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Abstract: A wide variety of bacteria, fungi and plants can produce bioactive secondary metabolites,
which are often referred to as natural products. With the rapid development of DNA sequencing
technology and bioinformatics, a large number of putative biosynthetic gene clusters have been
reported. However, only a limited number of natural products have been discovered, as most biosyn-
thetic gene clusters are not expressed or are expressed at extremely low levels under conventional
laboratory conditions. With the rapid development of synthetic biology, advanced genome mining
and engineering strategies have been reported and they provide new opportunities for discovery of
natural products. This review discusses advances in recent years that can accelerate the design, build,
test, and learn (DBTL) cycle of natural product discovery, and prospects trends and key challenges
for future research directions.

Keywords: natural products; biosynthetic gene clusters; synthetic biology; genome mining and
engineering strategies; design-build-test-learn (DBTL) cycle

1. Introduction

Natural products (NPs) derived from secondary metabolites of bacteria, fungi and
plants have played an important role in traditional drug development. Since the discovery
of penicillin and its widespread use as an anti-infective drug, the research and development
of NP-derived drugs has opened a rich chapter in the history of human health. NPs and
their semi-synthetic derivatives have been playing a crucial role in clinical medicine as
antibacterial, antifungal, antiviral, immunosuppressants and enzyme inhibitors [1]. In
addition, they are also widely used in agriculture as herbicides, insecticides and fungi-
cides [2]. However, since the 21st century more and more pathogenic bacteria have become
drug-resistant, and there is an urgent need to discover NPs with new structures and new
biological activities [3].

Traditional NPs discovery strategies, either through chemical synthesis or direct
extraction from native hosts, have been successful and discovered many compounds.
However, since the 1960s, after a short 10-year golden age, the NP discovery has faced
many challenges. A large number of known compounds have been repeatedly discovered.
Moreover, traditional methods are inefficient and mostly low-throughput, and could not
reach the discovery speed of putative biosynthetic gene clusters (BGCs). Another related
challenge is that most BGCs are silent or weakly expressed under laboratory conditions [4],
that will increase the discovery cost, mainly on product extraction and detection [5]. Thus,
it is urgent to develop new design, build, test strategies that can allow efficient expression
and detection of novel NPs.

With the advances of sequencing technology and bioinformatics analysis, a large
amount of genome sequence data and putative BGCs have accumulated in public databases.
For example, each fungal genome contains 50–90 NP BGCs, which means that these
microorganisms have the ability to synthesize 50–90 kinds of NPs [6]. However, the actual
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number of identified NPs in each genome is far from being exploited. Meanwhile, the
gap between the number of predicted BGCs and the identified NPs is still increasing. The
rapid development of synthetic biology, including advances in Design-Build-Test-Learn
(DBTL) technologies, have greatly enabled mining of novel NPs. The DBTL cycle includes
the design of the initial strains or the establishment of a preliminary model system to
achieve the determined engineering goals, the construction of the strains, the testing of
their outcomes and the understanding of which engineering strategy is effective and why,
as well as the incorporation of the learned knowledge into the decision of the subsequent
DBTL cycle (Figure 1). Based on the iterative application of the DBTL cycle, academic and
industrial biofoundries have been developed to boost the next wave of NP discovery [7].
Here, we discuss recent developments of synthetic biology methods in the design, build,
test and learning steps of NP discovery.

Figure 1. The design–build–test–learn (DBTL) cycle for natural product discovery. Key aspects of each phase of the
design–build–test–learn cycle are presented.
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2. The Design Stage for Natural Product Discovery

In the design stage, it is particularly important to identify genes involved in the syn-
thesis of NPs. A number of databases have been established, including virtualized Registry
of Standard Biological Parts (http://parts.igem.org/Main_Page) (accessed on 1 July 2021)
that provides a platform for storage, exchange and retrieval of “component” information,
KEGG, MetaCyc and BRENDA that store information on known metabolic reactions [8–10].
However, many genes involved in the synthesis of NPs are still unknown. Recently de-
veloped computational biology techniques provide abundant data and advanced tools for
identifying target genes [11] (Table 1).

Table 1. Tools for natural product pathway discovery, prediction and analysis.

Name Description Web Address

Cluster mining tools

antiSMASH
Web application to mine and analyze bacterial

and fungal genome for secondary
metabolite BGCs

https://antismash.secondarymetabolites.org
(accessed on 5 July 2021)

Mibig 2.0
A robust community standard for annotation

of metadata on BGCs and their
molecular products

https://mibig.secondarymetabolites.org/
(accessed on 5 July 2021)

ClusterCAD
A database and web-based toolkit to harness

the potential of type I modular polyketide
synthases for combinatorial biosynthesis

https://clustercad.jbei.org/
(accessed on 5 July 2021)

PRISM 3 Web for prediction of genetically encoded
NRPs and PKs

http://magarveylab.ca/prism/
(accessed on 5 July 2021)

