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Abstract

The mechanisms by which the gain of the neuronal input-output function may be modulated

have been the subject of much investigation. However, little is known of the role of dendrites

in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles

or patterns of light stimulation offer the prospect of elucidating many aspects of single cell

function, including the role of dendrites in gain control. We thus developed a model to inves-

tigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal

gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally

testable. To investigate how different topologies of the neuronal dendritic tree affect the neu-

ron’s input-output characteristics we generate branching geometries which replicate mor-

phological features of most common neurons, but keep the number of branches and overall

area of dendrites approximately constant. We found a relationship between a neuron’s gain

modulability and its dendritic morphology, with neurons with bipolar dendrites with a moder-

ate degree of branching being most receptive to control of the gain of their input-output rela-

tionship. The theory was then tested and confirmed on two examples of realistic neurons:

1) layer V pyramidal cells—confirming their role in neural circuits as a regulator of the gain in

the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In

addition to providing testable predictions and a novel application of dual-opsins, our model

suggests that innervation of all dendritic subdomains is required for full gain modulation,

revealing the importance of dendritic targeting in the generation of neuronal gain control and

the functions that it subserves. Finally, our study also demonstrates that neurophysiological

investigations which use direct current injection into the soma and bypass the dendrites may

miss some important neuronal functions, such as gain modulation.

Author summary

New experimental techniques based on optogenetics allow neuronal activity to be manip-

ulated with a high degree of spatial and temporal precision. This opens up new prospects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006027 March 9, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Jarvis S, Nikolic K, Schultz SR (2018)

Neuronal gain modulability is determined by

dendritic morphology: A computational optogenetic

study. PLoS Comput Biol 14(3): e1006027. https://

doi.org/10.1371/journal.pcbi.1006027

Editor: Boris S. Gutkin, École Normale Supérieure,
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for testing computational models of neuronal function, including questions such as the

role of dendrites in neuronal gain control. However, compartmental models in computa-

tional neuroscience have not, until now, incorporated the kinetic models of opsins that

are required in order to directly match the predictions of a computational model with

observed optogenetic experimental results. Here, we introduce an approach for computa-

tional optogenetic modeling to test hypotheses, demonstrating it with application to the

role of dendrites in neuronal gain control. We find that gain modulability is indicated by

dendritic morphology, with pyramidal cell-like shapes optimally receptive to modulation.

All dendritic subdomains are required for gain modulation—partial illumination is insuf-

ficient. Due to the simulation framework used, these results are directly testable through

optogenetic experiments. Computational optogenetic models thus can be used to improve

and refine experimental protocols for direct testing of theories of neural function.

Introduction

Neuronal gain modulation occurs when the sensitivity of a neuron to one input is controlled

by a second input. Its role in neuronal computation has been the subject of much investigation

[1–4], and its dysfunction has been implicated in a range of disorders from attention deficit

disorders, through to schizophrenia, autism and epilepsy [5–8]. Neocortical neurons vary in

modulability, with gain modulation having been observed in cortical pyramidal cells from lay-

ers 2/3, 5 and 6 [9, 10], whereas input-output relationships in some other cell types, such as

entorhinal stellate cells, appear to be much less modulable [11]. Despite their role as the princi-

pal excitatory neuronal class within the cortex, it is unknown which properties of pyramidal

cells are necessary in order to modulate their gain.

Gain modulation is signified by a change in the gradient of the input-output function of a

neuron, in comparison to an overall change in excitability, which is instead evident as a lateral

shift. There have been several proposed mechanisms for how a neuron alters the relationship

between its input and output, including the use of shunting inhibition to shift the input-output

curve [12, 13], and varying the rate of background synaptic noise, decreasing the ability of the

neuron to detect target input signals [14, 15]. A subsequent theoretical study posits that both

mechanisms may be necessary [16], which is supported by experimental evidence from intra-

cellular in vivo recordings [17], indicating that these processes are not mutually exclusive and

may instead operate in different regimes. Notably, theoretical studies have used point neuron

models, while experimental studies have injected current into the soma. However, as in situ
the processing of individual synaptic inputs occurs within the dendrites rather than somati-

cally, this raises another possibility: that gain modulation may involve dendritic processing.

The modulation of gain is affected by the balance between excitation and inhibition, and as

dendrites act to integrate inputs from throughout their arbors, their capacity for mediating

between attenuation and saturation is highly dependent upon the local configuration of den-

dritic segments and synaptic inputs [18–24]. This suggests the possibility that the morphology

of the dendritic tree itself is sufficient for managing attenuation and saturation of inputs,

thereby facilitating a neuron’s capacity for gain modulation.

To date, technical limitations in observing and manipulating activity at multiple locations

throughout the dendritic arbor have made experimental studies of the dendritic contribution

to neuronal gain control infeasible. While recording from single or a small number of den-

dritic locations is possible [25], this technique is not suited to manipulating activity over multi-

ple locations, mimicking the thousands of inputs a pyramidal cell receives in vivo. However,
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optogenetics may prove to be a better method for manipulating dendritic activity, as light-acti-

vated opsins can be expressed throughout the entire membrane of the neuron—including the

dendrites. The existence of both excitatory [26] and inhibitory opsins [27, 28] suggests the pos-

sibility of altering the balance of excitatory and inhibitory currents locally in dendrites, to act

as a synthetic substitute for the effect of excitatory and inhibitory presynaptic input. This raises

the prospect of a viable experimental method with which to investigate the mechanisms of

neuronal gain modulation in the whole cell, as opposed to studying somatic effects alone.

Here we demonstrate through a computational model that neuronal gain modulation can

be determined by cell morphology, by means of a set of dendritic morphological features

which mediate between attenuation and shunting to modulate neuronal output. The local

interaction of competing excitatory and inhibitory inputs is sensitive to the placement of den-

dritic sections. This indicates that gain modulation can be achieved by altering the overall bal-

ance of excitation and inhibition that a neuron receives, rather than being dependent on the

statistical properties of the synaptic input. As experimental validation of our work would

require optogenetics, we tested our hypothesis in detailed, biophysical models of opsin-trans-

fected neurons, using experimentally fitted models of channelrhodopsin-2 (ChR2) and halor-

hodopsin (NpHR), which when activated produced excitatory and inhibitory photocurrents.

