [35]. In
hepatocellular carcinoma, microRNA‐506 binds to SPON1 to
inhibit cell proliferation, migration and invasion [36]. SPON1
was found to be downregulated in colorectal cancers (CRC)
compared to healthy colorectal tissues, which was associated
with a better OS in CRC patients. SPON1 was found to be
downregulated in DLBC and upregulated in Bladder Urothelial
Carcinoma. However, the exact role of SPON1 in the devel-
opment of BL remains to be explored.

The transmembrane protein Semaphorin‐5B (SEMA5B)
belongs to a family of Semaphorins, which are known to play
significant roles in axon growth and maturation during the
development of the nervous system [37]. It regulates tumour
growth and metastasis, as well as bone metastases and
microvascular disorders [38]. SEMA5B has been demon-
strated to contribute to renal cell carcinoma (RCC)

progression [39]. The overexpression of SEMA5B has been
linked to the development and proliferation of RCC cells and
poor prognosis in gastric adenocarcinoma [40]. It has been
proposed that Mitogen‐Activated Protein Kinases signalling,
notch signalling and tumour signalling are the likely pathways
regulated by SEMA5B in GC [40].

The thrombospondin 1 (THBS1) acts within the tumour
microenvironment to stimulate tumour cell motility, regulates
antitumour immunity, inhibits angiogenesis, control tumour
growth factors and extracellular proteases [41]. Although
THBS1 is not usually mutated in most cancers, its expression is
regulated by multiple tumour suppressor genes and oncogenes,
making it a major carcinogenic player [41]. The implication of
THBS1 in human cancers is context‐dependent and has been
reported in gastric carcinomas, bladder and CRC.

Zhang et al. [42] linked the overexpression of THBS1 to
chemotherapy resistance and overall poor prognosis in patients
with GC. Prior studies have demonstrated that overexpression
of THBS1 and THBS2 leads to poor OS in GC patients and
has the potential to act as both diagnostic and prognostic
biomarkers for GC management [43]. These findings were
consistent with Deng et al.'s [44] studies in another GC cohort.

Additionally, Berger et al. [45] reported THBS2 as a po-
tential biomarker for managing pancreatic cancers. These
studies provide evidence for the implication of THBSs in
multiple human cancers. However, multiple independent
studies have associated decreased expression of THBS1 with
poor prognosis in several cancers, including GC [46], non‐
small cell lung carcinoma [47] and oral squamous cell carci-
nomas [48]. Taken together, the expression of the THBSs in
human cancers is context‐dependent and requires further
research in other cancer types.

ADAMTSs (A Disintegrin and Metalloproteinase with
Thrombospondin motifs) family of glycoproteins have been
reported in multiple BP, including angiogenesis, cell migra-
tion, carcinogenesis, arthritis and coagulation [49]. Zhao et al.
[50] showed ADAMTSL4 to be directly linked to poor
prognosis in patients with Glioblastoma Multiforme and the
expression of ADAMTSL4 to be correlated with immune
responses such as infiltration of the tumour by immune cells.
Deregulation of ADAMTSL4 has also been reported in
nasopharyngeal carcinoma [51], acute lymphoblastic
leukaemia [52] and oesophageal squamous cell carcinoma
[53]. Low expression of ADAMTS15 was demonstrated to be
associated with poor prognosis in breast carcinoma [54].
Moreover, studies by Viloria et al. [55] revealed that elevated
expression of ADAMTS15 restricted the growth, invasion
and metastasis of CRC cells. Binder et al. [56] also reported
that the overexpression of ADAMTS15 in PC patients was
directly linked with OS and consistent with findings from
Molokwu et al. [57]. These independent studies collectively
provide evidence that the expression levels of ADAMTSL4,
SEMA5B, ADAMTS15, THBS2, SPON1 and THBS1 have
the potential to serve as diagnostic and prognostic targets for
the management of BL.

This study is limited by our inability to validate the bio-
markers using molecular methods, such as quantitative
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polymerase chain reaction, Microarray and gene knockout an-
alyses. We propose further research to be conducted to ascertain
the functions of these makers in the progression of BL.

5 | CONCLUSION

By analysing gene expression data from BL transcriptome
sequencing projects, six biomarkers (ADAMTSL4, SEMA5B,
ADAMTS15, THBS2, SPON1 and THBS1) were identified as
possible indicators for diagnostic and prognostic targets for BL
management. Moreover, these genes were implicated in other
human cancers and significantly impacted patients' OS. Further
research is warranted in mouse models to elucidate the exact
roles of these genes in BL development and management.
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