RODEO
Algorithm developed to identify ribosomally
synthesized and post-translationally modified

peptide BGCs

http://www.ripprodeo.org
(accessed on 7 July 2021)

Bagel2 Annotation of putative bacteriocins and
antibiotics from genomic DNA

http://bagel2.molgenrug.nl/
(accessed on 7 July 2021)

CLUSEAN Identification of domains and prediction of
specificities for PKS and NRPS genes

https://bitbucket.org/tilmweber/clusean
(accessed on 7 July 2021)

SBSPKS
Structural modeling of PKS modules and

identification of key residues in the interfaces
between modular PKS subunits

http://www.nii.ac.in/sbspks.html
(accessed on 10 July 2021)

SMURF
Annotation of PKS, NRPS, NRPS-PKS hybrid,
indole alkoloid and terpene BGCs from fungal

genomic DNA

http://jcvi.org/smurf/index.Php
(accessed on 10 July 2021)

2metDB A tool offers the possibility to identify PKS and
NRPS BGCs

http://secmetdb.sourceforge.net/
(accessed on 10 July 2021)

ClusterFinder A tool to detect putative BGCs in genomic and
metagenomic data

https://github.com/petercim/ClusterFinder
(accessed on 10 July 2021)

eSNaPD A tool to survey BGCs diversity in
metagenomic DNA sequences

http://esnapd2.rockefeller.edu/
(accessed on 10 July 2021)

EvoMining Web for phylogenomics to identify BGCs
http://148.247.230.39/newevomining/new/

evomining_web/index.html
(accessed on 13 July 2021)

MIDDAS-M A tool that uses genome and transcriptome
data to identify BGCs in fungal genomes

http://133.242.13.217/MIDDAS-M/
(accessed on 13 July 2021)

MIPS-CG Web application to identify BGCs with
genome data

http://www.fung-metb.net/
(accessed on 13 July 2021)

http://parts.igem.org/Main_Page
https://antismash.secondarymetabolites.org
https://mibig.secondarymetabolites.org/
https://clustercad.jbei.org/
http://magarveylab.ca/prism/
http://www.ripprodeo.org
http://bagel2.molgenrug.nl/
https://bitbucket.org/tilmweber/clusean
http://www.nii.ac.in/sbspks.html
http://jcvi.org/smurf/index.Php
http://secmetdb.sourceforge.net/
https://github.com/petercim/ClusterFinder
http://esnapd2.rockefeller.edu/
http://148.247.230.39/newevomining/new/evomining_web/index.html
http://148.247.230.39/newevomining/new/evomining_web/index.html
http://133.242.13.217/MIDDAS-M/
http://www.fung-metb.net/
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Table 1. Cont.

Name Description Web Address

IMG-ABC
Database of experimentally verified and

predicted BGCs across 40,000 isolated
microbial genomes

https://img.jgi.doe.gov/abc/
(accessed on 13 July 2021)

NaPDoS Web for offering analysis of PKS/NRPS http://napdos.ucsd.edu/
(accessed on 15 July 2021)

PKS/NRPS analytic tools

NP.searcher Web application to identify PKS and
NRPS BGCs

http://dna.sherman.lsi.umich.edu
(accessed on 15 July 2021)

ClustScan Web accessible database for PKS/NRPS BGCs http://csdb.bioserv.pbf.hr/csdb/
ClustScanWeb.html (accessed on 19 July 2021)

GNP Web application to identify BGCs (mainly
PKS/NRPS)

http://magarveylab.ca/gnp/
(accessed on 19 July 2021)

NRPS-PKS Web application to identify PKS BGCs http://www.nii.res.in/nrps-pks.html
(accessed on 19 July 2021)

Specificity predictors for
NRPS or PKS

NRPS/PKS
substrate predictor Web for predicting A-domain or AT-domain http://www.cmbi.ru.nl/NRPS-PKS-

substrate-predictor/ (accessed on 21 July 2021)

LSI-based A-domain
function predictor Web for predicting A-domain

http://bioserv7.bioinfo.pbf.hr/LSIpredictor/
AdomainPrediction.jsp

(accessed on 21 July 2021)

NRPSsp Web for predicting A-domain http://www.nrpssp.com/
(accessed on 21 July 2021)

ASMPKS Web for identification of PKS genes from
genomic DNA

http://gate.smallsoft.co.kr:8008/pks/
(accessed on 21 July 2021)

PKS/NRPS Web
Server/Predictive Blast Server Web for predicting A-domain specificities http://nrps.igs.umaryland.edu/nrps/

(accessed on 21 July 2021)

Compounds databases

ChEBI A database and ontology of chemical
compounds focusing on small molecules

https://www.ebi.ac.uk/chebi/
(accessed on 21 July 2021)

ChEMBL A database providing information on bioactive
molecules with drug-like properties

https://www.ebi.ac.uk/chembl/
(accessed on 21 July 2021)

ChemSpider
A database providing information on

structures and properties of over
35 million structures

http://www.chemspider.com/
(accessed on 21 July 2021)

