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Artificial neural network model 
for predicting changes in ion 
channel conductance based 
on cardiac action potential shapes 
generated via simulation
Da Un Jeong1 & Ki Moo Lim2*

Many studies have revealed changes in specific protein channels due to physiological causes such 
as mutation and their effects on action potential duration changes. However, no studies have been 
conducted to predict the type of protein channel abnormalities that occur through an action potential 
(AP) shape. Therefore, in this study, we aim to predict the ion channel conductance that is altered from 
various AP shapes using a machine learning algorithm. We perform electrophysiological simulations 
using a single-cell model to obtain AP shapes based on variations in the ion channel conductance. 
In the AP simulation, we increase and decrease the conductance of each ion channel at a constant 
rate, resulting in 1,980 AP shapes and one standard AP shape without any changes in the ion channel 
conductance. Subsequently, we calculate the AP difference shapes between them and use them as the 
input of the machine learning model to predict the changed ion channel conductance. In this study, 
we demonstrate that the changed ion channel conductance can be predicted with high prediction 
accuracy, as reflected by an F1 score of 0.985, using only AP shapes and simple machine learning.

The generation of action potentials (APs) in cardiomyocytes comprises five stages, and each stage contains a main 
ion channel that induces a change in the membrane potential. The membrane potential of the cell maintains a 
stable negative potential by potassium  (K+) channels in a normal state (Phase 4). As the membrane potential of 
the cell reaches the threshold potential of approximately -65 mV, the sodium  (Na+) channel opens (Phase 0), and 
the membrane potential changes rapidly to positive as sodium ions enter from the outside of the cell, causing an 
upstroke (Phase 1). Subsequently, the  Na+ channel is deactivated and the  K+ channel is activated. Subsequently, 
as the calcium  (Ca2+) channel and delayed rectifier  K+ outward channel are opened, the AP reaches a plateau by 
the inward  Ca2+ current and outward  K+ current (Phase 2). Thereafter, as the  Ca2+ channel is deactivated, the 
membrane potential of the cell, which was in a positive state, returns close to the level of the equilibrium potential 
of  K+. Subsequently, the outward  K+ channel is closed, and the inward  K+ channel is opened (Phase 3). Finally, 
it returns to the completely stable state of Phase 4 owing to the inward  K+  current1,2.

APs can be altered by the change in the ion channel conductance due to various causes such as mutations 
or  drugs3–5. Advanced studies have been performed that predicted APs based on changes in specific ion chan-
nels. In 1994, Luo and Rudy used a mathematical dynamic model to predict changes in ion currents and APs 
in a ventricular cell based on variations in intracellular  Ca2+  concentration6. Akanda et al. predicted changes in 
APs due to the biochemical changes caused by toxic drugs using a computational model and suggested that the 
toxicity or effects of drugs are identifiable by analyzing  APs7.

There are several studies to predict the ion channel conductance using a machine learning algorithm. Willett 
and Wilton predicted the five different ion channel targets using two types of activity data through the binary 
kernel discrimination for  chemoinformatics8. Redkar et al. predicted the interaction of drug-target such as 
the enzyme and ion channel using wrapper feature selection, class balancing and compared the performance 
according to the machine learning algorithms such as Decision Tree, Extreme Gradient Boosting (XGB), Gauss-
ian Naïve Bayes (GNB), K-Nearest Neighbour (KNN), Random Forest (RF) and so on. They suggested the RF 
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algorithm for drug-target interaction  prediction9. Besides, Khalifa et al. predicted the blocks of sodium ion 
channel using machine learning-based convolutional quantitative structure–activity relationship model, which 
has a high accuracy of over 90%10. Mei and Zhao successfully predicted the inhibitors of calcium, potassium, and 
sodium channels by accuracy of 85.7% through the RF and feature extractions based on Chou’s general pseudo 
amino  acid11.The aforementioned studies predicted a target ion channel that would be changed by a drug or 
activity data through the machine learning. However, studies that predict changes in ion channels based on AP 
shapes have not been conducted. The shape of an AP can vary based on the altered ion channel. In this study, 
we generated an AP based on the change in ion channel conductance via cell electrophysiological simulation 
and predicted the ion channel changed by the AP shape using a simple artificial neural network (ANN) model.

