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Abstract

Prior evidence suggests that sensorimotor regions play a crucial role in habit forma-

tion. Yet, whether and how their global functional network properties might contrib-

ute to a more comprehensive characterization of habit formation still remains

unclear. Capitalizing on advances in Elastic Net regression and predictive modeling,

we examined whether learning-related functional connectivity alterations distributed

across the whole brain could predict individual habit strength. Using the leave-one-

subject-out cross-validation strategy, we found that the habit strength score of the

novel unseen subjects could be successfully predicted. We further characterized the

contribution of both, individual large-scale networks and individual brain regions by

calculating their predictive weights. This highlighted the pivotal role of functional

connectivity changes involving the sensorimotor network and the cingulo–opercular

network in subject-specific habit strength prediction. These results contribute to the

understanding the neural basis of human habit formation by demonstrating the

importance of global functional network properties especially also for predicting the

observable behavioral expression of habits.
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1 | INTRODUCTION

Everyday life is full of situations that require behavioral adaptation in

order to achieve certain novel goals and further to perform fluently

and effortlessly. Initial human learning is often driven by performance

feedback signaling whether or not a pursued goal was met. Thereby,

we can incrementally learn, which actions lead to desired outcomes or

which actions serve to avoid adverse outcomes under given situa-

tional context conditions. Hence, feedback-driven learning is an effec-

tive way to establish novel goal-directed behaviors. But only more

extensive training ultimately enables us to handle everyday challenges

effortlessly. According to many theoretical accounts (Daw

et al., 2005; Dickinson, 1985; Dolan & Dayan, 2013), human behavior

is initially goal-directed involving the anticipation of future outcomes

such that a response to a certain stimulus is selected to either achieve

a rewarding outcome or to avoid a punishing outcome. With increas-

ing practice, however, behavior is assumed to become less and less

governed by outcome anticipation and instead to become more and

more purely stimulus-bound or habitual. Such habitual behavior is

assumed to be controlled directly by stimulus–response (S-R) associa-

tions, rendering our behavior much faster and less resource demand-

ing but also highly inflexible, which is adaptive in a stable

environment, but maladaptive in a changing environment

(Dickinson, 1985; Seger & Spiering, 2011). Habitual inflexibility is
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indicated by reduced sensitivity to outcome de- or re-valuation

(de Wit et al., 2012; Delorme et al., 2016; Dickinson, 1985; Ersche

et al., 2016; Niv et al., 2006). That is, if a stimulus that habitually trig-

gers a response X now requires a different response Y in order to

achieve a certain goal, then, initially, there is a perseverative tendency

to stick with response X. In contrast, if the original response X was still

under goal-directed control, it could be de-activated more flexibly by

re-coding the response-associated outcome representation from

“desirable” or “correct” to “non-desirable” or “incorrect.”
Importantly, existing research is still rather unclear about how

quickly goal-habit transition evolves (de Wit et al., 2018; Pool

et al., 2022; Seger & Spiering, 2011), and there are certainly several

modulating factors involved. Here, we made the key assumption that

interindividual differences would be a relevant factor especially with

an intermediate training duration that is long enough to ensure some

overtraining at asymptotic behavioral accuracy levels in all subjects,

but also still short enough to prevent ceiling habit levels in all

subjects.

To better understand how quickly the goal-directed behavior

transitions into habitual behavior for different individuals, and how

this might be related to interindividual differences in neural processes,

our group has previously developed a paradigm, which could not only

characterize the dynamic alterations in brain activity during training

but also help us to examine whether individual differences in training-

related activity changes could predict interindividual differences in

subject-specific habit strength after devaluation of the habitual

response outcomes (Zwosta et al., 2018). To this end, after habit train-

ing, subjects were explicitly instructed that a trained response

(e.g. R1) performed upon a given stimulus (e.g., S1) would no longer

produce the previously valid outcome (here: monetary gain or no

monetary loss). Instead, in the subsequent test phase, a given stimulus

(e.g., S1) from now on required one out of two responses (R1 or R2)

depending on which of two different outcomes (here: different color-

ings) needed to be generated. Hence, this goal-directed test phase

response could be compatible or incompatible with the previously

trained habitual response and the difference between incompatible

and compatible trials enabled us to assess how strongly the previously

trained habits interfered with the selection of goal-directed actions.