KNApSAcK database
A database on compound information of more

than 50,000 natural products of plants
and microorganisms

http://kanaya.aist-nara.ac.jp/KNApSAcK/
(accessed on 21 July 2021)

PubChem A database contains synthetic compounds as
well as natural products

http://pubchem.ncbi.nlm.nih.gov/
(accessed on 21 July 2021)

Metabolomics tools

GNPS Web for analyzing mass spectrometry
(MS)/MS data

http://gnps.ucsd.edu/
(accessed on 21 July 2021)

GNP/iSNAP Web application to automatically identify
metabolites in MS/MS data

http://magarveylab.ca/gnp/
(accessed on 21 July 2021)

NRPquest Web for correlating NRP data with
gene clusters

http://cyclo.ucsd.edu
(accessed on 21 July 2021)

Pep2Path
Web for correlating peptide sequence tags with

NRP and post-translationally modified
peptide BGCs

http://pep2path.sourceforge.net
(accessed on 21 July 2021)

https://img.jgi.doe.gov/abc/
http://napdos.ucsd.edu/
http://dna.sherman.lsi.umich.edu
http://csdb.bioserv.pbf.hr/csdb/ClustScanWeb.html
http://csdb.bioserv.pbf.hr/csdb/ClustScanWeb.html
http://magarveylab.ca/gnp/
http://www.nii.res.in/nrps-pks.html
http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/
http://www.cmbi.ru.nl/NRPS-PKS-substrate-predictor/
http://bioserv7.bioinfo.pbf.hr/LSIpredictor/AdomainPrediction.jsp
http://bioserv7.bioinfo.pbf.hr/LSIpredictor/AdomainPrediction.jsp
http://www.nrpssp.com/
http://gate.smallsoft.co.kr:8008/pks/
http://nrps.igs.umaryland.edu/nrps/
https://www.ebi.ac.uk/chebi/
https://www.ebi.ac.uk/chembl/
http://www.chemspider.com/
http://kanaya.aist-nara.ac.jp/KNApSAcK/
http://pubchem.ncbi.nlm.nih.gov/
http://gnps.ucsd.edu/
http://magarveylab.ca/gnp/
http://cyclo.ucsd.edu
http://pep2path.sourceforge.net
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With the rapid development of gene sequencing and engineering technologies such
as molecular biology and genetics, new research ideas and approaches have been applied
for NP discovery. The continuous reduction of sequencing costs has made it more and
more convenient to obtain genome sequence information of various species. Through
the analysis of these genomic data, it is possible to discover, screen and identify potential
“silent” gene clusters with novel structures. Therefore, mining for novel active NPs based
on massive genomic data has become the focus and hotspot of recent research. With
the significant increase in the processing speed and accuracy of DNA sequence analysis,
analysis tools based on a large amount of genomic analysis data has been established. For
example, BLAST and FASTA can be used to infer the function of unknown genes [12]. In
addition to blast based on sequence homology, Hidden Markov model (HMM) analysis
of the protein family (Protein family, Pfam) has been widely used [13]. Moreover, the
statistical model antiSMASH, which specializes in analyzing and predicting the products
of BGCs, has been reported [14] (Table 1). With the significant improvement of sequence
processing technologies, the accuracy of protein function prediction has been improved,
and the evaluation of BGCs has become more and more accurate [15]. Therefore, the
method of mining secondary metabolic biosynthetic gene clusters from genome sequence
data is widely used.

Identification of genes encoding secondary metabolic biosynthetic enzymes is a classic
method for mining new NPs. Although structures of secondary metabolites are rich and
diverse, their biosynthetic mechanisms are relatively conservative, for example, the simi-
larity of amino acid sequences of core enzymes is high [16]. The scaffold core structure of
many NPs is polyketide or peptide, which is controlled by the highly conserved polyketide
synthase (PKS) and non-ribosomal peptide synthetase (NRPS), respectively. By searching
for the biosynthetic genes that control the structure of the scaffold, the biosynthetic gene
clusters of NPs can be identified. With the accumulation of biosynthetic knowledge and
the advancement of bioinformatics tools and databases, chemical scaffolds of metabolites
synthesized by gene clusters can be predicted, and BGCs with new chemical scaffolds can
be studied. For example, siphonazole is a NP isolated from Herpetosiphon species with
anti-plasmodium properties [17]. To track its biosynthetic pathway, genome mining and
imaging mass spectrometry technology were used and based on this it was suggested that
it belongs to a hybrid polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS)
pathway [17]. On the other hand, if microorganisms are difficult to separate and cultivate,
it is not feasible to identify BGCs with the aforementioned methods. An alternative method
is to first predict the scaffold structure through bioinformatics, and then chemically synthe-
size the compound. This method has been used to discover an N-acylated nonapeptide
with antifungal activity [18], proving the comprehensive ability of bioinformatics and
chemical synthesis in the study of silent gene clusters. However, this strategy is limited to
the study of silent gene clusters whose structure can be accurately predicted.