Results
Using an electrophysiological ventricular cell model, 1980 different APs were obtained based on the change in 
the conductance of 10 ion channels:  GKi,  GKr,  GKs,  GNa,  GbNa,  GCaL,  GbCa,  Gto,  GpCa, and  GpK (Table 1). Figure 1a 
shows the APs during the basic cycle length of 1,000 ms based on the variation in the ion channel electrical 
conductance. When no change occurred in the ion channel conductance, the action potential duration (APD) 
was 295 ms (red line in Fig. 1a), and the APD due to the changes in  GKs,  GK1,  GCaL,  Gto, and  GpK were statistically 
significant from the standard AP (p < 0.05, Table 1). However, the APD under the conditions with changes in 
 GKi,  GKr,  GNa,  GbNa,  GbCa, and  GpCa had no statistical difference with standard AP (p-values > 0.05). It means it is 
difficult to classify which ion conductance was changed through only the APD.

Figure 1b shows the difference between the standard and simulated APs due to the change in conductance 
of a specific ion channel. Changes in phases 0 and 1 of the AP due to variations in  GNa and  GKi were observed as 
negative peaks in the AP difference. Besides, changes in phases 0 and 1 due to the variation in  Gto were observed 
in the form of positive peaks. The change in the notch of the AP due to the change in  GpK was observed in a 
shape similar to the positive peaks due to the variation in  Gto in the AP difference; however, relatively low posi-
tive peaks were observed again immediately after the occurrence of the peak. The changes in the plateau (phase 
2) of the AP due to the variation in  GcaL was negative in the AP difference, whereas the change in phase 3 of the 
AP repolarization due to variations in  GKs and  GKr was observed as a positive AP difference. The changes in the 

Table 1.  Statistics of APDs based on ion channel conductance.

Abbreviation Description Conductance (nS/pF)

APD (ms)

Mean SD p-value

GKs Conductance of slow delayed rectifier  K+ current 0.392 311.78 57.10 5.03E−05

GKr Conductance of rapid delayed rectifier  K+ current 0.153 296.90 21.98 0.23

GK1 Conductance of maximal inward  K+ current 5.405 301.84 35.45 0.0074

GNa Conductance of maximal  Na+ current 14.838 295.13 2.14 0.38

GbNa Conductance of maximal background  Na+ current 0.00029 295.00 1.15 0.99

GCaL Conductance of maximal L-type  Ca2+ current 0.0000398 272.36 67.04 4.08E−06

GbCa Conductance of maximal background  Ca2+ current 0.000592 295.12 5.64 0.76

Gto Conductance of transient output  K+ current 0.073 294.46 1.85 6.34E−05

GpCa Conductance of maximal  Ca2+ pump current 0.1238 295.07 3.61 0.78

GpK Conductance of maximal  K+ pump current 0.0146 292.94 2.81 3.97E−20

Figure 1.  Action potential and action potential difference shapes. Representative action potential shapes 
(a), and representative action potential difference shapes (b); action potential difference between standard 
membrane potential (red line) and changed membrane potential due to change in specific ion conductance.
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resting potential (phase 4) of the AP due to the variation in  IKi was reflected as an increase in the baseline (0 
line) of the AP difference.