Hence, our expectation was that at the end of the training phase

(after approximately 100 trials per S-R link) some subjects would have

made considerable progress in goal-habit transition while others

would still rely more heavily on goal-directed control. Indeed, our pre-

viously published fMRI results demonstrated that the activation of

angular gyrus (AG), a sub-region of inferior parietal cortex, and a main

hub region of several brain networks (Buckner et al., 2008; Hagmann

et al., 2008; Igelstrom & Graziano, 2017; Vincent et al., 2008),

decreased significantly across training, and most importantly, stronger

activity decrease predicted stronger individual habit strength after

instructed outcome devaluation (Zwosta et al., 2018). Together with

other study results that also implicated the AG in goal-directed action

control (Desmurget et al., 2009; Liljeholm et al., 2011, 2015; Melcher

et al., 2013; Zwosta et al., 2015), this finding suggests that a less pro-

nounced activity decrease in the AG reflects a less pronounced goal-

habit transition. In other words, some subjects might still have relied

on goal-directed control (reflected by continued AG engagement)

even after around 100 training trials. In turn, consistent with this

assumption, these subjects were better able to follow the devaluation

instruction and hence showed a less pronounced goal-habit compati-

bility effect as a proxy for habit strength. At the same time, however,

we could not identify (components of) a putative habit-related brain

network to be associated with the behavioral goal-habit compatibility

effect. While we found increased training-related functional connec-

tivity between posterior putamen and premotor cortex (PMC) as a

potential indication of ongoing habit formation, which has been dem-

onstrated in both non-human (Ashby et al., 2010; Yin et al., 2004) and

human subjects (de Wit et al., 2012; Tricomi et al., 2009; Yin &

Knowlton, 2006), neither this increased connectivity nor any other

training-related activity changes in putative habit-related brain regions

were predictive of individual habit strength as measured by the goal-

habit compatibility effect (Zwosta et al., 2018).

In light of these previous findings, the primary aim of the present

examination was to advance our understanding of the goal-habit tran-

sition process by taking a more holistic approach. Specifically, we rea-

soned that the neural basis of goal-habit transition might be more

adequately characterized in terms of a widespread re-organization

and optimization of information flow across the whole brain. If this

were the case, isolated connectivity changes between individual pairs

of brain regions, for instance, between PMC and putamen might just

be a small part of a global neural re-organization process and might

therefore fail to predict individual habit strength if considered in isola-

tion. In contrast, using a multiple regression approach that considers

the multitude of brain-wide connectivity changes as a whole might be

a more adequate basis for the successful prediction of individual habit

strength than assessing each pairwise functional connectivity measure

independently in a mass-univariate manner. In fact, with the growing

popularization of large-scale network approaches in the neuroscience

field, emerging human learning research has already demonstrated

that alterations in local neural activity are accompanied by the whole

brain functional connectivity reorganization (Bassett et al., 2011,

2013, 2015; Cole et al., 2013; Mohr et al., 2016), which exhibits a sig-

nificant predictive role in subject-specific learning ability (Bassett

et al., 2011, 2013, 2015; Braun et al., 2015; Mohr et al., 2016).

Our analysis proceeded in the following steps: First, we

extracted the mean time series from the 333 cortical regions defined

in the Gordon atlas (Gordon et al., 2016) as well as 14 subcortical

regions using the Harvard-Oxford subcortical atlas and then com-

puted the learning-related functional connectivity changes among all

these sub-regions. Second, we filtered the training-induced func-

tional connectivity changes and then fed the selected features into

the Elastic Net model. Using a leave-one-subject-out cross-

validation strategy, this machine learning multiple regression

approach was employed to predict the behavioral marker of individ-

ual habit strength. Finally, to better characterize the contribution of

individual network components, we calculated the predictive

weights of each functional brain network as well as the associated

single brain regions in habit strength prediction.
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2 | MATERIALS AND METHODS

2.1 | Subjects

Data of the goal-habit learning task have been published before

with a different focus (Zwosta et al., 2018). After excluding three

subjects due to excessive head movement (see Section 2.4 for more

details) and two subjects due to abnormal behavior performance

(see Section 2.2 phase 3 for more details) from further analyses,

fMRI data of 48 subjects (27 females, 21 males; mean age:

23 years, range 19–31 years) were re-used in the current study. All

subjects were right-handed, neurologically healthy and had normal

or corrected vision including normal color vision. The experimental

protocol was approved by the Ethics Committee of the Technische

Universität Dresden. All subjects gave written informed consent

prior to taking part in the experiment and they were compensated

with 8€ per hour in addition to the money they gained during the

experiment.

2.2 | Experimental procedure

The experimental paradigm consisted of three consecutive phases

(Figure 1). During the first phase, which was performed outside of the

MRI scanner, goal-directed behavior based on hierarchical S-R-O

associations was established. During the second phase, which was

performed inside the scanner, subjects were required to learn novel

responses to gain monetary reward or to avoid monetary loss for a

subset of the stimuli already used in Phase 1. Training was continued

beyond asymptotic performance levels in order to further strengthen

habitual S-R associations by overtraining. Finally, during the third

phase, which was also performed inside the scanner, monetary

F IGURE 1 Experimental paradigm (for a detailed description, see main text). The experiment consisted of three consecutive phases. In Phase
1, goal-directed behavior was established, followed by Phase 2, which aimed at establishing habitual behavior through extensive training. In Phase
3, goal-directed responses established in Phase 1 were put into competition with responses trained in Phase 2 in order to test the individual habit
strength. (a) Examples of the instructed hierarchical stimulus–response-outcome associations used in Phase 1 and two exemplary trials from
Phase 1. (b) Exemplary trials from Phase 2. (c) Examples for compatible, incompatible, and free-choice trials in Phase 3
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outcomes associated with habitual responses putatively established in

Phase 2 were de-valuated by instruction, and habitual responding and

goal-directed actions established in Phase 1 were put into competi-

tion to measure the habit strength developed in Phase 2. The whole

experiment was controlled by E-Prime 2.0. In the current study, we

utilized and analyzed fMRI data from Phase 2 and behavioral data

from Phase 3.