Another method to discover NPs is to analyze not only the coding genes but also the
regulatory genes and resistance genes of the BGCs. With the growing understanding of NP
biosynthetic pathways, it has been discovered that BGCs not only contain biochemical en-
zymes, but also regulatory elements, transporters and resistance genes [16]. Therefore, NP
mining methods based on resistance or regulatory genes have been developed. For instance,
microorganisms that can produce antibiotics have their own resistance systems, which can
effectively protect themselves from the synthetic antibiotics. Resistance mechanisms are
diverse, including using efflux pumps and degrading enzymes to remove antibiotics, and
modifying endogenous proteins to effectively prevent them from binding to antibiotics [19].
The required resistance gene often co-locates with the synthetic gene that encodes the
production of antibiotics, so it can be used as a tag to discover putative antibiotics. Using
this strategy, a new herbicide was identified by searching the dihydroxyacid dehydratase
gene in the published fungal genomes [16].

The discovery of NPs can also be achieved through genome mining based on sys-
tematic evolution. The synthesis of new compounds is a very complex process. A recent
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study showed that by analyzing the evolutionary characteristics of 10,000 BGCs, high-
frequency of insertions, deletions and repetitive events occurred in secondary metabolic
processes [20]. Two main research strategies based on systematic evolution can be used
in NP discovery: One strategy is to construct an evolutionary tree of strains based on
conservative housekeeping genes or core genomes, then analyze the NPs produced and
identify potential producing strains; the other strategy is to construct an evolutionary
tree of genes, and the evolutionary history of the synthetic genes or gene clusters of the
products can be inferred from these gene trees. Compared with the method based on the
similarity analysis of single sequence, the analysis of biosynthetic function of the enzymes
can be more accurate [12].

The discovery of NPs has been boosted through the development of metagenome
sequencing and single-cell sequencing. The metagenome includes all the genetic infor-
mation of the microbial community of both culturable and unculturable microbes. The
gene clusters of secondary metabolites are highly repetitive, and sometimes difficult to be
analyzed. Through analysis of metagenomics, and the diversity and distribution of NPs in
the living environment, it is possible to discover novel substances and their biosynthetic
pathways [21]. Moreover, the number of culturable microbes accounts for less than 5%
of the total number of microbes. Because traditional microbial technology cannot obtain
sufficient quantities of genome DNAs, it is difficult to obtain a large amount of diverse
microbial genetic information through genome sequencing technology. The development
of single-cell genome sequencing technology provides the possibility to solve this prob-
lem [22]. Different from the mass amount of data and complex analysis of metagenomics,
single-cell genomes analysis only focus on the genetic characteristics of objects in the most
basic biological unit [23]. Single-cell genomics and metagenomics research therefore could
complement each other and work in synergy. Single-cell genome mining can directly and
accurately discover the evolutionary characteristics and functions of a single cell, while
metagenomic mining focuses on obtaining more genetic information on the environmental
and evolutional basis. Gene fragments obtained by metagenomics are helpful for pathway
prediction in the process of single-cell genome analysis [24]. With the continuous declining
of sequencing costs and the continuous upgrading of sequencing technology, it will become
easier to mine genetic information in single cells and complex environments, which is of
great significance for revealing more putative BGCs.

In addition to identifying putative synthesis pathways, creating pathways not found in
nature is becoming a hot research field to discovery new NPs. Combinatorial biosynthesis
is based on the versatility of the enzyme substrate, which produces new “unnatural” NPs
through the use of engineered catalytic enzymes or metabolic pathways [25,26]. In the pro-
cess of assembling NPs, the diversity of monomers largely determines the diversity of their
structures. The modular type I polyketide synthase (mPKSs) consists of continuous catalytic
modules, and each module has a different catalytic region to complete a cycle of C chain
extension. For example, in Streptomyces cinnamonensis, the polyether antibiotic monensin is
biosynthesized through the action of mPKS. The lipid acyltransferase region (AT region)
is the fifth module in the monensin synthesis PKS complex, which can absorb unnatural
malonic acid derivatives as monomers to synthesize new monensin precursor derivatives.
Based on the computer model of the AT region, Bravo-Rodriguez et al. predicted that
the AT active region of the enzyme can absorb a larger propynyl group as a substrate
monomer, by adding a synthetic compound propargyl-malonyl-N-acetyl-cysteamine, the
propynyl-monensin precursor compound was produced by Streptomyces cinnamonensis
A495 [27]. In the process of polyketide biosynthesis, each module in class I PKS (mPKSs)
catalyzes a specific reaction step, and then passes the mature product to the next module.
This property makes it possible to design and synthesize new products by “permutation
and combination” of these enzyme complexes. Modification of specific enzymes in mPKSs,
together with substitution of the substrates catalyzed to produce new compound structures,
has become a routine experimental method for combinatorial biosynthesis. For example,
using the acetyltransferase region in the rapamycin synthesis pathway to replace the acetyl-
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transferase region in the erythromycin synthesis system, 6-deoxyerythronolide B (6-DEB)
analogs containing a variety of new structures have been obtained [28]. Carbohydrates
usually play an important role in the drug–target interaction, and the glycosylation process
has a significant impact on the solubility and biological activity of the drug. Therefore, the
glycosylation of compounds provides a new direction for new drug discovery. For exam-
ple, the glycosylated NDP-d-digitoxose synthetic plasmid was expressed in S. argillaceus
M3W1, and seven new structural analogues of mithramycin were obtained by changing
the contour of the sugar molecule or changing its molecular contour and 3-side chain at
the same time [29], one of which (demycarosyl-3D-β-ddigitoxosyl-mithramycin SK) shows
highly effective anti-tumor activities.

