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ABSTRACT

DNA repair by homologous recombination (HR) is
critical for the maintenance of genome stability.
Germline and somatic mutations in HR genes have
been associated with an increased risk of developing
breast (BC) and ovarian cancers (OvC). However, the
extent of factors and pathways that are functionally
linked to HR with clinical relevance for BC and OvC
remains unclear. To gain a broader understanding of
this pathway, we used multi-omics datasets coupled
with machine learning to identify genes that are as-
sociated with HR and to predict their sub-function.
Specifically, we integrated our phylogenetic-based
co-evolution approach (CladePP) with 23 distinct
genetic and proteomic screens that monitored, di-
rectly or indirectly, DNA repair by HR. This omics
data integration analysis yielded a new database
(HRbase) that contains a list of 464 predictions, in-
cluding 76 gold standard HR genes. Interestingly,
the spliceosome machinery emerged as one ma-

jor pathway with significant cross-platform interac-
tions with the HR pathway. We functionally validated
6 spliceosome factors, including the RNA helicase
SNRNP200 and its co-factor SNW1. Importantly, their
RNA expression correlated with BC/OvC patient out-
come. Altogether, we identified novel clinically rel-
evant DNA repair factors and delineated their spe-
cific sub-function by machine learning. Our results,
supported by evolutionary and multi-omics analyses,
suggest that the spliceosome machinery plays an im-
portant role during the repair of DNA double-strand
breaks (DSBs).

INTRODUCTION

DNA repair and the DNA damage response (DDR) have
emerged as essential pathways in the onset of several solid
malignancies, including breast (BC) and ovarian (OvC) can-
cers. Indeed, germline mutations in DNA repair genes such
as BRCA1 and BRCA2, which are key players in the ho-
mologous recombination (HR) pathway, favor the develop-
ment of hereditary breast and ovarian cancer (HBOC) and
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genetic instability is the key feature of BC and OvC (1,2).
Importantly, the penetrance of HR genes can only partially
explain familial cases of HBOC (3,4). Large-scale sequenc-
ing of different tumor origins, including in BC and OvC,
has enabled the discovery of rare germline cancer suscepti-
bility variants of unknown significance (VUS), due to their
scarceness (5). In absence of a proper understanding of the
factors involved in the regulation of HR-mediated DNA re-
pair, proper genetic counseling and therapeutic response to
these types of solid malignancies are compromised.

Computational approaches have been successful in pre-
dicting protein function and identifying novel players in
different cellular pathways (reviewed in (6)). For instance,
several groups have developed mathematical algorithms to
cluster proteins into functionally relevant groups based
on their amino acid sequence (7–9). Alternatively, study-
ing the evolutionary relationship between two genes, also
called phylogenetic profiling (PP), has been a powerful
strategy to identify proteins that are functionally related
(10). However, integrating the complex evolution of eu-
karyotic proteins has proven to be challenging, which has
ultimately been bypassed by developing a normalized PP
(NPP) method, where measuring sequence similarities have
been adjusted to the evolutionary distance between query
and reference species (11–14). In fact, we recently developed
clade-based PP approaches (15–17), where different scales
of co-evolution could be looked at to predict protein func-
tion, identify new factors in different pathways, and map
new ‘druggable’ targets. For example, using our CladePP
approach, we were able to provide a novel insight into HR,
allowing the identification of 67 candidates that have never
been previously linked to this DNA repair pathway (15).

To further refine predictive tools of protein function, we
integrated our CladePP approach with omics datasets and
genetic screens studying the DNA damage response into a
comprehensive database (HRbase). Using machine learn-
ing, we assigned to each gene a score reflecting the strength
of its association with the HR pathway. This prediction al-
gorithm identified a total of 464 HR candidates, including
76 gold standard HR genes. Pathway enrichment analysis of
our HRbase coupled with functional GFP-based DNA re-
pair assays highlighted the spliceosome machinery as a sig-
nificant regulator of DSB repair pathways. Importantly, we
identified the spliceosome factors SNRNP200, SNW1, and
SF3B3 as prognostic biomarkers for both BC and a subset
of OvC patients, highlighting the power of our HRbase in
identifying novel DNA repair factors with direct relevance
for the pathobiology of BC and OvC.