Phase 1: The purpose of Phase 1 was to establish hierarchical S-

(R-O) associations where the correct response upon a given stimulus

category depended on the outcome to achieve. Hence, no stable asso-

ciations between stimuli and responses (i.e., no S-R habits) could be

learned. Ten stimuli were grouped into five “artificial” and five “natu-
ral” stimuli (natural stimuli: tree, snowflake, cow, mushroom, lungs;

artificial stimuli: scissors, computer mouse, car, cupboard, ball).

Responding to a stimulus from one group of stimuli (e.g., artificial)

with the right key led to a blue outcome color and responding with

the left key led to an orange outcome. This R-O association was

inverted for the other group of stimuli (e.g., natural), such that press-

ing the right key led to an orange outcome and pressing the left key

led to a blue outcome. Phase 1 comprised 240 trials and each trial

started with the presentation of a cue containing either the German

words for “change” or “maintain.” This word was framed by a colored

square displaying the present outcome color that was produced in the

previous trial. The subjects' task was to press the key that would

either change or maintain the current outcome color for the associ-

ated category the currently displayed stimulus belonged to. Our previ-

ously published study results demonstrated that the error rates and

response times decreased across blocks, which indicated that subjects

successfully acquired the R-O associations (Zwosta et al., 2018).

Phase 2: The purpose of phase 2 was to enable the formation of

S-R habits for a subset of the stimuli already used in Phase 1. Eight of

the 10 stimuli (four artificial and four natural stimuli) were re-used

from Phase 1. At the beginning, subjects were instructed that the cat-

egories of the stimuli were now irrelevant and that they had to find

out the correct key for each of the eight stimuli individually by trial

and error. For both categories, each of the four stimuli belonging to

one category was associated with one of the four combinations of

correct responses (left or right) and outcome types (approach or

avoidance). Subjects were also explicitly told that for four of the stim-

uli the correct response would allow them to gain points while for the

other four stimuli the correct response would allow them to avoid los-

ing points. Rewards were +10 points printed in green color, punish-

ments were �10 points printed in red and outcomes of 0 points were

printed in black. If subjects failed to execute any response during the

response window, they also received the unfavorable outcome, that

is, they lost 10 points (“�10”) in avoidance trials and gained zero

points (“0”) in approach trials. Trials in Phase 2 were clustered into

seven task blocks with 112 trials each (14 per stimulus). Hence, the

whole Phase 2 consisted of 784 trials (98 per stimulus). Our previ-

ously published study results have shown that error rates and

response times significantly decreased across blocks, F

(6,312) = 127.84, p < .001, η2 = 0.71 and F(6,312) = 122.35,

p < .001, η2 = 0.70, respectively (Zwosta et al., 2018).

Phase 3: At the beginning of Phase 3, subjects were instructed

that they could no longer gain or lose any points and thereby removed

the contingency between stimulus, response and monetary outcome

(instructed outcome devaluation). Hence, any tendency to continue to

perform the trained response established in Phase 2 should not be

motivated by aiming to gain reward or avoid loss but should be based

on habitual responding instead. Phase 3 had 384 trials and each trial

started with a fixation cross, followed by a colored frame (cue) which

was either one of the two outcome colors (blue and orange) previ-

ously introduced in phase 1, or a new third color (purple) indicating

free-choice trials. If the frame was blue or orange then subjects were

required to press the response that would lead to this particular out-

come color for the displayed stimulus according to the R-O contingen-

cies introduced in Phase 1 (goal-directed trials). If, however, the frame

was purple then subjects could freely choose one of the two

responses (free-choice trials). We were interested in two different trial

categories: (1) trials for which the trained response toward the stimu-

lus was identical to the required goal-directed response either

because it had previously been rewarded or not punished (compatible

condition, 96 trials in total). (2) Trials for which the trained response

did not match the required goal-directed response (incompatible con-

dition, 96 trials in total). The compatibility effect was considered as an

indicator of habit strength, reflecting the impact of the trained habits

on goal-directed behavior, and computed as the reaction time differ-

ence between correct incompatible and compatible trials. Since there

was no difference between approach and avoidance conditions (t

(47) = 1.0172, p = .314), we pooled compatibility effects across two

conditions in further analysis to increase the statistical power. Com-

patibility effects of two subjects were identified as abnormal values

(3 standard deviations above the mean) and hence discarded from the

predictive analysis (see Section 2.8). Data of the remaining 48 subjects

were normally distributed as assessed with d'Agostino-test (p = .722).