3. The Build Stage for Natural Product Discovery

Putative BGCs can be evaluated either through activation in the native producer or
expression in a heterologous host. In-situ activation of putative BGCs has been greatly
advanced by recently developed multiplexed genome editing tools (Table 2). The new
generation of genome editing tools based on the CRISPR-Cas technology has the advan-
tages of high efficiency, fast operation and high fidelity. It is the mainstream technology
of multiplexed genome engineering at present, especially using the type II CRISPR-Cas9
or CRISPR-Cas12a (Cpf1) gene editing technology. For example, CRISPR-Cas9 mediated
knock-in of the kasOp* for activation of silent BGCs has been reported and successfully
discovered several novel pathways and NPs in Streptomyces species [30]. Moreover,
multiplexed automated genome engineering has been reported with the capacity to si-
multaneously regulate the expression levels of twenty genes, and generate 4.3 billion
combinatorial genomic mutations per day [31]. However, the use of CRISPR-Cas tech-
nology in most chassis cells requires the introduction of external sources of Cas protein,
which can cause cytotoxicity. In order to solve this problem, researchers have developed
genome editing technology based on the microbe’s endogenous CRISPR-Cas system in
multiple microorganisms, such as Sulfolobus islandicus, Haloarcula hispanica, Clostridium
tyrobutyricum, Clostridium pasteurianum, Lactobacillus crispatus and Zymomonas mobilis [32].
These systems allow fast genome engineering including gene insertion, deletion, regulation
and single base editing, with the editing efficiency in some cases reaching 100%, and will
not be affected by the toxicity of exogenous Cas protein [33].

Table 2. Experimental strategies in the construction of chassis cells for natural products.

Category DNA Assembly Description Reference

Restriction
enzyme-based (in vitro) Golden Gate assembly A method that can assemble multiple DNA fragments using

type IIs restriction enzymes [34]

Start-Stop assembly A method that can assemble 60 DNA fragments by type IIs
restriction enzymes [35]

Homology-based
(in vitro)

One-step sequence- and
ligation-independent

cloning (SLIC)

A method based on 3′-to-5′ exonuclease activity of T4
DNA polymerase [36]

Gibson assembly A method by T5 exonuclease, Taq DNA ligase and Pfu
DNA polymerase [37]

T5 exonuclease DNA
assembly (TEDA)

A method that requires only T5 exonuclease for assembling
multiple DNA fragments [38]

Ligase cycling reaction
(LCR) assembly

A method that can assemble 20 DNA fragments in one step by
introducing single-stranded bridging oligos between two

neighboring DNA fragments
[39]

Homology-based
(in vivo)

Transformation-associated
recombination (TAR)

A method depending on the highly efficient homologous
recombination system of S. cerevisiae [40]

Linear-linear homologous
recombination (LLHR)

Suitable for cloning small- and midBGCs but require highly
specialized capturing vectors and multi-rounds selection. [41]

Exonuclease combined with
RecET recombination (ExoCET) A method using short recombination homologous arms. [42]
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Table 2. Cont.

Category DNA Assembly Description Reference

CRISPR (in vivo) Cas9-assisted targeting of
chromosome segments (CATCH)

A method that can capture 100-kb DNA genomic sequences
basing on Cas9 and Gibson assembly [43]

Programmable genome
engineering

A method that can rearrange 1.55-Mb genome sequences by
combining Cas9 and lambda-red recombination [44]

Genome editing tools

Gene regulation
Clustered regularly interspaced

short palindromic repeats
interference (CRISPRi)

The transcription of a gene is repressed by guide RNA and
inactive Cas protein [45]

CRISPR-AID A trifunctional system that can simultaneously achieve gene
deletion, transcriptional activation and repression [46]

Gene deletion Multiplex automated genome
engineering (MAGE)

Simultaneous editing of multiple genes by prototype devices
that automate the MAGE technology [31]

Transcription activator-like
effector nucleases (TALENs)

Simultaneous editing of multiple genes using TALENs with
high portability [47]

Zinc finger nucleases (ZFNs) Allows targeted genome editing but requires re-engineering for
every new target site [48]

gRNA-tRNA array for
CRISPR-Cas9 (GTR-CRISPR) Simultaneous disruption of 8 genes with high efficiency [49]

Gene integration Recombinase-assisted genome
engineering (RAGE) Multiplexed integration of large-size DNA constructs [50]

Delta integration CRISPR-Cas
(Di-CRISPR)

High-efficiency, multicopy, markerless integrations of large
biochemical pathways [51]

Single-nucleotide
conversion GTR 2.0 Multiplexed single-nucleotide conversions [52]

CRISPR-Cas9- and homology-
directed-repair-assisted

genome-scale engineering method
(CHAnGE)

Rapidly output tens of thousands of specific genetic variants
in yeast [53]

This table is adapted from tables published previously [11].