METHODS

HR gold standard list

We compiled a list, based on a literature review, of 78 rec-
ognized HR genes that affect either DNA repair or directly
regulate the HR pathway (18–27) (Supplementary Table
S1). Included are genes from the closely related Fanconi
Anemia (FA) pathway and genes such as TP53BP1 which
function in other pathways, yet are known to regulate HR
(25,28). Each gene was categorized into a specific functional
module within the HR pathway: DSB recognition, DNA

end resection, FA pathway, regulation (DNA damage re-
sponse, DDR), strand invasion & D-loop formation and
synthesis, and Holiday Junctions (HJ) processing (15).

Naive Bayesian classifier

To prioritize HR candidate genes, we integrated 24 omics
datasets (Supplementary Figure S1A), including our pre-
vious CladePP analysis (15) (Figure 1A) and we utilized a
naı̈ve Bayesian Classifier as previously described (13). Some
of the 24 datasets, including text mining, GO terms, path-
way annotations and OMIM rely on previously curated
knowledge. While some of these datasets are highly reliable
in confirming genes with previous link to HR, such as our
gold standard HR genes, dependence on these datasets may
diminish our ability to detect genes whose link to HR has
yet to be described in the literature (Supplementary Fig-
ure S1B; Supplementary Table S1). To reduce biases that
result from the duplicated information between databases,
we trained two versions of the Classifier, one using all 24
datasets, and one which omitted the datasets mentioned
above, such as text mining. To generate a single and easily
interpretable list we merged the ranked lists of genes from
both versions of the Classifier.

For each gene g we defined rank (g) =
min{rankf ull (g), rankno−cur (g)} where rank(g) is the
position of g in the combined ranked list (with lower rank
indicating higher confidence that the gene is HR related),
rankf ull (g) the rank of g in the Classifier using all datasets
and rankno−cur (g) the rank of g in the Classifier trained
without the curation based datasets.

To utilize the Classifier’s output to predict if a gene with
rank s is related to the HR pathway, we calculated the false
positive rate F PR (s) = F P(s)

F P(s)+TN(s)
With FP(s) = # of non gold standard genes with rank s

or lower
TN(s) = # of non gold standard genes with rank higher

than s.
We then considered a gene with rank s as HR related if

F PR(s) ≤ 0.02
We observed that this threshold is sufficiently sensitive to

accurately classify most gold standard genes while only in-
troducing a moderate fraction of false positives. Further, be-
yond this threshold we found a clear saturation in our ca-
pacity to detect additional gold standard genes, suggesting
that inclusion of genes assigned a lower level of confidence
by the Classifier is likely to introduce substantial false pos-
itives (Figure 1D).

Characterizing the top Classifier hits

To assign each top ranked gene from the Naı̈ve Bayesian
Classifier to a functional module, we constructed a second
Classifier, using the Extreme Gradient Boosting algorithm
(XGBoost) (29). XGBoost is an ensemble algorithm of de-
cision trees. Weak tree learners trained on parts of the data
are combined to generate the output. The weights of the
weak learners are adjusted iteratively to reduce the misclas-
sification rate. We treated the 78 gold standard HR genes as
labeled examples of the six functional modules. We imple-
mented a one-vs-all multiclass classification approach using
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Figure 1. Multi-omics data integration analysis that generated the HRbase. (A) Schematic representing how the different datasets were integrated to
create the HRbase. (B) Schematic representing the different functional modules that participate in the HR pathway and the gold standard HR genes. (C)
Representation of the distribution of the gold standard HR genes (78 genes) and their presence as part of the HRbase. (D) Distribution of the 464 HR
predictions based on their score defined by the Classifier algorithm. (E) Representation of the top HR predictions and the relative contribution of each
dataset in defining their respective score. (F) Pathway enriched analysis of the 388 HR predictions using the KEGG 2019 mapping.
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the scikit-learn (30) OneVsRestClassifier combining results
from 6 different estimators, to help discriminate between the
modules. We used the same datasets described above, with
datasets based on previously curated knowledge omitted,
aggregated by functional module.