Paired t-test was employed to assess the statistical significance of the

compatibility effect, revealing that the reaction time in incompatible

trials (mean RT = 814.515 ± 173.3 ms) was significantly higher than

in compatible trials (mean RT = 792.141 ± 178.241 ms) with t

(47) = 4.3907 (p < .001).

2.3 | fMRI scanning

MRI data were acquired on a 3 T Siemens whole body Trio System

(Erlangen, Germany) equipped with a 32-channel head coil. Ear plugs

dampened scanner noise. Structural images were acquired using a

T1-weighted sequence (TR = 1900 ms, TE = 2.26 ms, T1 = 900 ms,

flip = 9�) with a resolution of 1 mm � 1 mm � 1 mm. Functional

images were acquired using a gradient echo planar sequence

(TR = 2000 ms, TE = 30 ms, flip angle = 80�). Each volume contained

32 slices that were measured in ascending order. The voxel size was

4 � mm � 4 mm 4 � mm (gap: 20%). Only the fMRI data of experi-

mental Phase 2 (goal-habit transition) were analyzed. Data of Phase

3 (goal-habit competition) were only used to compute the behavioral

index of habit strength.
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2.4 | fMRI preprocessing

Data preprocessing was performed with SPM12 running in Matlab

9.5. The initial three volumes were discarded to allow for the steady-

state of the signal.

In order to assess the goal-habit transition during learning, the

time series were cut into three parts (block1 and block2; block3,

block4, and block5; block6 and block7) before preprocessing. The

“early” learning phase (block1 and block2) and the “late” learning

phase (block6 and block7) were utilized for further analysis. Prepro-

cessing steps described below were applied to the early and late

learning phase data independently (data of early and late phases were

registered to their own first time point, respectively). Previous

research has shown that even small amounts of head movements can

substantially influence estimates of functional connectivity (Power

et al., 2012, 2014; Van Dijk et al., 2012; Yan et al., 2013). In this study,

frame-wise displacement over 0.2 mm was computed to identify spike

events. Three subjects were excluded from further analyses since

more than 20% of fMRI data samples in either the early or late learn-

ing phase were diagnosed as spike events.

Slice timing correction and motion correction were conducted.

T1-weighted images were co-registered to the mean functional

images and segmented into gray matter (GM), white matter (WM),

and cerebrospinal fluid (CSF). All functional images were then spatially

normalized to the standard MNI space via the deformation fields

derived from the tissue segmentation of the structural image (resam-

pling to 3 mm resolution). SPM's a priori tissue probability maps

(empirical thresholds: 90% for WM mask and 70% for CSF mask) were

employed to create the average signals of WM and CSF, respectively

(Yan et al., 2016).

After normalization, a general linear model (GLM) was run in

order to regress out several nuisance variables. Several regressors

were included in order to reduce the effects of motion and other

noise confounds according to previous recommendations espe-

cially in the context of functional connectivity analyses (Geerligs

et al., 2016). This included the original six motion parameters,

average signals in WM, CSF masks, and their expansions. The

expansions included the first-order temporal derivative, as well as

their squares and squared derivatives. In addition, recent studies

demonstrated that the global signal may represent an important

confound in the search for individualized task-specific changes in

functional connectivity analysis (Greene et al., 2018; Jangraw

et al., 2018), which could substantially decrease the predictive

model performance (Jangraw et al., 2018). Therefore, we also

included the whole brain signal as a nuisance regressor in the

GLM as suggested by previous research aiming to predict behav-

ioral measures based on functional connectivity information (Cui

et al., 2020; Cui & Gong, 2018; Dubois, Galdi, Han, et al., 2018;

Dubois, Galdi, Paul, et al. 2018; Rosenberg et al., 2018; Rosen-

berg, Finn, et al., 2016; Rosenberg, Zhang, et al., 2016). In total,

signal associated with 33 nuisance variables were regressed out

through the GLM. Finally, the residual time series were spatially

smoothed (6 mm FWHM).

2.5 | Task-activation regression for task-based
functional connectivity

Previous research has shown that regressing out average task-related

activity can reduce the spurious correlations between different brain

regions (Cole et al., 2019), which can also improve the test–retest reli-

ability in task-based functional connectivity analyses (Cao

et al., 2014). We performed the single-subject GLM analysis to obtain

the residual time series, which were then used for further functional

connectivity computation. Learning trials were assigned to one of

three categories: correct approach or avoidance and error trials. To

appropriately capture BOLD activation, we used Fourier basis set

regressors including 14 different sine-wave regressors spanning 30 s,

which were time-locked to the onset of the learning trials (Cole

et al., 2019). After that, breaks between task blocks were also

included as regressors with an additional GLM, the break-related

regressors were based on the standard hemodynamic response func-

tion of SPM12 and convolved with the duration of breaks which var-

ied considerably. With each subject-specific GLM, the high-pass filter

was set to a cutoff of 128 s in SPM12 and estimated with ordinary

least squares (i.e., AR (1) off).