This study proposes a new perspective on the contribution of dendritic morphology to the

characteristics of neurons, relating the shape of their dendritic arbors directly to their func-

tional role within the neural circuit. We show that all dendritic subdomains are required for

gain modulation to occur, suggesting that distinct innervation through synaptic targeting by

discrete presynaptic populations could be an effective mechanism by which a neuron’s output

can be quickly gated between high gain and low gain modes. By incorporating kinetic opsin

models within our detailed, compartmental neuron modeling approach, we make predictions

which are directly testable by optogenetic experiments. In particular, our model leads to the

proposal of a new illumination protocol for a more naturalistic method of neuronal photosti-

mulation—in which rather than simply imposing spikes or shutting down neuronal activity

entirely, it is possible to increase or decrease the gain of a neuron’s response to existing inputs.

Results

In the results, below, we use the terminology in vitro and in vivo to describe simulations. For

clarity, in vitro is here taken to indicate a single point injection (as in typical patch clamp

experiments), and in vivo refers to population synaptic-like input activity. In this way, we

emphasize the significant difference between whether the driving input as a single point or

multiple synaptic sites.

Dendritic morphology determines gain modulation

We begin with a modified ball-and-stick model, comprising of a single soma and approxi-

mately 126 dendritic sections with only passive properties. We systematically rearranged the

dendrites to vary polarity via the number of primary branches np and the branching patterns

via the number of sister branches at each bifurcation nb of the resulting arbor (see Methods)

such that they were symmetrical around the soma (Fig 1A). The total number of branches is

controlled by the number of bifurcation stages (nℓ, this number includes the creation of pri-

mary branches). This enabled us to generate 20 distinct dendritic morphologies. As the num-

ber of sections remained approximately constant, thus fixing the spatial extent of the dendritic

arbor, this allowed us to identify if a neuron’s capacity for gain modulation could be deter-

mined by the dendritic arrangement, independently of total dendritic area, and if so, to

Neuronal gain modulability
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Fig 1. Gain modulation in model neurons with varying dendritic morphologies. (A) The four examples of dendritic morphologies that we examined

here, which represent some typical morphological characteristics (left to right): (i) unipolar with moderate branching (np = 1, nb = 2, nℓ = 7, total number of

branchesNtotal = 127, see Eq (2)), (ii) bipolar with moderate branching (np = 2, nb = 2, nℓ = 6,Ntotal = 126), (iii) multipolar arbor with extensive branching

(nb = 2, nb = 62, nℓ = 2, Ntotal = 126) and multipolar with no branching (np = 4, nb = 1, nℓ = 31, Ntotal = 124). (B) The photocurrent measured at each

compartment along the dendrite from soma to a terminating distal location, for four neurons, for inhibitory (orange) and excitatory (blue) photocurrents of

Neuronal gain modulability
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establish which specific morphological features contribute. Effects of the total dendritic area

have been investigated in [29].

The contribution of branching has been investigated previously, and found to attenuate

both voltage signals [30] and membrane resistance [20]. To understand the interaction

between neuron-wide activation (as provided by the photocurrent) and a single point input

(such as current injection or presynaptic input), we evaluated first the steady-state response of

the abstract models when photocurrents were induced throughout the entire dendritic arbor,

before considering separately the current injection in a single distal branch.

Excitatory and inhibitory opsins (ChR2 and NpHR, respectively) were included throughout

the dendritic tree in addition to the soma, and generate excitatory and inhibitory photocur-

rents when photoactivated. We set the opsin expression (defined by gphoto in Eq (1)) to be

inversely proportional to the area of each compartment, and fixed the irradiance to be equal

across the entire neuronal surface, thus ensuring the resulting photocurrent induced for each

section is constant. Measuring the net photocurrent locally along the length of the dendritic

arbor while shifting the ratio between NpHR and ChR2 (xNpHR) whilst keeping all other con-

ductances constant, different dendritic morphologies summate the photocurrents such that

the voltage measured at the soma is influenced by branching and polarity (Fig 1C), where mor-

phologies with no branching show a small amplitude for the photocurrent. This relationship

between net amplitude and branching was consistent across all arbor shapes we tested (Fig

1B), providing the first indication that different neuron types will sum the photocurrents

differently.

Like [30], we injected current at a single point on a distal, terminating branch and measured

the membrane voltage across the path between the input site and soma, along with sites at

sister branches, which indicated the amount of voltage attenuation that occurred without pho-

tocurrents included (Fig 1D, note differing voltage scales). For a fixed amount of current

injected on a single terminating branch, the perturbation when measured at the soma followed

an identical trend as to that observed for the photocurrents in Fig 1B, due to the symmetry of

the dendritic configuration, varying however in magnitude. This suggests that the magnitude

of depolarization from photoactivation has to be matched to that obtained from the point

input; mismatch will result in the neuron’s output being determined by the dominant term.

Thus, if there is a fixed point input, this requires the amount of photoillumination to be

matched to the dendritic morphology. We additionally measured the depolarization when

both photoillumination and current injection were included, and found that it was a linear

sum of the responses we observed separately for both types of input, as expected as there were

only passive ion channels in the dendrites.

Whether the input was dendrites-wide or a single point, these dual methods of driving the

neuron illustrate their respective effects: that for both methods, depolarization is largest and

most effective for branched structures. For sustained whole cell photoactivation, the induced

different amplitudes. (C) Steady-state response for single injection of fixed amplitude at a distal location. Tracing the voltage for each dendrite section from

injection site to soma (black), as well as sister branches and other primary branches (grey), shows the attenuation also varies with dendritic morphology,

and is consistent with previous studies [30]. (D) Spiking responses (shown in panel F) were calculated by driving the neuron at a single distal dendritic

section, and measuring the firing rates for unilluminated and illuminated cases—an example of the effect of using inhibitory photocurrents (x = 4, see (E)).