Leave-one-out cross-validation (performed with scikit-
learn KFold cross-validation) was used to evaluate model
performance (Figure 2A). The model is trained on all gold-
standard genes except one and classifies the remaining ex-
ample. This process is repeated n times, n being the num-
ber of training examples. The final model was trained on all
available data.

We used Local Interpretable Model-agnostic Explana-
tions (LIME) to explain the most confident predictions for
each functional module (Supplementary Figure S2B) (31).
LIME analysis explains the contribution of individual fea-
tures to the overall prediction of a single example. It approx-
imates the model locally and enables extracting the contri-
butions of each feature to a specific prediction. The SHAP
(SHapley Additive exPlanations) method was used to esti-
mate overall feature importance (32). SHAP scores the con-
tribution of each individual feature to the model. It com-
bines LIME with Shapley values. Overall importance is cal-
culated as the average absolute Shapley value per feature.

Visualization

Heatmaps were generated in R using the ComplexHeatmap
package (33). Network representations (Figure 2D) were
generated in Cytospace (34). All other visualizations were
generated in Python using the Seaborn and Matplotlib
packages.

Cell lines and transfection

HeLa cells were cultured in Dulbecco’s Modified Eagle
medium (DMEM; Wisent) supplemented with 10% fetal
bovine serum (FBS, Sigma) and 1% Penicillin-Streptomycin
(P/S, Wisent). U2OS cells were cultured in McCoy’s 5A
Modified medium (Wisent) supplemented with 10% FBS
and 1% P/S. All cell lines were regularly tested for my-
coplasma contamination and STR DNA authenticated.
The DNA-repair reporter cell lines DR-GFP and SA-GFP
were a gift of Dr. Jeremy Stark (City of Hope National
Medical Center). Plasmid encoding I-SceI was kindly pro-
vided by Dr. Daniel Durocher (Lunenfeld-Tanenbaum Re-
search Institute). Plasmid transfections were carried out us-
ing Lipofectamine 2000 Transfection Reagent (Invitrogen)
following the manufacturer’s protocol.

RNA interference

All siRNAs employed in this study were siGENOME Hu-
man siRNAs purchased from Dharmacon (Horizon Dis-
covery). RNAi transfections were performed using Lipo-
fectamine RNAiMax (Invitrogen) using forward transfec-
tions. Except when stated otherwise, siRNAs were trans-
fected 48 h prior to experimental procedures. The in-
dividual siRNA duplexes used are: siCTRL, D-001810-
03; CtIP, M-011376-00; CDCA5, MQ-015256–01; DHX9,

MQ-009960–01; SNW1, MQ-012446–00; CDC7, MQ-
00324–02; SF3B3, MQ-020085–01; STAG2, MQ-021351–
01; XAB2, MQ-004914–01; BRDT, MQ-004938–02; IK,
MQ-012190–01; MYO3B, MQ-004863–01; ESCO2, MQ-
025788–01; PDS5A, MQ-014071–02; SNRNP200, MQ-
014161–00, SNRNP200-1, D-014161–01, SNRNP200-2,
D-014161–02.

Cell cycle profiling

U2OS cells were sub-cultured to 60% confluency. Cells were
transfected with the indicated siRNA and harvested 48hrs
post-transfection. Cells were counterstained with DAPI
and at least 10 000 events were acquired on a BD FAC-
SCanto II (Becton Dickinson).

GFP-based DNA repair assays

For DR- and SA-GFP reporter assays, U2OS or HeLa cells
carrying the respective GFP expression cassette were trans-
fected with the indicated siRNAs. Twenty-four hours after
transfection, cells were transfected with empty vector (EV,
pDEST-FRT-FLAG) or I-SceI plasmids. After 48 hours,
cells were trypsinized, harvested, washed and resuspended
in PBS. The percentage of GFP-positive cells were deter-
mined by flow cytometry. The data was analyzed using the
FlowJo software and presented as previously described (35).

Patient cohort RNA expression analysis

Patients considered for the study were diagnosed and
treated for high grade serous ovarian cancer (HGSOvC) at
the Jewish General Hospital between 2003 and 2017. Tissue
and blood samples were collected at the time of surgery and
stored in the gynecologic oncology tumor bank (protocol
#03–041). This study was approved by the Jewish General
Hospital Research Ethics Board s(protocol #15–070). All
patients participating in biobanking, and research activities
gave informed written consent.