2.6 | Brain parcellation

The preprocessed time series were extracted from 347 predefined

regions of interest (ROIs), including 333 cortical parcels (161 and

162 regions from the left and right hemispheres, respectively) associ-

ated with different functional networks as defined in the Gordon atlas

(see Figure 2, cf. Van Essen et al., 2017). In addition, in order to ensure

whole-brain coverage, as in previous study (Shine et al., 2016), we also

included 14 additional subcortical regions from the Harvard-Oxford

subcortical atlas including bilateral thalamus, caudate, putamen, glo-

bus pallidus, hippocampus, amygdala, and ventral striatum.

2.7 | Functional connectivity

Early and late task-related functional connectivity (FC) were estimated

for each pairwise combination of the 347 ROIs (60,031 pairs in total)

after averaging the signals across all voxels within each ROI. We then

further calculated the changes in FC between the late and early learn-

ing phase (ΔFCs) among each pair of ROIs.

2.8 | Predictive modeling based on ΔFCs

We investigated the functional brain networks as well as the brain

regions, whose connectivity changes contributed significantly to pre-

dicting the later behavioral habit strength. In the present study, habit

strength was probed by a behavioral index that measures how

strongly a newly acquired habit impacts the execution of goal-directed

actions (habit-incompatible vs. compatible) after instructed
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devaluation of the habitual response outcomes in Phase 3. The con-

nectivity changes, 60,031 features here, were used as the input

feature-space, which leads to a large P—small N setting. We first used

a univariate feature filtering approach to reduce the number of fea-

tures and then entered the selected ΔFC-features into the Elastic Net

model (Zou & Hastie, 2005) for individual habit strength prediction.

Finally, we summed the absolute predictive weights across all features

from each functional brain network as well as each single brain region,

and investigated which network or brain region contributed most dur-

ing the habit strength prediction.

2.8.1 | Feature selection

Due to our relatively small sample size (N = 48) and to obtain the

highest possible estimates of regression accuracy, feature selection

was performed using leave-one-subject-out cross-validation (LOOCV)

(Lin et al., 2018; Plitt et al., 2015; Rosenberg et al., 2018; Rosenberg,

Finn, et al., 2016). We set aside ΔFCs and behavioral data from one

subject (novel left-out test subject) and performed the univariate

Pearson correlation between each single ΔFC-feature and habit

strength across the remaining 47 subjects. We discarded ΔFC-

features for which the p value of the correlation with the behavioral

score was greater than either .01 or .05 (Dubois, Galdi, Han,

et al., 2018; Dubois, Galdi, Paul, et al., 2018; Greene et al., 2018;

Kwak et al., 2021; Rosenberg et al., 2018). We also discarded ΔFC-

features that correlated with head motion (see Section 2.9 for more

details) (Rosenberg et al., 2018). This process was repeated 48 times

each time with another subject left out of the training set, and the

following predictive model training and testing were performed based

on each LOOCV fold, as described next.

2.8.2 | Predictive model training and testing

Elastic Net regression modeling was applied here to predict novel indi-

vidual habit strength based on ΔFCs across training. Although ridge

regression normally shrinks coefficient values, it still keeps all the fea-

tures and cannot produce a more parsimonious model. In contrast,

lasso regression can create a sparse design matrix by setting coeffi-

cient values to exactly zero (Zou & Hastie, 2005). Here, we applied

Elastic Net, which could select the optimal hyperparameter α (repre-

senting the weight of lasso vs. ridge optimization, with intermediate

values representing Elastic Net optimization). The sparsity of the

model can potentially be optimized to further maximize the accuracy

of the predictive model, thereby avoiding any a-priory assumptions

about the sparsity of the discriminative ground truth. For

N observation pairs (xi, yi), Elastic Net solves the penalized residual

sum of squares based on the user-defined α parameter, which is a

compromise between ridge and lasso that ranges from 0 to 1. Note

that it becomes the lasso when α = 1 and the ridge regression when

α = 0. The loss function of the Elastic Net is:

min
β0, βð Þ � ℝpþ1

1
2N

XN
i¼1

yi�β0�xTi β
� �2þ λPa βð Þ

" #
ð1Þ

Pa βð Þ¼ 1�að Þ1
2

βk k2ℓ2
þα βk kℓ1 ð2Þ

F IGURE 2 A diagram of the
Gordon parcellation and how it is
related to different large-scale
functional networks (Gordon
et al., 2016). Source: The figure
was obtained from the website of
the Brain Analysis Library of
Spatial maps and Atlases (Van
Essen et al., 2017)
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¼
Xp
j¼1

1
2

1�að Þβ2j þαjβjj
� �

ð3Þ

where λ is the tuning regularization parameter and Pa is the elastic-net

penalty.