(E) Spiking frequency with photoactivation vs. background frequency (i.e. spiking rates prior to photoactivation) for the four example neurons showing no

gain modulation, to increasing amounts of gain modulation, for irr = 0.02mW/mm2, for different ratios of NpHR and ChR2 illumination strengths from 1:4

to 4:1. No other conductances were changed. (F) The net depolarization measured at the soma, for identical irradiance strength, across dendritic

configurations. The x-axis: normalised values for Polarity (np), y-axis: normalized values for Branching (nb). (G)M values for a subset of dendritic

configurations and irr = 0.02 mW/mm2, withM> 0 indicating gain modulation. Neurons with multiple primary dendrites and a moderate degree of

branching displayed the most modulation. (H) Increasing the illumination strength by an order of magnitude (irr = 0.2mW/mm2) increases the region

corresponding to morphologies that have the most modulation. (I) Modulation as irradiance is increased, for the four example neurons, shows a clear

relation between matching irradiance strength to dendritic morphology in order to maximize gain modulation.

https://doi.org/10.1371/journal.pcbi.1006027.g001
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photocurrent acts to raise or lower the effective resting membrane potential, upon which the

depolarization from a single (or multiple) distal point can further drive the membrane at the

soma to threshold. These results also indicate that the effect of the photoactivation can domi-

nate the neuron’s response if not matched to the relative level of activation induced by current

injection at a single point.

To contrast and compare these results with the impact of the dendritic tree when the input

is located at the soma, we investigated the four characteristic dendritic morphologies from Fig

1A (see also S1 Fig). This situation has been previously extensively investigated, e.g. Eyal et. al.

[29], and was found that the shape and size of dendritic arbors strongly modulate the onset of

action potentials by regulating the impedance load attached to the soma. The dendritic tree

acts as a current sink in this case, and its impedance affects the soma depolarisation.

We then quantified the transient response by driving the neuron with spiking input, mim-

icking excitatory postsynaptic potential (EPSP) events included at set of locations at a termi-

nating branch distal to the soma. By changing the rate of presynaptic events and then

measuring the neuron’s firing rate we get the background firing rate when not illuminated,

before repeating with irradiance (Fig 1E), we were able to measure the gain of the neuron

while varying the E:I balance by changing the ratio of ChR2 to NpHR (Fig 1F). For irr = 0.02

mW/mm2, we found that gain modulation was achieved in a subset of dendritic morphologies,

marked by an increase in the gradient of the response as opsin activation moved from being

dominated by inhibition to excitation (Fig 1F).

To identify whether there was a consistent trend between dendritic configuration and gain

modulation, we define a new measure we term the gain modulation index (M), as the relative

change in gradient of the response curves (from Fig 1F) when dominated by ChR2 and NpHR

respectively, i.e.M = (θChR2 − θNpHR)/θbalanced for the difference in angles for the two responses

(the slope for θbalanced is approximately tan(θbalanced)� 1). AnM’0 indicates that no gain

modulation occurred, whereas increasingM indicates an increasing degree of gain modula-

tion. We found that there was a small region for which modulation was substantial, and corre-

lated to dendritic structures that were multipolar with a small degree of branching (Fig 1G,

point np = 4, nc = 2; note that a discrete set of measurements is additionally presented as a con-

tinuous colourmap for the purpose of better visualisation). Following our earlier indication

that photoactivation has to be matched to dendritic structure, we measured the modulation

for irradiance values an order of magnitude smaller and greater. When irr = 0.002 mW/mm2

we observed no gain modulation for all dendritic configurations (not shown), as their

responses were dominated by the current injection. Increasing the irr = 0.2 mW/mm2

expanded the region of dendritic configurations which displayed gain modulation, which was

now most prominent for bipolar morphologies (Fig 1H). To obtain better intuition as to how

irradiance affected modulation, we chartedM for our four example neurons over four magni-

tudes and observed a clear trend, with preferred irradiance values for which a neuron will dis-

play maximal modulation (Fig 1I). For irr = 2 mW/mm2 some configurations (e.g. (4, 1, 31))

start entering tetanic stimulation for full illumination with ChR2, for which the modulation M

starts decreasing.

Pyramidal cells are gain modulable

Following the predictions made by our abstract models, we investigated whether these princi-

ples still hold for detailed neuronal models, using a highly detailed Layer 5 pyramidal cell (Fig

2A), previously published in [31]. Its reconstructed morphology is roughly bipolar with mod-

erate branching, which, from the abstract models we tested, demonstrates a strong capacity

for gain modulability. However, the model also contained 9 additional ion channel types

Neuronal gain modulability
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heterogeneously distributed throughout the soma, apical and basal dendrites. These included

multiple variants of Ca2+ and Ca2+-gated channels, which introduced non-linearities as well

as significantly longer time constants, which may alter the capacity of a neuron to generate

spikes and thus indirectly alter its capacity for gain modulability.

To reproduce experimental tests, we began by driving our L5PC by injecting current at the

soma, in a similar manner to a typical in vitro electrophysiological experiment, and compared

the firing rates upon illumination against the background firing rate (Fig 2B). This revealed

that IF curves were co-located (Fig 2C), indicating no gain modulation. However, this was

consistent with findings from our abstract models where we observed that gain modulation

was site specific for the driving input. Consequently, we moved the injection site to a distal

location on an apical dendrite. This time, we observed clear changes to the gradient of the IF

curve as increasing amounts of current were used to drive the cell while varying the E:I balance

(Fig 2D).