Patient cohort outcome analysis

Analysis of breast and ovarian patient outcome was per-
formed using KM-plotter (36). Relapse free survival anal-
ysis was performed on the whole cohort of breast cancer
patient (n = 4929 patients). Progression free survival and
overall survival analyses were performed on patient diag-
nosed with serous ovarian cancer (n = 1104 and n = 1207
patients, respectively). Treatment outcome analysis was per-
formed on breast cancer patients treated with chemother-
apy (n = 1372 patients) or serous ovarian cancer patients
treated with a platinum-based regimen (n = 979 patients)

Quantitative real time PCR

RNA was extracted using the RNeasy Mini kit (Qiagen).
One �g of RNA was used to prepare cDNA using the Lu-
naScript RT SuperMix (New England Biolabs). cDNA was
then diluted 10-fold and 1 �L was used per qRT-PCR reac-
tion. Reactions were performed in triplicate with the Luna
Universal qPCR Master mix (New England Biolabs) in a
total volume of 10 �L. Primers for reactions are outlined in
Supplementary Table S2.
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Figure 2. In-depth analysis of the HRbase and assignment of the 388 HR predictions to the different functional HR modules. (A) Representation of
the actual and prediction distributions of the 78 gold standard HR genes per functional HR modules. (B) Distribution of the HRbase predictions per
functional HR modules. Only 385 out of the 388 HR predictions were assigned by machine learning to the different function HR modules. (C) Examples
of HR prediction and their predicted contribution to each functional HR module. (D) The network analysis for each HR prediction analysed in Figure
2C. The genes from the relevant HR module which were either co-expressed, co-evolved or with protein interaction evidence with the predicted protein are
represented.
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RNA-sequencing analysis

HeLa cells were transfected with either siCTRL or two dis-
tinct siRNAs targeting SNRNP200 as described above us-
ing Lipofectamine RNAiMax (Invitrogen). After 48 hours,
cells were either treated with cisplatin (10�M; Tocris) for
6 or 24hrs or solvent (H2O) before being resuspended in
TRIzol® (Invitrogen). RNA was extracted following the
manufacturer’s protocol and processed for llumina next-
generation sequencing to the IRIC Genomics Platform.
Adaptor sequences and low-quality bases in the resulting
FASTQ files were trimmed using Trimmomatic version 0.35
(37) and genome alignments were conducted using STAR
version 2.7.1a (38). The sequences were aligned to the hu-
man genome version GRCh38, with gene annotations from
Gencode version 37 based on Ensembl 103. As part of
quality control, the sequences were aligned to several dif-
ferent genomes to verify that there was no sample contam-
ination. Gene expressions were obtained both as raw read-
count directly from STAR as well as computed using RSEM
(39), to obtain gene and transcript level expression in reads
per transcripts per million (TPM) for these stranded RNA
libraries. DESeq2 version 1.30.1 (40) was then used to nor-
malize gene readcounts and compute differential expression
between the various experimental conditions. Sample clus-
tering based on normalized log readcounts produces a hi-
erarchy of samples. A principal component analysis is also
used to validate that samples correlate as expected.

Statistical analyses

All quantitative experiments are graphed with mean +/-
SEM with data from the independent number of indepen-
dent experiments in the figure legend. All data sets were
tested for normal distribution by Shapiro-Wilk Test. Statis-
tical significance was determined using the test indicated in
the legend. All statistical analyses were performed in Prism
v9 (Graphpad Software).

RESULTS

Functional mapping of the HR pathway by integrating ge-
netic screens and omics datasets

To delineate the extent of genes involved in DNA repair
by HR, we selected 24 distinct omics datasets containing
a wide range of information related to the relationship of
a given human gene to this pathway (Figure 1A) (15,41–
45). These datasets can be divided into three main categories
(see methods section; Supplementary Table S3): in the first
group, we compiled evidence linking a gene to known HR
factors (e.g. CladePP, protein-protein interactions) (15,45);
the second category encompassed data correlating a given
gene to a HR dysregulation phenotype (e.g. RAD51 fo-
cus formation, DR-GFP assay) (43,44); finally, we orga-
nized any proof of gene alteration upon activation of the
DSB response (e.g. ATM/ATR substrates, IR/UV-induced
acetylation/ubiquitination sites) (41,42). We applied a naı̈ve
Bayesian Classifier approach that we previously used for
studying the RNAi machinery (46), to integrate the datasets
into a score that predicts association at different levels of
a given human gene to the HR pathway (see methods sec-
tion). For each gene, we established a score where each

dataset was independently weighted (Supplementary Table
S3). At the moment of designing our algorithm, only RNAi-
based functional screens were published (43,44), and incor-
porated to our multi-omics data integration analysis