To investigate the optimal sparsity of the predictive model, we

specified a set of α parameters which varied over 101 grid values ([0,

0.01, 0.02, …, 1]). The grid range of the regularization parameter λ

with maximally 100 values was generated based on the coordinate

descent algorithm implemented in the glmnet package (http://hastie.

su.domains/glmnet_matlab/). To achieve unbiased estimates, nested

three-fold cross-validation (Kwak et al., 2021; Mumford et al., 2012;

Plitt et al., 2015) was applied to select the optimal λ parameter. That

is, for each LOOCV-fold comprising data of 47 subjects the dataset

was randomly split into three similarly sized groups of which two

were used for training while the remaining split of data was held

back and used for assessing the performance of the prediction, thus

optimizing the hyperparameters λ for each single individual α param-

eter. This whole procedure was repeated 100 times since the folds

were selected at random, and the optimal combination of alpha and

λ with the smallest average value of mean absolute error (MAE)

across the 100 cross-validation runs was then obtained by the left-

out testing subject. We repeated this procedure so that each subject

was left out of the training set once and measured the models' pre-

dictive power by correlating the predicted and observed habit

strength, controlling for motion (see Section 2.9). The significance of

the correlation coefficient was determined using permutation tests

within which each subject's actual habit strength was randomly per-

muted, and the same cross-validation described above was per-

formed after each permutation. We performed 10,000 permutations

to establish the empirical distribution of chance. The Elastic Net pre-

dictive analysis described above was performed using glmnet pack-

age in Matlab and analysis code is available here: https://github.

com/xiaoyu-TUD/Elastic-Net.

2.8.3 | Predictive contribution of functional
networks and single brain regions

In a final analysis step, we aimed to characterize the contribution of

connectivity changes regarding specific brain networks and single

brain regions for habit strength prediction. Since both, initial features

selection and predictive model training and testing were defined using

LOOCV, there were as many different models (48 unique models

here) as there were rounds of cross-validation, each coming with a dif-

ferent set of selected features. To create a consistent set of features,

we retained the features that were present in every round of cross-

validation (Rosenberg et al., 2018; Rosenberg, Finn, et al., 2016).

These common features were then used for characterizing the predic-

tive contribution of brain networks and regions.

We then assigned the common predictive features to the associ-

ated brain network pairs (13 � 12/2 = 78 pairs among 13 functional

brain networks) and summed all the absolute predictive weights of

each network pair for each LOOCV fold separately. The averaged

summed value of each network pair across LOOCV folds was finally

obtained. Thereafter, to investigate the predictive role of each single

brain region, we summed the absolute predictive weights across all

features from each single brain region for each LOOCV fold sepa-

rately. One sample t-test based on the LOOCV-wise predictive brain

maps was calculated and corrected for multiple comparison using

FWE. The contribution of each single region for habit strength predic-

tion was thereby expressed as the t-value.

2.9 | Head motion control

Since even small head motion can confound functional connectivity

analyses, after regressing out head motion parameters, global signal,

and excluding subjects showing large head motion (see Section 2.4 for

details), we applied three different additional strategies to ensure that

motion does not account for our current findings (Rosenberg

et al., 2018; Rosenberg, Finn, et al., 2016).

First, we investigated whether the mean frame-wise displacement

during learning was correlated with both, the observed and the pre-

dicted habit strength score. Second, we correlated each single ΔFC-

feature with mean frame-wise displacement across subjects using

Spearman's correlation before features selection, and excluded any

features that were significantly (as in previous studies, p value = .05)

correlated with motion across subjects (Rosenberg et al., 2018).

Finally, we evaluated model prediction performance with partial corre-

lations between observed and predicted habit strength, controlling for

mean frame-wise displacement.

3 | RESULTS

3.1 | Habit strength prediction

After univariate feature selection and head motion-related feature

reduction, predictive models trained on ΔFCs revealed that correla-

tions between the predicted and observed behavioral habit strength

r were significantly different from chance when using partial correla-

tions, controlling for head motion, for both p < .01 feature selection

threshold (r = .539, pperm < .001) and p < .05 feature selection

threshold (r = .547, pperm < .001) (Figure 3). The additional head

motion check demonstrated that the mean frame-wise displacement

parameters did not correlate with both the observed (r = .092,

p = .532) and predicted habit strength for both p < .01 (r = .102,

p = .492) and p < .05 threshold (r = .113, p = .447). Since there was

no significant improvement when considering more ΔFC-features

for novel individualized habit strength prediction; in the following

analysis, we therefore decided to apply the stricter threshold

(p < .01) to exploit the contribution of connectivity changes from the

functional brain networks and each single region in habit strength

prediction.

WANG ET AL. 1571

http://hastie.su.domains/glmnet_matlab/
http://hastie.su.domains/glmnet_matlab/
https://github.com/xiaoyu-TUD/Elastic-Net
https://github.com/xiaoyu-TUD/Elastic-Net


3.2 | Predictive brain functional networks

The optimal α parameter of Elastic Net equaled 0.99 and 115 com-

mon ΔFC-features from 48 unique models were finally obtained,

which implied a model primarily determined by LASSO regression.