While this demonstrated that the gain of this pyramidal neuron may be modulated in an in
vitro scenario, neurons in situ are instead driven by thousands of excitatory and inhibitory syn-

aptic inputs located throughout their dendritic arbor. Thus we repeated our simulation, but

changed the input to mimic PSPs, by identifying 384 sites for excitatory inputs, and 96 sites for

inhibitory inputs, throughout the apical and basal dendrites (Fig 2E)-two bottom panels. We

Fig 2. Simulated in vitro and in vivo responses for a pyramidal cell show gain modulation. (A) Layer 5 pyramidal cell, taken from [31]; (B) (top) Soma membrane

voltage for the resulting net photocurrent as xNpHR is increased for irradiance = 1mW/mm2 before current injection. (bottom) voltage traces following current

injection while ChR2 and NpHR are photoactivated (bars indicate optical activation and relative strength of opsins); (C) Injecting current at the soma, mimicking in
vitro-like input shows no gain modulation; (D) Moving the injection site to a location on the apical dendrite showed strong gain modulation; (E) (top) Same as panel

(B, top) but for irradiance = 0.02mW/mm2. (Bottom)Voltage traces after driving the neuron with multiple presynaptic EPSP and IPSP events, with photoactivation

dominated by ChR2 and NpHR; (F) In vivo-like input showed moderate gain modulation, with saturation for larger input values. Background rates were calculated by

varying the rates of presynaptic events and observing the period prior to photoactivation.

https://doi.org/10.1371/journal.pcbi.1006027.g002
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observed that gain modulation was still clearly evident (Fig 2F), although the firing rates satu-

rated for input firing rates greater than 20 Hz.

Divisive modulation in stellate neurons—but only in vitro
To examine the effect of dendritic morphology, we also investigated gain modulation in stellate

cells, which are also present within cortical circuits, but whose morphology is very different

from pyramidal cells. We used a Layer II hippocampal stellate cell model previously published

by [32], based on reconstructions from [33]. Morphologically, it is multipolar with a small

degree of branching (Fig 3A), which places it near to the abstract models for which we

observed little to no gain modulation.

Unlike L5PCs, the response to an in vitro input of injecting current at a dendritic location

(Fig 3B) revealed that stellate cells do perform divisive gain modulation (Fig 3C). In the case of

current injection at the soma the same effect was observed as for the L5PC cell shown in Fig

2C: an approximately co-linear response (S2 Fig).

We then drove the cell by supplying synaptic inputs throughout the dendritic tree to mimic

in vivo conditions (Fig 3D), and observed no gain modulation but rather a linear shift as

xNpHR was varied (Fig 3E). This suggests that while stellate cells presumably play an impor-

tant role within the neural circuit, the gain of their input-output functions is unlikely to be

Fig 3. Gain modulation in stellate cells. (A) Layer 2 hippocampal stellate cell morphology, reproduced from model of reconstructed cell [32, 33]; (B) (top)
Membrane voltage for net photocurrent as xNpHR is varied for an irradiance of 0.07 mW/mm2. Current injection was fixed at a location on a dendrite more than

100μm from the soma. (bottom)Voltage traces, recorded at soma, for Idend = 1.2 nA respectively, following current injection while ChR2 and NpHR are

photoactivated (bars indicate optical activation and relative strengths of opsin strengths); (C) IF curves for current injection indicates divisive gain modulation;

(D) Voltage traces after driving the neuron with multiple presynaptic EPSP and IPSP events spread throughout the dendrites, with photoactivation dominated by

ChR2 and NpHR respectively; (E) IF curves for in vivo-like input reveal no gain modulation (taken from multiple independent realizations for presynaptic

spiketimes, n = 5).

https://doi.org/10.1371/journal.pcbi.1006027.g003
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modulated in vivo, but are instead likely to be subject to shifts in overall excitability through

changes in the amount of excitation or inhibition.

Shifting E:I balance produces smooth gain transition and preserves

subthreshold dynamics

From our results, it is clear that for some neurons, such as pyramidal cells, it is possible to

retune their output by applying whole-field photoactivation. However, by measuring the out-

put firing rate, we ignore spike train structural characteristics such as the timing of the spikes.

To examine how spike timing was affected by optogenetically altering the balance of excitation

to inhibition, we considered a L5PC’s spike train in response to frozen noise input for an in
vivo-like scenario and define a period during which we wish to increase or decrease the firing

rate while the driving input remains fixed (Fig 4A). High-level illumination, which is com-

monly used experimentally, dramatically reshapes the spike train as the membrane potential is

either completely hyperpolarized or the neuron fires with a high-frequency, regular rate (Fig

4B). Thus while this technically reprogrammes the gain of the cell, it does so by artificially

rewriting the output spike times.

Instead, preserving subthreshold dynamics that arise from the hundreds of presynaptic

events should allow the spiketrain characteristics to remain naturalistic, retaining rather than

overwriting existing information processing functionality. To test this, we used a significantly

lower level of illumination and found that the resulting spiketrains are qualitatively similar to

the original response (Fig 4C). To what extent can we perturb the neuron through external

photoactivation before spiketrain characteristics are destroyed?

To quantify how the intrinsic spike timing of a neuron is altered by increasing levels of

optogenetic activation, we measured the interspike interval (ISI) and then calculated the coeffi-

cient of variation of the interspike interval sequence (CVISI), and the Fano factor (FF), which

describes the variance of the spiketrain normalized by the mean firing rate. We compared the

CVISI and FF during the period where the firing rate was altered, as both the strength of illu-

mination and the balance of excitation to inhibition was varied, for different levels of intrinsic

activity. We observed that FF (Fig 4D) and CVISI (Fig 4E) could be maintained in the same

range as the unperturbed spiketrain, but that this was dependent on level of illumination, sug-

gesting that the artificial drive has to be matched to the level of the input the neuron already

receives. The best matched level was for irr = 0.002mW/mm2, which closely matched the

intrinsic CVISI and FFISI values of the neuron. Using this irradiance, we observed a smooth

transition from the original response as the optogenetic drive moved from NpHR-dominated

to ChR2-dominated (Fig 4F).