While we observed a significant variance in the ability of
each dataset to validate well-established HR genes, integrat-
ing them into one algorithm yielded a comprehensive list of
464 genes, named HRbase, which includes 76 gold standard
HR genes (Figure 1B-C, Supplementary Table S1), and 388
candidate genes identified by either the Classifier or both
CladePP and Classifier analyses (Figure 1C-E, Supplemen-
tary Table S3).

Using the VarElect software (47), which ranks genes
based on their relationship to a given phenotype, we con-
firmed that 348 HR predictions were associated with the
HR pathway (Supplementary Table S4). Importantly, 76
out of the 78 gold standard HR genes were scoring very high
using our approach (Figure 1D, Supplementary Table S3).
Independent validation using a dataset where each gene was
systematically tested by CRISPR for its impact on PARPi
response in three distinct cell lines (48), identified 286 out
of 320 (89%) predictions to significantly impact PARPi sen-
sitivity in at least one cell line tested (NormZ score ←1 or
>1; Supplementary Figure S1C, Supplementary Table S5).
Importantly, only 320 out of 388 predictions were scored in
these screens due to technical limitations (48).

As expected, KEGG-based pathway enrichment analy-
sis identified several DNA repair pathways as being sig-
nificantly enriched in our database (Figure 1F), includ-
ing the FA pathway (p-value = 1.1*10–61), nucleotide ex-
cision repair (NER; p-value = 5.3*10–58), the HR path-
way (p-value = 6.7*10–49), mismatch repair (MMR; p-
value = 1.3*10–36), base excision repair (BER; p-value
= 1.1*10–30), and non-homologous end-joining (NHEJ;
p-value = 7.5*10–14). Aside from cell cycle (p-value =
4.3*10–66) and DNA replication (p-value = 5.0*10–46), we
noted that spliceosome-related genes (p-value = 1.7*10–16)
were significantly enriched in our HRbase, suggesting a po-
tential contribution of this pathway to HR. KEGG-based
pathway enrichment analysis of our HRbase highlighted
the complexity of the HR machinery (Figure 1F). For in-
stance, the E3 ubiquitin ligase RAD18, which plays a crit-
ical role in translesion DNA synthesis (49), scored very
highly in our Classifier (position 27, Supplementary Table
S3), reflecting the known relationship between DNA syn-
thesis and the response to DSBs. We also noted that genes
involved in processes (e.g. MMR, NER and BER) closely
related to HR, such as MSH6 and MSH2, scored very well
(position 11 and 12 respectively, Supplementary Table S3),
confirming previous reports that have documented a role for
MMR in regulating the HR pathway (50–55). Altogether,
our data suggest that omics data integration analysis can
predict novel factors involved, directly or indirectly, in the
HR pathway.

Assigning our predictions to the different functional HR mod-
ules using machine learning

The HR pathway can be sub-divided into 6 basic func-
tional modules: DNA double strand break (DSB) recogni-
tion, DNA end resection, strand invasion/D-loop forma-
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tion, DNA synthesis/HJ processing, regulation of the DNA
damage response (DDR), and the FA pathway (Supplemen-
tary Figure S2A). To delineate the functional contribution
of our HR predictions, we assigned them to one of these
functional modules using the machine learning algorithm
XGBoost (29). To assess model performance, we first per-
formed leave-one-out cross validation on the gold standard
HR genes that were part of our HRbase. Machine learn-
ing assigned 54 out of 74 accurately (73%) (Figure 2A, Sup-
plementary Table S6), with an optimal performance in the
FA pathway (11 out of 14 genes), likely due to the strong
protein-protein interactions and co-evolution profiles ob-
served between the different factors of this module. The in-
accurate assignment observed by machine learning likely re-
flects the multiple roles of several gold standard HR genes
during DNA repair (Supplementary Table S6), exemplified
by MCPH1 (56) and BLM (57). Next, we applied our mul-
ticlass classification algorithm to HRbase, which assigned
385 out of 388 predictions to the different HR modules
(Figure 2B, Supplementary Table S7): 21 candidates were
predicted to be involved in DSB recognition, 37 in DNA
end resection, 68 in strand invasion/D-loop formation, 95
in DNA synthesis/HJ processing, 89 in regulation of the
DDR, and 75 in the FA pathway (Figure 2B, Supplemen-
tary Table S7).