For microbes with strict cultivation requirements or lack of genetic manipulation tools,
heterologous expression of putative BGCs can be used to discovery NPs. Heterologous
hosts have many advantages, such as clean background, fast growth and mature genetic
manipulation tools. Given that BGCs often include all genes required for biosynthesis of
the target NP, cloning of the entire BGC for heterologous expression is of great interest [54].
However, because putative BGCs may have high G + C contents, high sequence similarities
and generally large sizes in many cases reaching over 100 kb, selection of the suitable
cloning method is crucial. The selection of cloning method depends on the size and
complexity of the BGC, whether refactoring is needed, the target NP and the expression
host. For example, Polymerase Chain Reaction (PCR) and Gibson assembly-based cloning
and refactoring of a streptophenazine BGCs in S. coelicolor M1146 resulted in detection of
over 100 streptophenazines [54].

Heterologous cloning for NP discovery mainly includes DNA fragmentation, cloning,
expression and analysis. According to the method of DNA fragmentation, heterologous
cloning can be divided into random library cloning and direct cloning. The random li-
brary cloning method constructs expression libraries on random spliced genomes from
mixed populations (such as environmental DNAs) or pure cultures, and screens for novel
NPs [55,56]. Both sequenced and unsequenced genomes can be used to construct random
libraries. The genome is first broken into gene fragments ranging from 10 to 200 kb by
partial restriction endonuclease cleavage or mechanical shearing force, that can well cover
the size of NP BGCs. However, random library cloning has high chances of disruptions of
BGCs, in order to obtain clones containing enough BGCs, it is necessary to obtain a genome
coverage of 10–20 times [57]. This need can be solved by optimizing the cloning process,
for example, increasing the efficiencies and capacities of DNA extraction, fragmentation,
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cloning and transformation, avoiding degradations of large DNA fragments and normal-
izing the cloning and transformation efficiencies among BGCs with varied sizes. After
genome extraction and fragmentation, all gene fragments are assembled and transformed
into the cloning host for screening [58]. Many NPs have been discovered through random
library cloning based on different library construction strategies (such as fosmid, cosmid,
phage artificial chromosome and bacterial artificial chromosome (BAC) [55,56]. The random
library cloning method is particularly useful when the genome information and features
are insufficient. This method has the advantage to cover the entire genetic material [59].
However, this method must rely on high-throughput screening and analytic platforms.

The direct cloning method relies on genome sequencing and bioinformatics analysis to
predict BGCs. Target BGCs will then be captured through in vitro CRISPR based digestion
or PCR amplification and cloned into target host strains. This method can directly isolate
target gene clusters, bypassing libraries construction and the time-consuming and labor-
intensive screening process. If refactoring is needed, open reading frames (ORFs) or
cDNAs from target BGCs will be amplified through PCR or reverse PCR, respectively and
assembled with promoters and terminators from the host strains [60]. If refactoring is not
needed, the target BGCs can be achieved through in vitro CRISPR-based digestion. This
“molecular scissor” system can specifically recognize target DNAs through user-defined
guide RNAs, and achieve efficient and precise cutting [61]. In the past 10 years, the direct
cloning method has made great progress [56,62,63]. However, the direct cloning method
relies heavily on the quality of genome sequencing and annotation, and can only analyze
few gene clusters at one reaction, which greatly reduces the efficiency of NP discovery.
With the advancement of synthetic biology tools, it will be ideal that all putative BGCs in
one target genome can be cloned at one reaction.

According to the method of DNA assembly, heterologous cloning for NP discovery can
be divided into methods for cloning BGCs with or without the need of refactoring (Table 2).
The widely used methods for assembly BGCs without refactoring specialize for cloning
small fragment number but large fragment size, including Gibson [37], Cas9-facilitated ho-
mologous recombination assembly (CasHRA) method [64] and transformation-associated
recombination (TAR) [40,65]. Gibson is widely used because of its simple operation and
seamless assembly, and it could realize the assemble of four large fragments with the sizes
over 100 kb [37]. Compared with the in vitro Gibson assembly, efficient assembly methods
of multiple large DNA fragments based on the principle of homologous recombination
in vivo have also been popular in commonly used microbial cell factories, including Sac-
charomyces cerevisiae, Escherichia coli and Bacillus subtilis. For example, the Cas9-facilitated
homologous recombination assembly (CasHRA) method has been successfully used in
the assembly of large fragments of E. coli with a total length of 1.05 Mb, which includes
449 essential genes and 267 growth-related genes [64]. Similarly, TAR has been used to
identify several novel NPs, including orphan cosmomycin [66], thiostreptamide and scle-
roic acid [63]. The methods for assembly BGCs with the need for refactoring feature in
cloning multiple fragments with high efficiency and fidelity, including the Golden Gate
assembly [34] and LCR assembly [39]. Golden Gate is based on type IIs restriction en-
donucleases, and can realize combinatorial assembly of 27 components by constructing
modular libraries without leaving “scar” sequences [34]. LCR assembly method can realize
20 DNA fragments assembly in one step by using single-stranded bridging oligos between
two adjacent fragments of DNA [39]. Combining CRISPR technology with Golden Gate,
Gibson or TAR methods has significantly improved the assembly efficiency of large frag-
ments and the size of DNA fragments (1.55 Mb) [25,44]. It will be of great significance to
develop more vectors and methods to clone large eukaryotic gene clusters for heterologous
expression [67].