All dendritic subdomains are required for gain modulation

Our findings for both biophysically detailed and abstract models demonstrate that dendritic

morphology greatly contributes to determining a neuron’s capacity for gain modulability. Up

until this point, we have only considered scenarios with equal illumination for every dendritic

subdomain. Experimentally, however, this is not guaranteed due to unequal expression of

opsins throughout the cell membrane as well as uneven light scatter as photons move through

tissue. Thus we investigated how gain modulation was affected when dendritic subdomains

were unequally photoactivated. Mechanistically, this is relevant for gain modulation as synap-

tic input to a neuron is not likely to be uniformly distributed throughout the entire dendritic

tree, but may instead be organized by presynaptic origin [21, 34]. Could it be that such organi-

zation is present to allow the coordinated activation of dendritic subdomains, which is

required for modifying the neuron’s output?

Neuronal gain modulability
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Fig 4. Subthreshold responses are preserved by low-level illumination. (A) The native response of L5PC when

driven by presynaptic inputs of a fixed rate. Grey background indicates the time during which we wish to increase or

decrease the firing rate; (B) Voltage traces Vsoma when driven by high-level illumination (irr = 2mW/mm2) for ChR2

(blue) or NpHR (orange) show clear increase or ablation of the firing rate. However, the membrane potential and spike

train characteristics both during and post photoactivation are not naturalistic; (C) Instead, low-level illumination

Neuronal gain modulability
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We began by examining partial illumination in abstract models, illuminating only one den-

dritic subdomain (pole) to examine how this altered gain as ChR2:NpHR was varied. We first

want to pick the case with the strongest modulation gain during full illumination and we find

that by looking at results in Fig 1H): that is a bipolar model np = 2, nb = 6, now illustrated in

Fig 5A) and the output frequency is shown in Fig 5B). By illuminating only one pole instead

(Fig 5A), we observed that partial illumination abolished gain modulation (Fig 5C). Measuring

the voltage along both the illuminated and non-illuminated branches revealed that during par-

tial illumination, the non-illuminated pole/branch acts as a current sink.

In this scenario, only 50% of branches were illuminated: perhaps gain modulation was still

possible with an increased but incomplete set of dendritic subdomains? To test this, we need a

multipolar abstract neuron (rather then the bipolar shown in Fig 5A) and we chose one with

np = 4 (and nb = 2, nl = 5), and successively activated additional subdomains (poles) until all

branches were illuminated. We found thatM increased as successive poles were illuminated

(Fig 5D). As this principle would hold for all dendritic morphologies, our findings demon-

strate that partial illumination incapacitates gain modulation and illustrates that coordinated

activation between dendritic branches is necessary for full gain modulation.

We then tested partial illumination in our detailed neuron model of a L5PC by targeting

the apical dendrites, reflecting a realistic scenario in which light from a superficially located

source would be more likely to penetrate the apical rather than basal dendrites (Fig 6A). Simi-

larly to abstract models with two primary branches, we found that partial illumination

preserves subthreshold dynamics, minimally interfering with the subthreshold responses both during and post the

activation periods (irr = 0.002mW/mm2); (D,E) Quantifying spiketrain perturbances using the Fano factor (FF) and

coefficient of variation of the interspike intervals (CVISI) during photoactivation as illumination strengths were

increased. The FF and CVISI of the original response for firing rates as the presynaptic rates were varied (grey dots) as

well as the sample plot shown in A (black dot) indicate the natural distribution of FF of the neuron’s response. Optical

activation of the neuron when driven by presynaptic inputs over a range of xNpHR values while varying illumination

strengths show that lower illumination strengths (blue) most closely match the FF of the natural cell and therefore

minimally disturb the spike train; (F) The spike trains during the illumination period as xNpHR is varied for low-level

illumination (irr = 0.002mW/mm2) shows a smooth continuum of responses, as well as minimal disturbance to the

post-stimulation spike trains.

https://doi.org/10.1371/journal.pcbi.1006027.g004

Fig 5. Partial and graded illumination in abstract neurons. (A) Full (left) and partial (right) illumination; (B,C) Response IF curve for a neuron with np = 2, nb = 6,

nℓ = 3 and irradiation = 0.2 mW/mm2 that has strong gain modulation when all branches (excluding the soma) are illuminated (B), but partial illumination nearly

abolishes gain (C). (D) Measuring the modulation indexM as successive illumination of poles reveals that gain modulation rapidly decreases as fewer branches are

illuminated for a neuron with np = 4, nb = 2, nℓ = 5 and irradiation = 0.02 mW/mm2.

https://doi.org/10.1371/journal.pcbi.1006027.g005
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Fig 6. Partial and graded illumination in L5PC. (A) Partial illumination in L5PC model, where the apical but not the basal dendrites are illuminated; (B)

The resulting IF curve for partial illumination shows no gain modulation for same input as used in Fig 2D, where full illumination showed strong gain

modulation; (C) Graded illumination over L5PC, from superficial layer at apical dendrites; (D,E) Graded illumination for fixed xNpHR and irradiance, for

different combinations of graded illumination. For both axis zero represents no grading (i.e. uniform irradiation of complete apical tree), and one represents

maximum grading which goes from the nominal irradiation at the top to zero irradiation at the bottom. The responses for no graded illumination (purple

circles) are moderately reduced when ChR2 is scattered slightly more than NpHR (blue circles), and nearly abolished when ChR2 is scattered significantly

more than NpHR (green circles).

https://doi.org/10.1371/journal.pcbi.1006027.g006
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abolished gain modulation in L5PC when driven by current injection at a site in the apical

dendrites (Fig 6B).

A more realistic experimental scenario is one in which the likelihood of photons scattering

rises with increasing depth, corresponding to a continuous gradient for the effective irradiance

that decreases with distance from the surface (Fig 6C). Furthermore, as opsin activation occurs

by illumination using a wavelength that is normally chosen optimally for each opsin (subject

to available laser lines), and longer wavelengths proportionally penetrate distances, we exam-

ined the penetration gradients for ChR2 and NpHR independently (Fig 6D). Previously, we

had only considered full-illumination of both ChR2 and NpHR with no graded illumination,

which was equivalent to a gradient value of 0.0 (Fig 6D, top-left corner, purple circles). Now,

by fixing xNpHR and irradiance while activating the L5PC without any additional driving

stimulus, we could chart how independently varying each gradient impacted on the firing rate.