In-depth analysis of the 95 predictions assigned to DNA
synthesis/HJ processing confirmed a significant enrichment
of DNA replication-related genes (p-value = 5.0*10–46, Fig-
ure 1F), including several DNA polymerases (e.g. POLA1,
POLD2, and POLI) (Supplementary Table S7). Further-
more, a series of MMR genes (e.g. MSH2, MSH3 and
MSH6) were part of this functional module, reflecting the
central contribution of MMR during HR (58). Finally, we
noted the presence of several proteasomal-related genes as
part of this process, including PSMA-1, -4, -5 and -14 (p-
value = 1.0*10–12), likely reflective of a previously unknown
role of proteolysis during the resolution of HJ (59).

We focused our attention on the top assignments of
each functional HR module. For instance, machine learning
predicted CDC45 to participate in DSB recognition (Fig-
ure 2C-D), due to its co-evolution with established DSB
recognition genes (e.g. RAD9A and HUS1) and PPIs with
H2AFX and MRE11A (Figure 2D). Of note, the replicative
CMG helicase, composed of CDC45, MCM2-7 and GINS,
has been previously linked to single strand break and intra-
strand crosslinks (60), and studies in yeast has shown that
the CMG complex is required for break induced replica-
tion (BIR) (61). Machine learning assigned the MMR fac-
tor PMS2 as a regulator of DNA end resection (Figure 2C-
D), suggesting a more complex contribution of this gene to
HR than previously documented (62). Finally, the histone
methyltransferase DOT1L was assigned to the regulation of
the DDR, supporting its role in regulating DNA repair by
promoting H3K79 methylation and 53BP1 recruitments to
DSBs (63).

To understand how machine learning assigned our pre-
dictions to the different functional HR modules, we per-
formed a model interpretability analysis using the SHAP
method (32). We noted that strong PPIs with other factors
of the same module greatly influenced machine learning as-
signment of our HRbase predictions (Supplementary Fig-

ure S2B-C). Globally, CladePP and PPIs were the primary
features impacting the attribution of our new HR genes to
a functional module (Supplementary Figure S2B-C).

Functional validation identified several spliceosome factors as
novel DNA repair factors

To functionally validate our HRbase, we endeavoured to
test the relevance of 5 genes that our Classifier (ESCO2,
PDS5A, SNRNP200) or the CladePP (BRDT, MYO3B)
predicted to be involved in HR but have yet to be linked
to DNA repair (Supplementary Table S8). To test their
relevance for HR pathway directly, we employed a well-
established GFP-based reporter system that monitors DNA
repair by HR, the direct repeat GFP (DR-GFP) assay
(Figure 3A-B) (64). As positive control, we targeted the
gold standard HR factor CtIP by small interfering RNA
(siRNA) as well as 7 HR predictions that have been previ-
ously involved in the HR pathway (CDCA5, DHX9, SNW1,
CDC7, SF3B3, STAG2, XAB2; Supplementary Table S8).
As expected, depletion of these latter 7 HR predictions re-
sulted in a significant reduction in HR in both U2OS and
HeLa DR-GFP cell lines (indicated in blue in Figure 3C,
Supplementary Figure S3A). Interestingly, all 5 genes that
have yet to be linked to DNA repair also significantly im-
paired HR in both cell lines (indicated in orange and red
in Figure 3C, Supplementary Figure S3A). We focused our
attention on targets that, upon depletion by siRNA, cor-
related with, at least, 50% reduction in HR in both cell
lines, leaving us with 2 putative HR candidates (SNRNP200
and ESCO2) and 4 genes that were previously linked to
HR (Figure 3C). We noted a significant reduction of vi-
ability in both cell types upon depletion of these 6 can-
didates followed by DSB induction (Supplementary Fig-
ure S3B). However, SNRNP200 knock-down did not im-
pact drastically cell viability in absence of DNA damage
(Supplementary Figure S3C), likely reflecting a key role of
this spliceosome factor during the DDR. Importantly, we
confirmed effective knock-down of each of these targets in
U2OS cells by quantitative RT-PCR (qPCR; Supplemen-
tary Figure S3D).