The confusion matrix and receiver operating characteristics (ROC) curve in Fig. 2 show the predicted results 
of the ion channel, in which the electrical conductance was changed through the ANN model based on the AP 
difference. Changes in  GKs,  GKr,  GCaL,  Gto,  GpCa, and  GpK were accurately classified, and their F1 scores were 1. 
However, the change in  GbNa was the lowest, with an F1 score of 0.930. The predicted F1 scores for  GNa,  GK1, and 
 GbCa were 0.981, 0.964, and 0.974, respectively (Fig. 2a). Accordingly, the final F1 score was 0.985 in the predic-
tion of electrical conductance change of the 10 ion channels predicted using our proposed model. Furthermore, 
the model accuracy was 0.983; the accuracies of each ion channel were 0.99 for  GKr,  GKs,  GNa,  Gto, and  GpCa, and 
1.00 for  GK1,  GbNa,  GCaL,  GbCa, and  GpK.

The predicted performance of each ion channel is shown in the ROC curve in Fig. 2b. In the ROC curve, y = x 
lin represents a random classification curve. All 10 classified ROC curves of the ion channel conductance were 
distributed in the left area of the random classification curve, and all area under the curve was 1, implying that 
all of the ion channel conductances were accurately classified.

The model was trained with 1,584 randomly extracted data among all the 1,980 data with 10 categories, and 
the performance of the model was tested using 396 data points. The predictive performance of the model con-
sidering the difference in the number of data in the 10 categories was confirmed using a precision-recall curve 
(Fig. 2c). The predicted precisions of all ion channel conductivities except  GbNa were 1, and the precision of  GbNa 
was 0.87. The recall, which is the true positive rate of each ion channel and denotes sensitivity, was 0.93 for  GKi, 
0.96 for  GNa, and 0.95 for  GbNCa. The sensitivity of the other ion channel conductance change predictions was 1. 
The specificity was 0.98 for  GKs, 0.93 for  GNa, and 0.90 for  Gto, and those for other ion channels’ conductances 
were 1.

To assess the robustness, we validated the proposed model using APs generated from drug simulations. The 
APs by drug effects of ibutilide, dofetilide, and diltiazem were simulated using similar protocols suggested by 
CiPA projects (see the Methods section). Each drug affects the ion channel current; ibutilide inhibits  IKs, dofe-
tilide inhibits  IKr, and diltiazem inhibits  ICaL. The classification results for drug effects were shown in Fig. 3. Our 
proposed model can precisely predict the effect of ibutilide on  GKs. Most AP shapes affected by diltiazem were 
predicted as  GCaL, but in the case of 8 samples, they were predicted as  GpK. Most cases of dofetilide were classified 
to  GKr, but other cases of 17 samples were classified as all labels (Fig. 3a). Accordingly, the F1 score was 0.99 for 
ibutilide, 0.88 for dofetilide, and 0.89 for diltiazem. The accuracies for the prediction of drug effects were 0.99 
for ibutilide, and 0.93 for dofetilide and diltiazem.

In the ROC curves, the area under the curve of  GKs (ibutilide) was the highest as 1.00. In  GKs prediction, there 
was 1 case of false negative and it was reflected in the precision-recall curves (area = 0.98). The area under the 
ROC curves and precision-recall curves were the lowest in  GCaL (diltiazem) as 0.88 and 0.74, respectively. Those 

Figure 2.  Confusion matrix and receiver operating characteristic (ROC) curves. Confusion matrix (a), ROC 
curves (b), and precision-recall curves of the ANN model.
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for  GKr (dofetilide) were 0.90 for ROC curves and 0.91 for precision-recall curves (Fig. 3b,c). This is because 
there has never been a case where certain AP shapes were erroneously predicted as  GKr, but there were 9 cases 
when it was erroneously predicted as  GCaL. Therefore, the specificity was 0.99 for ibutilide, 1.00 for dofetilide, and 
0.90 for diltiazem. Furthermore, the sensitivity in predicting the affected  GKs by ibutilide was 1.00, and those in 
predicting the affected  GKr and  GCaL by dofetilide and diltiazem were 0.79 and 0.90, respectively.