Those ΔFC-features were distributed into 134 different brain

regions. We grouped and summed the absolute predictive weights

of those features into their belonging functional brain networks

based on Gordon et al. (2016) and further characterized the ΔFC-

features contribution. As shown in Figure 4, ΔFCs from the sensori-

motor network account for the largest proportion of predictive

weights (14.64% of overall summed predictive weights) among the

13 networks, with the majority of ΔFC-links between the sensori-

motor network and the cingulo-opercular network (5.14%), fol-

lowed by the ΔFC-links between the sensorimotor network and the

dorsal attention network (5.10%), and ΔFC-links within the sensori-

motor network (3.25%). In addition, while ΔFCs from the visual and

subcortical networks each account for 8.96% and 9.81% predictive

weights, respectively, the ΔFC-links between the visual and sub-

cortical networks alone account for a quite large proportion of

7.28% predictive weights of the overall 115 ΔFC-features

suggesting a quite dominant contribution of this particular network

connection.

3.3 | Predictive brain mapping

In order to characterize the contribution of individual sub-regions

associated with each predictive functional network in greater detail,

the absolute predictive weights were summed across all features from

each single region and then mapped into each LOOCV fold. One sam-

ple t-tests revealed the brain regions1 surviving FWE multiple compar-

ison correction (Figure 5). The most strongly contributing brain region

was located within the right fusiform gyrus, which belongs to the

visual network. In addition, a region within the left middle occipital

lobule bordering the inferior parietal lobule (belonging to the dorsal

attention network) also demonstrated a significant role for predicting

habit strength. Strikingly large t-values were also found for regions

belonging to the cingulo–opercular network, such as the left precen-

tral area and the anterior cingulate cortex (among other significant

F IGURE 3 Partial correlations between the observed habit strength and habit strength predicted by learning-related ΔFCs, controlling for
head motion. ΔFC-features were selected based on univariate Pearson correlation between habit strength and ΔFCs with p < .01 (a) or .05 (b)

1Individual brain regions were named based on the automatic anatomical labeling atlas (AAL).
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regions within the opercular part of the cingulo–opercular network),

as well as the right somatosensory area belonging to the sensorimotor

network. The precuneus that is associated with the default mode net-

work also played a significant predictive role. Finally, for the subcorti-

cal areas, only left caudate contributed significantly to habit strength

prediction.

We finally performed an additional post hoc examination to iden-

tify specific ΔFC-links that contributed most strongly to the habit

strength prediction. Here, the individual regions with a t-value higher

than 20 (accounting for 42.22% predictive weights among all 115 fea-

tures) were considered important and used for the post hoc examina-

tion. Note that excluding links with t < 20 was meant to highlight only

the most reliable effects. As shown in Figure 6, the ΔFC between right

fusiform and left caudate contributed most (mean = 0.184 ± 0.051),

followed by the left middle occipital lobule and right postcentral area

(mean = 0.138 ± 0.036). The ΔFC between left precentral area and

right postcentral area (mean = 0.129 ± 0.036), and between left ante-

rior cingulate cortex and right precuneus (mean = 0.0867 ± 0.025)

also demonstrated an especially significant role in habit strength

prediction.

4 | DISCUSSION

Here, we examined whether individual habit strength could be pre-

dicted by whole-brain FC changes during the transition from initially

goal-directed to more habitual action. We first computed the pairwise

FC changes (ΔFC) among 347 anatomically defined brain regions

during learning. By entering selected ΔFC features into Elastic Net

regression embedded within a LOOCV scheme, we could successfully

predict the habit strength score of individual subjects. This basic result

crucially demonstrates that global learning-related changes in large-

scale functional connectivity are indeed associated with interindivi-

dual differences in acquired habit strength.

We further quantified the obtained predictive regression weights

to identify the most relevant functional brain networks and their asso-

ciated brain regions. Overall, we found widespread functional network

changes contributing to the successful prediction of individual habit

strength. Conceptually of outstanding importance, however, is the

dominant role of regions from sensorimotor and cingulo–opercular

networks (see especially Figure 4), as discussed next.

The significant predictive role of FC changes from the sensorimo-

tor network (SMN) in habit strength prediction further highlights the

often-assumed pivotal role of primary sensorimotor processes in habit

formation as suggested by both human and nonhumans studies

(Ashby et al., 2010; Bassett et al., 2015; Graybiel, 2008; Jahanshahi

et al., 2015; Seger, 2018; Sidarta et al., 2016; Thorn et al., 2010;

Vahdat et al., 2014; Wolfensteller & Ruge, 2012).