4. The Test Stage for Natural Product Discovery

The commonly used method for studying NPs is to determine biologically active com-
pounds from the “crude” extract of the fermentation broth, and then fractionate to further
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separate them. Since this method is time-consuming and labor-intensive, automated liquid
handling systems have been developed for high-throughput screening of library-based
pre-fractionated crude extracts. Moreover, metabolomics analysis has been developed for
simultaneously analyzing large number of metabolites in biological samples. The isomers
present in NP extracts can be analyzed using NMR spectroscopy, high resolution mass
spectrometry (HRMS), and the LC-HRMS method [68,69]. The advancement of analytical
instruments used in NP research, coupled with annotation and calculation methods that
can analyze putative NP structures [70], makes the “omics” method more effective.

In order to identify NPs with new structures and activities, it is very important to deter-
mine their molecular weights and molecular formulas, and compare them with databases
with detailed classification information. However, there are still challenges in data mining
and the use of web-based tools to identify metabolites with novel structures [71]. These
metadata are sometimes difficult to query from literatures and databases. In this regard, a
molecular network platform called the Global Natural Products Society (GNPS) has been
developed, and becomes the significant supplement to the toolbox of NP discovery [72].
This network has a large amount of MS/MS data and can visualize the gene cluster of cor-
responding molecules. Based on these methods, a large number of theoretical NP spectral
databases have been created and applied to deduplication [73]. Similarly, METLIN is the
platform containing a high-resolution MS/MS database to search for metabolites by analyz-
ing similar structural features derived from reported compounds [74]. Metabolome data
together with biological activity analysis can accelerate the identification of biologically
active NPs in the extract [75]. Chemometric methods, such as multivariate data analysis,
can be used to correlate signals detected in NMR and MS spectra to track active metabolites
in complex mixtures. However, current platforms still have limitations, for example, the
applicability of certain categories of NPs maybe better than other categories, and there
may be ambiguous structure predictions and assignments over certain candidates. Efforts
to solve these problems are underway [76], including covering the molecular network of
large-scale NP extraction libraries with classification information to improve the credibility
of annotation, and the development of comprehensive LC-MS/MS databases to support the
NP analysis [77]. Acharya’s team has used this method to characterize the NP-mediated
interaction between different species [78]. In general, molecular networks are mainly
used to strengthen the deduplication process to better determine the separation priority of
unknown compounds and the elucidation of the relationship between NP analogs, and the
rigorous structural elucidation of the NPs of interest also need to be improved.

Because the production level of NP is relatively low in most cases, technologies have
been developed to increase the detection specificity and tractability of current platforms.
With the advancement of N-Methyl-2-Pyrrolidone (NMP) instruments and probe tech-
nology, it is possible to analyze a very small amount (less than 10 ug) of the analyte to
determine the structure of NP [79]. Analyzing the response of biologically active com-
pounds at the single cell level can also accelerate the discovery of NP drugs. In order to
accurately determine the structure of small molecules, a microcrystal electron diffraction
(MicroED) based on cryo-electron microscopy has recently been developed [80]. Biology
phenotype chip, microplate high-throughput screening, microfluidics, fluorescence acti-
vated droplet sorting system (FADS), Raman light spectrum, Fourier transform infrared
spectroscopy or near-infrared spectroscopy and advanced spectral sensor have also been
used for strain screening and phenotyping profiling [81,82]. For example, Irish et al. com-
bined flow cytometry technology, single-cell chemical biology and cell barcoding with
metabolomics to develop a high-throughput platform for bioactive metabolomics analy-
sis [83]. Moreover, combining metabolomics data with transcriptome or proteomics data
can also accelerate the identification of NPs [84].

5. The Learning Stage for Natural Product Discovery

The learning process involves data collection and integration, data analysis, result
visualization, modeling analysis and omics analysis on gene-RNA-protein-metabolism-
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phenotype. This part provides important feedback for the next cycle and is a critical part in
the DBTL cycle of synthetic biology. A large number of omics data and process detection
data has been accumulated rapidly, and dedicated public database has provided great
convenience for data sharing and storage (Table 1). Meanwhile, databases also provide
automated data download programs or scripts, which greatly facilitates the data collection
process (Table 1). So far, the data related to non-model microorganisms is developed far
less than that of model microorganisms, while the processing and learning of data related
to model microorganisms can provide a valuable reference for the study of non-model
microorganisms.