Discussion
In this study, we predicted and classified the changed ion channel’s conductance based on AP shapes using a 
machine learning algorithm with ANN layers. In this regard, we generated the AP based on changes in 10 ion 
channels via cell electrophysiology simulation. Subsequently, we predicted the changed ion channel through the 
AP difference, which was subtracted from the reference AP shape generated under the condition of the cell where 
no change in the electrical conductance of the ion channel occurred in the AP due to the changed ion channel 
conductance. The main results of this study are as follows:

1. The AP difference shape, which is the difference between the reference AP and the AP under the changed 
conditions of the specific ion channel, reflects the change in the AP due to the variation of the ion channel.

2. Using the ANN model based on the AP difference shape, the change in electrical conductance of the ion 
channel can be classified and predicted accurately by 98%.

Szentandrássy et al. quantitatively confirmed the effect of ionic current based on the short-term variability 
of the APD through experiments using canine  myocytes12. They discovered that the short-term variability of 
the APD was reduced by the negative feedback regulation of  ICaL,  IKs, and  IKr, but it was increased by  INa and 
 Ito. Accordingly, they suggested that these indicators can be used to identify changes in APD caused by drugs. 
However, it is not trivial to predict the change in electrical conductance of a specific ion channel using the APD 
only or to statistically confirm the difference (Table 1). When comparing the statistics of the APD based on the 
change in ion channel conductance through cell simulation, the change in the APD due to  GKr,  GNa,  GbNa, and 
 GpCa did not differ statistically from the standard AP. Therefore, in this study, ion channels with changed electri-
cal conductance were predicted and classified based on the AP difference, which can reflect the morphological 
characteristics of the AP shape.The  Na+ ions are associated with the depolarization upstroke of phase 0 of the AP 
generation  phase13. The change in phase 0 based on the variation in  GNa appeared as a negative peak of the AP 
difference. The  Ito current is known to regulate the phase 1 depolarization of AP generation in  cardiomyocytes14. 
Accordingly, the change in  Ito current due to the variation in  Gto can affect the depolarization peak of phase 1 in 
the AP shape, and this change is observed as a positive peak in the AP difference.  ICaL is closely associated with 
the phase 2 plateau of the AP, and it regulates the repolarization duration by controlling the intracellular calcium 
concentration via the calcium-induced-calcium-released  mechanism15. The change in  ICaL was observed in the 
form of a negative peak in the AP difference. The  K+ channels comprised a slow-delayed rectifier channel, a rapid-
delayed rectifier channel, and an inward rectifier channel, among which the phase 3 repolarization period of the 

Figure 3.  Validation of proposed model using AP shapes with drug effects. Confusion matrix (a), ROC curves 
(b), and precision-recall curves (c) for predicting the ion channel conductance by drug effects of ibutilide, 
dofetilide, and diltiazem.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7831  | https://doi.org/10.1038/s41598-021-87578-0

www.nature.com/scientificreports/

AP was regulated by the regularization of  IKs and  IKr
16,17. The final phase 4 of the AP generation was regulated by 

 IKi, and the resting potential changed based on the variation in  GKi
17.

The standard AP of the control conditions measured in the experiment can change depending on the envi-
ronmental conditions of each laboratory or errors such as the handshakes of the experimenter. Because these 
errors affect the AP shape of other experimental groups under certain conditions, it can affect the analysis and 
interpretation of the overall experimental results. Therefore, by calculating and using the AP difference between 
the AP shapes of the experimental and control groups, the effect of correction can be obtained, and the analysis 
and interpretation accuracies can be improved compared with merely using the AP shape measured in the experi-
ment. Accordingly, the prediction accuracy of the variation in the ion channel conductance can be improved 
using the AP difference shape instead of using the AP shape.

We tested the ANN model with various hidden layers from one to three. However, even though the number of 
the hidden layers was increased, the model performance was not significantly improved. Moreover, as the com-
plexity of the model increases, the generalization was rather decreased. Therefore, we proposed the simple ANN 
model with one hidden layer for predicting the changed ion channel conductance (Supplementary Table S1). 
Furthermore, we checked the model performance according to the ratio of the training set and testing set which 
was 60:40, 70:30, 75:25, and 80:20 to check the sensitivity of the proposed model to the training dataset. Then, 
we concluded there was no significant difference in classification performances according to the ratio of the 
training set and testing set (Supplementary Table S2).