We observed three trends that are consistent with our earlier observations: (i) increasing

the xNpHR factor increased the contribution of the NpHR gradient, which decreased the firing

rate; (ii) a ChR2 gradient = 0.0 (signifying full ChR2 illumination) and a NpHR gradient of 1.0

resulted the largest firing rates; (iii) higher irradiance values led to higher firing rates, increas-

ing the range of ChR2 gradients for which the neuron fired. However, we were interested in

cases that correspond to the realistic scenario in which longer wavelengths penetrate through

tissue further. As the preferential activation wavelengths for ChR2 and NpHR are λ = 475nm

and 590nm respectively, this manifests as a bias towards NpHR-dominated regimes. Introduc-

ing a small degree of graded illumination reduced the firing rate; the neuron was further

silenced by increasing the NpHR gradient from a slight bias (Fig 6E, blue circles) to a signifi-

cant relative difference between ChR2 and NpHR gradients (Fig 6E, green circles).

The modulation by graded illumination was ubiquitous, although dependent on the irradi-

ance, xNpHR value and scatter gradients for each wavelength. Experimentally, these effects can

be easily overcome by prior calibration to compensate for the effects of scattering, but serve to

highlight the sensitivity of a neuron to deviations from unequal innervation.

Discussion

An ideal dendritic morphology for gain modulation?

Previous work [12–14, 16] examined what input properties are required to alter the output

gain of the neuron. Critically, these studies took a somatocentric viewpoint, concentrating on

the output of the neuron for a given input, but bypassing the computation performed by the

neuron itself. In this work, we addressed the contribution of the dendrites directly, by consid-

ering how their configuration may help or hinder modulation of the neuron’s activity and thus

explain why some classes of neurons, but not others, contribute to setting the gain in a neural

circuit. We established that the configuration of dendrites can affect a neuron’s capacity for

gain modulability, with a centrally placed soma and a moderate amount of branching being

most receptive to gain modulation. As this shape closely matched pyramidal cells, this rein-

forces that their role within neural circuits is to act not only as the primary excitatory neuron

but also as a key element in the setting of the gain of the circuit. Thus, in addition to the influ-

ence of dendrites on firing patterns [24, 35] and their role in dendritic computation [36, 37],

our results demonstrate a new aspect to dendrites that directly relates the morphological prop-

erties of an individual neuron to its functional role within a network.

We explored the relation between a neuron’s dendritic morphology and capacity to alter its

firing rate by using excitatory and inhibitory photocurrents locally input to each dendritic sec-

tion. The use of photocurrents, as well as making the study relate more closely to putative

optogenetic validation experiments, was intended to mimic the local excitatory and inhibitory
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currents induced by the numerous presynaptic inputs located throughout the entire dendritic

tree, with the notable difference in that while postsynaptic potentials are transient, the photo-

currents we induce were typically close to steady-state. Further input was additionally applied

that mimicked in vitro or in vivo input. We made no specific assumptions as to the specific

type of stimulus representation of the input, such as visual contrast [38], orientation [10] or

other stimulus traits; our results hold for the general case in which a driving input at discrete

set of location is modulated by neuron-wide distributed drive.

Using this framework allowed us to identify that dendritic branching and the relative

location of the soma were the most important morphological characteristics, as dendritic

branching allowed balance between saturation and attenuation while a centrally located soma

avoided it acting as a current sink. As previously established in [30], these effects become cru-

cial when considering the compounded local input that is applied to each dendritic section

(here, the non-driving input i.e., the photocurrents). For L5PC neurons, the stratified output

for illumination suggests that if net drive to the dendrite is able to sufficiently cover the entire

arbor, then L5PCs will be gain-modulable independent of the location of the driving input,

which has been shown to govern the input-output relationship for single inputs [18, 39].

In this respect, our findings suggest that gain modulation should be achievable regardless of

the specific input location. However, there is one critical caveat: that the input must be den-

dritic. The absolute abolition of gain modulation when the driving input was located at the

soma in a pyramidal cell reinforces the role of dendrites in processing input and their contri-

bution to modulating gain. It also highlights the difficulties associated with experimentally

unraveling neuronal mechanisms which involve dendritic processing. While recording at

the soma gives us an exact measure of the cells output, injecting input directly to the soma

bypasses the dendrites, rendering their contribution invisible. Instead, techniques such as den-

dritic patching or extracellular drive are more suitable for this purpose, despite their respective

technical challenge or lack of control for the number and locations of synaptic sites. The future

development of holographic methods in combination with optogenetics provides potential

solution to both limitations, although it is currently limited by the tradeoff between number of

distinct sites that can be targeted and the frequency of their stimulation [40].

We note here that we attempted to use only passive conductances in biophysical models, in

order to have better comparison with abstract neurons in interpreting the role of dendritic

morphology, since their models include some active conductance (although in relatively low

concentrations). However, due to their configuration and complexity we were unable to obtain

normal neuronal responses i.e resting potential did not equilibrate in the experimentally

observed range, due to different parameters required for the L5PC and stellate cells to operate

in the passive regime.

The importance of presynaptic targeting for full gain modulation

Quantifying the effect of partial illumination revealed that gain modulation also requires the

participation of all dendritic subdomains. Removing background input from dendritic subdo-

mains resulted in the unactivated arbors becoming a current sink, and reduced the ability of

the neuron to modulate gain.