Next, we evaluated their relevance in another homology-
based DNA repair pathway, single-strand annealing (SSA;
Figure 3A), using the SA-GFP assay (Figure 3B) (65). As
previously mentioned, we used CtIP as positive control. In-
terestingly, we noted that depletion of all 6 candidate genes
led to a significant reduction in the GFP signal (Figure
3D), indicative of impaired SSA-mediated DNA repair. As
homology-driven DNA repair potential is intimately linked
to cell cycle positioning, we performed a flow cytometry-
based cell cycle analysis of our different siRNA conditions
using propidium iodide (PI) DNA staining. As expected,
silencing of CDCA5 in U2OS cells, which have been pre-
viously shown to regulate mitotic entry and progression,
significantly impaired the progression to the G1 phase of
the cell cycle, compared to control conditions (scramble
siRNA, Ctrl; Figure 3E). Importantly, four (SNRNP200,
SNW1, SF3B3 and XAB2) out of the five HR predictors
that validated in both DR- and SA-GFP DNA reporter as-
says without drastically impacting cell cycle distribution,
are linked to the spliceosome machinery. Of note, target-
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Figure 3. Functional validation of a subset of predictions identified SNRNP200 and its co-factors as regulators of several DNA repair pathways. (A)
Schematic representing the main homology-based DNA repair pathways, HR and SSA. (B) Schematic representing the three GFP-based DNA repair
assays used to validate our predictions, the DR-GFP assay for HR-mediated DNA repair (top panel), the SA-GFP assay for SSA-mediated DNA repair
(middle panel), and the EJ5-GFP assay for NHEJ-mediated DNA repair. (C) U2OS and HeLa cells containing the DR-GFP reporter construct were
transfected with the indicated siRNA. Twenty-four hours post-transfection, cells were transfected with the I-SceI expression plasmid or an empty vector
(EV), and the GFP+ population was analyzed 48h post-plasmid transfection. The percentage of GFP+ cells was determined for each individual condition
and subsequently normalized to the non-targeting condition provided with I-SceI (Ctrl + I-SceI). Data are represented as the mean (x axis for the U2OS
cells, y axis for the HeLa cells; n≥3 biological replicates). (D) U2OS cells containing the SA-GFP reporter plasmid were processed and analyzed as in (C).
Data are represented as the mean ± SEM, each replicate being representing as a round symbol (n = 3 biological replicates). Significance was determined by
one-way ANOVA followed by a Dunnett’s test. *P≤0.0001. (E) Cell cycle distribution was monitored in U2OS cells transfected with the indicated siRNA.
Forty-eight hours post-transfection, cells were harvested and stained with propidium iodide. Data are the percentage of cells in G1, S and G2 phases of the
cell cycle for each indicated condition and are represented as a bar graph showing the relative mean, each replicate being representing as a round symbol (n
= 3 biological replicates). Significance was determined by two-way ANOVA followed by a Sidak’s test. *P<0.05. (F) U2OS cells containing the EJ5-GFP
reporter plasmid were processed and analyzed as in (C). Data are represented as the mean ± SEM, each replicate being representing as a round symbol
(n = 3 biological replicates). Significance was determined by one-way ANOVA followed by a Dunnett’s test. *P≤0.0001, **P<0.05. (G) Venn diagram
representing the overlap of the CRISPR screens published by (48) where sensitivity to the PARPi olaparib was tested in three different cell lines. Only
the gold standard HR genes whose inactivation by CRISPR provided a significant effect in these respective screens tested (NormZ score<1) are plotted.
The predictions that we functionally tested are indicated in this Venn diagram. (H) Heatmap clustering representing the NormZ of our predictions in the
series of CRISPR screens published by (68). (I) STRING analysis of the different spliceosome factors that were functionally validated as part of our HR
predictions (indicated in red).
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ing of our HR predictions drastically impaired the capacity
of U2OS cells to form RAD51 foci (Supplementary Figure
S3E) (44). Finally, we employed the EJ5-GFP reporter as-
say to monitor end-joining between distal DSB ends of two
tandem I-SceI sites (66), which is reflective of total NHEJ
events, in the same experimental conditions as previously
described (Figure 3B). Here, we used the recently identified
NHEJ factor SHLD2 as positive control (35,67). Notably,
targeting SNRNP200, SNW1, SF3B3 and XAB2 signifi-
cantly impaired total NHEJ events in the U2OS EJ5-GFP
cells (Figure 3F), suggesting that the spliceosome machin-
ery participates in multiple DSB repair pathways.