For robustness, we assessed the proposed model using AP shapes with effects of drugs which are ibutilide, 
dofetilide, and diltiazem. Our proposed model can predict the inhibited channel current by a certain drug. It is 
known well for ibutilide to inhibit the slow rectifier potassium current  (IKs)18, for dofetilide to inhibit the rapid 
rectifier potassium current  (IKr)19, and for diltiazem to block the calcium channel  (ICaL)20.

Contraction caused by the electrical stimulation of cardiomyocytes affects cells electrically, a phenomenon 
known as a mechanoelectrical response. Mechanosensitive ion channels exist in all cells, including cardio-
myocytes, and the electrophysiological phenomena of cardiomyocytes can be affected by stretch-activated ion 
 channels21. For example, the handling of the intracellular  Ca2+ can be changed according to the mechano-electric 
 feedback22 and the mechano-sensitive ion channels make the depolarization of cardiac fibroblasts by affecting 
the APD of the  myocytes23. Furthermore, the mechanosensitivity of the ion channels exist in all cell and affect 
the single-channel recording  technique21,24. In this study, this mechanoelectrical response was not considered to 
predict and classify the variation in ion channel conductance from the difference in AP shape. However, these 
limitations did not significantly affect the results of the study.

Methods
Cellular electrophysiological model. Ten Tusscher et al.’s ventricular cell model that mimicked the elec-
trophysiological characteristics of cardiomyocytes was  used25. The mechanism of ion exchange through the cell 
membrane was expressed as a lumped-parameter circuit, as shown in Fig. 4, where “I” refers to the ion channel 
current, and “E” refers to the equilibrium potential of each ion.  Cm is the membrane capacitance of the cell. The 
total ion current  (Iion) through the cell membrane is expressed as follows:

Figure 4.  Schematic illustration of the electrophysiological cell model. Electrical schematics representing 
current, pump, and ion exchanger from Ten Tusscher et al., emulating cell membrane for ion transport and 
sarcoplasmic reticulum within cardiac cells. “I” represents the ion currents, and “E” the equilibrium potential 
of each ion;  INa,  Na+ current;  IKi, inward rectifier  K+ current;  Ito, transient outward  K+ current;  IKr, rapid delayed 
rectifier  K+ current;  IKs, slow delayed rectifier  K+ current;  ICa, L, L-type inward  Ca2+ current;  INa,Ca,  Na+–Ca2+ 
exchange current;  INa, K,  Na+–K+ exchange current;  Ip, K,  K+ pump current;  Ip, Ca,  Ca2+ pump current;  ICa, b, 
background  Ca2+ current;  INa, b, background  Na+ current;  EK, equilibrium potential of  K+;  ECa, equilibrium 
potential of  Ca2+;  ENa, equilibrium potential of  Na+;  Ileak, leakage  Ca2+ current of junctional sarcoplasmic 
reticulum (JSR);  Irel, released  Ca2+ current from JSR;  Iup, absorbed  Ca2+ current to network sarcoplasmic 
reticulum (NSR);  Ixfer, diffusible  Ca2+ current between dyadic subspace and bulk cytoplasm.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7831  | https://doi.org/10.1038/s41598-021-87578-0

www.nature.com/scientificreports/

The membrane potential  (Vm) of cardiomyocytes based on the ionic current was calculated using the follow-
ing equation for electrical  conduction26:

where  Istim refers to the current caused by an external stimulus.