Tracing studies have hinted that within pyramidal cells in sensory areas, there is synaptic

targetting with feedforward presynaptic input from the thalamus tends to synapse onto basal

dendrites, while input from higher cortical areas instead connects within apical dendrites [34,

41]. This arrangement of separate innervation to distinct dendritic subdomains would very

easily allow for the same mechanistic process as we have observed here, whereby both feedfor-

ward and feedback connections are required for full gain modulation. Removal of one of these
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sources, such as the feedback input from higher cortical areas, would quickly act to shunt any

background drive to corresponding dendritic subdomain, thus providing a mechanism for

rapid switching between full gain modulation and no gain. As we observed that the modula-

tion of gain approximately scales with the fraction of the dendritic subdomains that receive

background driving input, the change between full gain and no gain can be most effectively

controlled with two dendritic subdomains, as increasing the number of subdomains requires

greater coordination between distinct input areas.

Application and improvement of optogenetic protocols

An important feature of computational models of neuronal information processing is that

they be experimentally testable. Traditionally, for biophysically detailed, compartmental mod-

els of neurons, this has involved making predictions that can be confirmed by intracellular

recording (whole cell patch clamp or sharp microelectrode) experiments. However, recent

years have seen new optogenetic experimental paradigms come to the forefront of neurosci-

ence, which are likely to form the basis of many experimental designs to test principles of

neuronal function. Computational modeling of neuronal function should incorporate simula-

tion of experimental predictions made by the model; whereas in the past this was largely

electrophysiological, this now includes both electrophysiological and optogenetic predictions.

We envisage that computational optogenetic modeling is likely to assist in bridging the gap

between computational and experimental studies in areas ranging from neuroscience [42, 43]

to cardiac electrophysiology [44]. For this reason, in the current study we incorporated kinetic

models of opsin into the biophysically detailed neuron models described here.

Optogenetic illumination protocols in current use can generally be classified as “hard con-

trol”, in which the output of a cell is written directly by using high levels of illumination to

induce either spiking or hyperpolarization [45, 46]. The problem with such approaches is that

they effectively reprogram the output of the neuron, disrupting/eliminating the information

processing operation that it is performing on its inputs. We suggest that a more refined

method of optogenetic modulation would preserve the cell’s ability for its outputs to be

affected by its inputs, but altering the gain of this input/output transformation. Our findings

demonstrate the feasibility and support the development of such optogenetic control of indi-

vidual neuronal gain. In this approach, using whole-field, low-level illumination allows for

subthreshold dynamics to dominate, and the neuron remains driven by its presynaptic input,

with the gain of its input-output function modulated by activation of a mixture of opsins. In

the current work, we demonstrated that a combination of channelrhodopsin and halorhodop-

sin can provide a suitable opsin mix, with effect dependent upon target cell morphology.

For the general purpose of optogenetic gain control, step-function opsins (SFO) [47] and

stabilized step-function opsins (SSFO) [48] may be suitable, as they do not required continu-

ous illumination to be active, and have their suitability for loose control has already been dem-

onstrated when driven by inputs located at the soma [47]. SFOs and SSFOs have already been

proposed for use in the study of plasticity and homeostatic mechanisms during development.

Our results support their suitability for application to gain modulation in vivo but also predict

a restriction to their usage that will be dependent on the class of neurons to be targeted. More

generally, our findings suggest that smaller, rather than larger, photocurrent amplitudes are

desirable for the purpose of modulating gain.

Unequal or incomplete optical activation of the entire dendritic arbor also has significant

implications for experiments that include optogenetics. We used optogenetics specifically as

opsins are expressed on the surface membrane, and therefore can generate photocurrents

locally within the dendrites. Experimentally, however, opsins may be non-uniformly
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distributed throughout the neuronal membrane, while optical point sources incompletely illu-

minate the entire membrane surface area, which is further compounded by scatter effects as

light moves through tissue. We quantified the impact of optical scattering by examining how

graded illumination alters the gain modulation curves of a L5PC, for the scenario when the

scattering was equal but also for the more realistic scenario where it is unequal. For instance,

ChR2 is activated at λ = 475nm, while NpHR is preferentially activated at λ = 590nm, which

penetrates further through tissue. From our results, approximately equal attenuation for both

wavelengths only slightly decreases the firing rate; as this imbalance increases and shifts

towards longer wavelengths, we found a substantial decrease in firing rate due to this physical

constraint that biases in favor of NpHR. Additionally, although ChR2 and NpHR have differ-

ent peak absorption wavelengths, they both are activated over a larger range of wavelengths,

and consequently there is low-level activation of NpHR at λ = 475nm, further biasing dual acti-

vation towards NpHR-dominated regimes. These effects can be experimentally compensated

for by calibrating curves as the ratio of ChR2 to NpHR is varied, but require explicit measure-

ment for individual experiments. The issue of precise co-activation of both excitatory and

inhibitory opsins can be addressed by development of better dual opsins, as well as of better

techniques for controled 3D illumination. Several options already exist, such as holographic

spatially patterned illumination technology [49] and individually addressable LED micro-

arrays [50].

More generally, identifying the impact of experimental effects is critical for the improve-

ment and refinement of optogenetics. While optogenetics offers new possibilities for precise

spatial and temporal targeting of distinct neural populations, practical hurdles such as opti-

mally designing illumination protocols are more difficult to identify through experimental

means. Additionally, as new opsin variants with differing kinetics becoming available, the task

of identifying which opsin is best suited to match the intrinsic dynamics of a target neuron

class becomes increasingly impractical to test. For these aims, the use of computational models

of opsins will become increasingly significant [51], from the level of channel kinetics, to the

level of a single neuron [52, 53], and beyond to the level of the network.

Methods

All simulations were performed in NEURON and Python [54]. The TREES toolbox [55] was

used for steady-state analysis of injected current in abstract models, and NeuroTools tool-

box [56] was used for spiketrain analysis. Our simulations were calibrated with experimental

results for which we performed a rigorous fitting process to the experimental data (ours for

ChR2 and ref. [57] for NpHR). Details of the processes can be seen on our Cloud Computing

Portal—named Prometheus—which hosts all our computational tools for optogenetics (called

PyRhO): http://try.projectpyrho.org/. This is a Python-based Jupyter Notebook that works in a

web-browser. Within the user interface, functions for fitting parameters allow experimental

data to be loaded from which parameters are extracted for 3, 4 and 6 state models. The tool

offers nine different fitting algorithms to chose from, as well as post-fit optimization.