The predictive contribution of the SMN also comprised a strong

SMN-CON component and there were additional widespread CON-

related predictive connectivity changes. Together, this is consistent

with previous reports of CON involvement in downstream (sensori-

motor) output control (Dosenbach et al., 2006; Mohr et al., 2016;

Newbold et al., 2021; Wallis et al., 2015). As can be seen in Figure 5,

a number of opercular sub-regions of the CON were also involved

but associated with overall smaller predictive weights and, to our

F IGURE 4 Predictive weights
associated with 115 common ΔFC-
features selected by Elastic Net were
summed and grouped into 13 different
networks. Color bar and circle size
denoted the summed predictive weights
of ΔFC-features either within or between
different brain networks
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knowledge, a less clear-cut functional role in sensorimotor control

(but see, Ruge & Wolfensteller, 2010). Interestingly, the strongest

CON-related contributions were from the precentral gyrus (more

specifically from premotor cortex; PMC), and the dorsal anterior cin-

gulate cortex (dACC). The functional role of precentral gyrus/PMC

regarding habit-predictive connectivity changes is consistent with

previously reported changes in local activation levels, both in the

present paradigm (Zwosta et al., 2018) but also in other studies

involving stimulus–response learning on various timescales (Ruge &

Wolfensteller, 2010; Tschentscher et al., 2012; Wallis &

Miller, 2003). Together, learning-related changes in local brain acti-

vation and functional connectivity, demonstrate the crucial role of

the PMC for habit formation while transitioning from goal-directed

to habitual action control. Also, the present involvement of the

dACC as part of the cingulo–opercular network, is consistent with

previously reported changes in local activation levels. Specifically,

previous studies have shown that local dACC activation decreased

significantly across S-R learning (Hampshire et al., 2016; Milham

et al., 2003; Ruge & Wolfensteller, 2013; Sliwinska et al., 2017;

Zwosta et al., 2018), which might suggest a particularly dominant

role early in performance monitoring gradually fading out with pro-

gressing automatization (Noonan et al., 2011; Ruge &

Wolfensteller, 2013; Walton et al., 2004).

Remarkably, connectivity changes involving the subcortical puta-

men were not relevant for habit strength prediction. This suggests

that habit-strength, at least as assessed in the present study, is solely

F IGURE 5 One sample t-test of the summed absolute predictive weights across LOOCV folds after FWE multiple comparison correction
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mediated by cortico-cortical plasticity already at an intermediate stage

of automatization (compare Ashby et al., 2010).

As elaborated already in the Introduction, the previous analysis of

training-related local activity changes strongly suggested a prominent

role of the angular gyrus (AG) of the inferior parietal lobe for predict-

ing habit strength (Zwosta et al., 2018). Given a putative role of AG in

goal-directed action rather than habitual action, this previous finding

highlighted the relevance of a decreasing engagement of goal-directed

action control during learning for the subsequent expression of habit-

ual tendencies after devaluation. However, in terms of connectivity

changes, the present analysis highlights a prominent predictive role of

the sensorimotor together with motor-related CON regions. Together,

this suggests that for predicting later habit strength, it is relevant to

consider training-related neural changes both in the goal-directed sys-

tem (AG activity) and in the sensorimotor system together with

the CON.

There are several potential limitations of the current study that

should be noted. First, the current study lacks an additional external

sample for establishing out-of-sample validity. Previous studies that

predominantly focused on the unbiased prediction of behavior, addi-

tionally tested the performance of the internal predictive model using

an independent external sample collected by different centers/

scanning sites (Kwak et al., 2021; Rosenberg, Finn, et al., 2016; Spisak

et al., 2020). However, compared with those studies, the current

study emphasizes the predictive weights of connectivity changes from

different functional brain networks and also the specific region associ-

ated with each network during the habit strength predictions. For this

reason, we believe that this limitation might not necessarily affect our

conclusions about which regions' connectivity changes contribute

most during habit strength predictive analysis, though it will be desir-

able to obtain the additional external validation for the unbiased pre-

dictive performance in future research.

Second, while the current study focused on predicting individual

differences in habit strength, it is mostly unknown whether this mea-

sure is trait-like—that is, stable and reliable over time within individ-

uals. This would be important to establish in future studies as the

theoretical maximum of predictive power is the reliability of the to-

be-predicted behavioral measure.

5 | CONCLUSION AND OUTLOOK

The current study demonstrates the crucial role of functional connec-

tivity changes associated with the sensorimotor network and the

cingulo–opercular network in habit strength prediction. We therefore

argue that these networks can be considered playing an important

role during goal-habit transition. While we failed to demonstrate a

predictive role of connectivity changes associated with the angular

gyrus (as a putative part of the goal-directed network), previously

reported study results showed that habit strength could be predicted

based on learning-related local activity changes in the angular gyrus.

Since some of the most relevant regions within the sensorimotor and

the cingulo–opercular networks and also the angular gyrus are located

superficially in the human brain, they could easily be reached by non-

invasive brain stimulation techniques such as transcranial magnetic

stimulation. We consider this a promising direction for future research

to examine the potential causal role of those regions in human goal-

habit transition.

F IGURE 6 Visualization of
specific ΔFCs that contributed
most strongly to habit strength
prediction (note that we excluded
other significant, yet less strongly
contributing ΔFCs in order to
avoid an overly complex figure).
Widths of ribbons are
proportional to the predictive

weights of the ΔFCs. Individual
brain regions are named
according to the AAL atlas
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