Simulation protocol. The ion channel current  (Iion) based on the electrical conductance  (Gion) of each ion 
channel is expressed based on the Hodgkin–Huxley equation as  follows26:

where  Mion is a differential equation expressing the gate state of each ion channel. The reference value of each 
ion channel conductance was based on that for an endocardial cell suggested by Ten Tusscher et al. (Table 1)25. 
To generate the AP based on the variation in the ion channel conductance, the conductance of each ion channel 
was decreased by 0.01 from 0.01 to 0.99 times, and increased by 0.01 from 1.01 to 1.99 times, resulting in a total 
of 1,980 types of AP. The electrophysiology simulations of cardiomyocytes were performed with 10 pacings in a 
cycle length of 1,000 ms. The simulation results were recorded every 2 ms, and the last 10 pacing cycles were used 
for prediction. The membrane potential obtained from the cell without any change in the ion channel conduct-
ance was defined as the standard AP, and the AP difference was calculated by subtracting the AP owing to the 
variation in the ion channel conductance from the standard AP. Finally, for the labels for the supervised learning 
of the ANN model, we put the number from 0 to 9 according to the variation of each ion channel conductance.

To assess the robustness of the proposed model, we performed the electrophysiological simulation under 
the drug condition and used the generated AP for the validation of the ANN model. To mimic the cardiac cell 
with drug effects, we used In-vitro experiments data of CiPA (Comprehensive in vitro Proarrhythmia Assay) 
project  group27. First, we bootstrapped the half-maximal inhibitory concentration (IC50) and Hill coefficient 
(H) obtained from In-vitro experiments to IC 50 and H of 2,000 samples. Then, we randomly extracted the 
IC50 and H of 10 samples among them and used the drug simulation as an input. The drug simulations were 
conducted under the conditions of 1, 2, 3, 4, 5, 10, 15, and 20 times the Cmax of drugs, which means the highest 
serum concentration after the drug has been administered and decides as their characteristics values according 
to the type of drugs. Finally, we obtained 80 AP shapes for each drug condition and the total AP shapes with 
drug effects were 240. The parameters for drug simulation were set the same as the original electrophysiological 
simulation we mentioned in the previous paragraph. The answer labels were put according to inhibited channel 
currents by each drug;  GKs for  ibutilide18,  GKr for  dofetilide19, and  GCaL for  diltiazem20.

ANN model construction. The ANN model for predicting the change in the ion channel conductance 
comprised one fully connected layer with 130 neurons, and the ReLU activation  function28 was used in the 
hidden layer. The classification results were generated through the output layer, which was composed of 10 neu-
rons, where the activation function was used with the Softmax function. The categorical cross-entropy function 
was used as the loss function, and  Adam29 with a learning rate of 0.001 was used as the optimization function. 
Seventy percent of the total data was used for model training and 20% for model testing. To prevent overfitting 
due to the limited amount of data, the performance of the model was evaluated using tenfold cross-validation.

The classification performance using the proposed ANN model was evaluated based on indices of accuracy, 
precision, recall, and F1 score to prevent the model from being overestimated owing to the imbalanced data in 
each  label30.

In Eqs. (4) and (5), Yi is the true label, and h(xi) is the value predicted through the model. The correct answer 
predicted through the model can be expressed as Yi ∩ h(xi) . Accordingly, the overall classification performance 
for the ion channel conductance was calculated as follows:

(1)Iion = INa + IK1 + Ito + IKr + IKs + ICa,L + INa,Ca + INa,K + Ip,Ca + Ip,K + Ib,Ca + Ib,Na

(2)
dVm

dt
= −

Iion + Istim

Cm
,

(3)Iion = Gionmion(Vm − E),

(4)Recall
(

sensitivity
)

=
1

n

n
∑

i=1

|Yi ∩ h(xi)|

|Yi|

(5)Precision =
1

n

n
∑

i=1

|Yi ∩ h(xi)|

|h(xi)|

(6)F1score =

(

Recall−1 + Precision−1

2

)−1

= 2 ·
Recall · Precision

Recall + Precision

(7)F1total =
F1GKs + F1GKr + F1GK1 + F1GNa + F1bNa + F1CaL + F1bCa + F1Gto + F1GpCa + F1GpK

10
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Data availability
All datasets used in the study were generated through simulations performed by the authors based on the meth-
ods described in the text.
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