The large amount of collected and integrated data can be analyzed using bioinformat-
ics, artificial intelligence/machine learning, especially deep learning, and mathematical
models, such as genome-scale metabolic network models and whole-cell models [85,86].
Machine learning obtains capabilities from empirical data and has been widely used in
computational biology, metabolic modeling, gene and protein network analysis to guide the
design of microbial cell factories. For example, Alphafold developed by machine learning
can be used for the de novo prediction of protein structure [87]. Genome-scale metabolic
network models are an effective systems biology learning tool, and this kind of model
has also been widely used in recent years to quickly understand metabolism of industrial
microorganisms [86,88]. Related databases have been established, such as BioModels, BiGG
Models and Kbase [89–91]. Related data results can promote the further development of
synthetic biology through association, centralized query and visualization [92]. At present,
many databases provide web-based visualization results, such as BioCyc, which provides
tens of thousands of sequenced microbial genomes and their metabolic pathways. The
integration of analysis tool and result display is an excellent example of web page visu-
alization [54]. Whole-cell models have also been developed. For example, the whole-cell
model of Mycoplasma genitalium [93] and a visualization platform WholeCellViz [94] have
been established to dynamically display its simulation process, intuitively understand the
internal process, and facilitate learning and feedbacks.

6. Conclusions and Future Perspectives

The rapid development of genome sequencing and genome mining have become
important technologies for NP discovery and drug development [95]. The biosynthetic
pathway of NPs involves delicate catalytic mechanisms, regulatory mechanisms and com-
plex metabolic environments. Using bioinformatics analysis and calculation tools can carry
out complex data analysis and design to develop NP biosynthetic pathways [96]. Vast
genome sequencing data of non-cultivable and cultivable microorganisms, continuous
improvement of omics analysis and machine learning technologies, and tools develop-
ments of systems biology and synthetic biology will continuously promote the discovery
of new types of NPs with biological activity (Figure 2) [97]. In addition, the combination of
artificial intelligence and computer methods has been successfully used to predict synthetic
modules and pathways [11].

In the process of excavating new structures and new activities of NPs by heterologous
expression of silent gene clusters, the selection of a suitable host is also an important
factor. Although many unconventional microorganisms have been successfully used as
chassis cells, the available modification strategies and tools still lag far behind conventional
chassis cells. The newly developed CRISPR system revolutionizes genome engineering of
conventional and unconventional chassis cells, and the development of strain-independent
genome editing tools plays a very important role in the mining of NPs (Figure 2). The
research strategy of genome mining is constantly developing and becoming diversified. In
addition to the classic genome mining strategy based on enzyme function analysis, new
research strategies such as mining based on system evolution, resistance gene, regulators,
culture-independent single-cell and metagenomic have been reported [16]. Nowadays,
the acquisition of big data has become easier and easier, but the research on the biological
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significance behind these data remains a challenge. Effective analytic tools and algorithms
will better guide the development of corresponding experiments.

Figure 2. Future perspectives for NPs discovery. In the future, NP repertoire could also be derived from human microbiomes.
Existing machine learning methods and databases should be optimized and integrated with the existing omics data, thereby
improving the accuracy of the design and accelerating strain development. Strain-independent genome editing tools should
also be developed to enable efficient gene editing of nonconventional microbes as well as natural overproducers.

In the mining of BGCs, metagenomics revealed that uncultured organisms can produce
NPs with complex structures and biological activities. Using advanced methods and
strategies to analyze the human microbiome (including gut microbes, oral microbes and
skin microbes) with great biosynthetic potentials will be an important research direction in
the future [98] (Figure 2). In particular, the gut microbiota, which is considered to play an
important role in health and disease, will be an emerging field for NP drug discovery [99].

Guided by genome mining, in-depth study of the biosynthetic mechanism, regulation
mechanism, and key enzyme reaction mechanism is necessary to accelerate the research of
NPs. Through genetic manipulation of metabolic pathways in microorganisms, not only
more new structures and highly active compounds can be obtained, biosynthetic pathways
of different kinds of compounds can also be discovered. In the field of drug discovery and
development, combinatorial biosynthesis based on the biosynthesis and metabolism of NPs,
can rationalize the genetic modification and reorganization of the biosynthetic pathway at
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the molecular level, and establish a library of NP analogs with complex structures [100].
Unmodified NPs usually exhibit suboptimal absorption, metabolism, excretion and toxicity
properties, and superior analogues with improved pharmacological properties, such as
higher specific activity, lower toxicity and better pharmacokinetics need to be acquired
in order to yield valuable new drugs [95]. NP analogues can be accessed through the
introduction of chemical modifications [101] (Figure 2). From this, drugs with more clinical
application values will be developed.
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