Modelling co-activated opsins for dual control

Our model of a co-activated opsin utilizes our previously published 6-state models of chan-

nelrhodopsin-2 (ChR2) [43, 52] and halorhodopsin (NpHR) [53]. A 6-state model was chosen

for both ChR2 and NpHR, which includes two open states, two closed states and two inacti-

vated states that are coupled together with by rate constants. Only the open state contributes to

the generation of the photocurrent iphoto for each opsin type, which is calculated per compart-

ment and is additionally proportional to the area A and maximal conductance for each opsin
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�g photo in combination with two terms related to the irradiance ϕ and the membrane voltage Vm:

iphoto ¼ A �g photo cðt; �Þ f ðVmÞ ð1Þ

Critically, these models accurately capture the ion concentration kinetics and so allow accu-

rate modelling of subthreshold dynamics, and can be tuned to provide a faithful reproduction

of the temporal courses induced by opsin activation.

Throughout this work we refer to the ratio xNpHR as the relative strength of NpHR illumi-

nation in reference to a fixed value for ChR2 illumination.

Abstract neuron models

Each of the abstract neuron models we created included a soma and approximately 125 den-

dritic sections that were arranged with varying degrees of branching. Dendritic morphology

was described as the number of primary branches np, the number of sister branches nb and the

number of branching stages nℓ. The total number of branches (Ntotal) is given by:

Ntotal ¼ np �
Xnl � 1

k¼0

nkb

 !

: ð2Þ

Altogether, we generated 31 different dendritic configurations that, despite their geometrical

configuration, had approximately equal surface areas and volumes. Dendritic tapering was

excluded to conserve total surface area.

For the biophysical properties, the values for the soma were C = 1pF, diameter = 10μm and

length L = 10μm, while each dendritic section had parameters diameter = 0.4μm, C = 2pF and

length L = 50μm. All sections and soma had passive membrane properties (g_pass = 0.00005,

e_pass = -75mV) while the soma additionally had Hodgkin-Huxley channels, the NEURON

built-in hhmechanisms were used, with conductances: gnabar_hh = 0.25, gkbar_hh = 0.1,

gl_hh = 0.000166, el_hh = -60mV, ek = -70mV. Each soma and dendritic section had ChR2

and NpHR models inserted, with constant expression throughout the dendrites and soma.

Constant driving input for the steady state response was modeled by injecting constant cur-

rent in the last segment of a single distal segment, and normalizing the distance from total

length to soma. Synaptic locations were chosen randomly from all distal sections. Synapses

themselves were modeled using NEURON’s ExpSynmodel, with input spiketimes drawn

from independent Poisson process. As different dendritic morphologies had different electro-

tonic distances from synapse location to soma, synaptic weights were chosen where possible

such that the output firing rate was approximately equal to the input firing rate, enforcing a

loose version of synaptic democracy. For some arbor configurations, the length from soma to

distal dendrites was greater than the electrotonic distance and a transient response could not

be obtained. The dendrite tapering was not included in our simulation for abstract neurons,

but it is included for two realistic biophysical neuron models. Inclusion of tapering for abstract

neurons creates a problem of keeping approximately the same total dendritic tree area for vari-

ous morphologies, which was the more relevant factor with respect to our results.

Biophysical models

Layer 5 pyramidal cell. We used a previously published model of L5PC [31], ModelDB:

no.139653 (cell: L5PCbiophys3). Both excitatory and inhibitory PSPs were distributed

throughout the apical and basal dendritic trees. 160 synaptic sites were chosen (80 on the apical

tree, 80 on the basal dendrites) at a minimum distance of 100 microns from the soma.
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Layer 2 hippocampal stellate cell. We used a model previously published by [32], based

on reconstructions from [33], ModelDB: no.150239 (cell: stellate-garden). For in vivo input,

synaptic locations chosen at random across the dendritic branches so that there were multiple

sites that were equidistant. In total, there were 40 sites, at a distance approximately 100

microns from the soma.

The total surface area. Is approximately: i) for L5PC: the dendritic tree is approximately

60,000 μm2 and the soma area is 1,131 μm2, ii) Stellate cell: 30,000 μm2 dendrites. For compari-

son, the corresponding values for abstract neurons are: 8,000 μm2 for the dendrites and 314

μm2 for soma.

Input to biophysical models. For both cells, ChR2 and NpHR models were inserted in

the soma and dendritic subdomains as required. Additional input was provided either as a cur-

rent injection at a single location, or as a barrage of inputs that created postsynaptic potentials,

using NEURON’s ExpSynmodel. The spike times of each input site were generated as an

independent Poisson process. The amplitude for excitatory PSP input was 0.5mV and inhibi-

tory PSP 0.1mV for the L5PC, and 2mV and 6mV respectively for stellate cells. All synapses

had a time constant of τ = 0.1ms.

Supporting information

S1 Fig. Injecting current at the soma in abstract cells shows membrane voltage changes

dependent on the dendritic tree input impedance from the some side. (top) The four char-

acteristic dendritic morphologies examined in Fig 1 and the positions of the dendrites that

were chosen to represent different distances from soma to the endings of the dendritic tree.

(bottom) The membrane voltage at the chosen locations. For approximately the same number

and surface size of dendritic arbours, the morphologies with lower input impedance will sink

more of the injected current and hence cause less depolarisation at soma.

(EPS)

S2 Fig. Injecting current at the soma in stellate cell shows no gain modulation. The mem-

brane voltage for net photocurrent as xNpHR is varied for an irradiance of 0.07 mW/mm2 as

it was in Fig 3B, but with current injection occurring at the soma instead of dendrite. As

observed for current injection at soma in pyramidal cell model (Fig 2C), no gain modulation

occurs.

(EPS)
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