To independently validate our 6 HR candidates, we took
advantage of new omics datasets where CRISPR-based
genome-wide dropout screens were completed in either
neoplastic (HeLa and SUM149PT) or non-transformed
(RPE1-hTERT) cell lines using the PARP inhibitor ola-
parib as a selective agent (48). As control, we used our 78
gold standard HR genes and were able to identify the re-
spective NormZ score for 68 of them in this dataset (Sup-
plementary Table S9). CRISPR-mediated inactivation of 63
gold standard HR genes, including BRCA1, PALB2 and
BRCA2 sensitized to the PARP inhibitor (PARPi) olaparib
in at least one cell line (NormZ score←1; Figure 3G, Sup-
plementary Table S9) (48). Interestingly, inactivation of our
six predicted HR genes (CDCA5, SNW1, SF3B3, XAB2,
ESCO2 and SNRNP200) correlated with an increased sen-
sitivity to olaparib in at least two cell lines (Figure 3G, Sup-
plementary Table S9) (48). We extended our independent
validation to a series of CRISPR-based screens completed
in RPE1-hTERT cells against different 31 distinct geno-
toxic agents by focusing our attention on the ones where
HR, FA/ICL, NER and DNA replication fork quality con-
trol (QC) genes were highly enriched (total of 26 CRISPR
screens) (68). As control, we monitored the NormZ scores
of 19 well-established gold standard HR genes (Supple-
mentary Table S9). As expected, CRISPR targeting of this
short list of genes sensitized RPE1-hTERT cells to several
genotoxic agents that rely on the HR pathway for their
processing and repair, including cisplatin, camptothecin
(CPT), and the alkylating agent methylnitrosoguanidine
(MNNG; Supplementary Figure S3F, Supplementary Ta-
ble S9) (REF). Importantly, inactivation of CDC5A and
ESCO2 sensitized RPE1-hTERT cells to 13 distinct geno-
toxic agents, including cisplatin, doxorubicin, and illudinS
(Figure 3H, Supplementary Table S9) (44). SNW1 deple-
tion provided an increased sensitivity to 9 carcinogenic
agents, including doxorubicin, gemcitabine and MLN4924.
Knocking out SF3B3 hypersensitized RPE1-hTERT cells
to 6 drugs tested, while targeting SNRNP200 modulated the
response of 3 chemotherapeutic agents (cisplatin, HU acute,
AZD6738). Finally, XAB2 deletion provided sensitivity to
the alkylating agent methyl methanesulfonate (MMS; Fig-
ure 3H, Supplementary Table S9). These data suggest that
our HRbase contains novel DNA repair factors that have
the potential to modulate the response to chemotherapeutic
agents, such as PARPi. Strikingly, STRING analysis identi-
fied SNRNP200, SNW1, XAB2 and SF3B3 along another
HRbase prediction, SF3A1 (indicated in red in Figure 3I) to
be functional partners, suggesting that they promote DNA
repair as part of a multi-protein complex.

Functional characterization of SNRNP200 during the re-
sponse to cisplatin

To gain further insight into the contribution of our six
candidates during DNA repair, we used machine learn-
ing to assign them to the different functional HR mod-
ules (29). Interestingly, CDCA5, SF3B3 and XAB2 were
predicted to regulate the DDR, while ESCO2 was allo-
cated to the DSB recognition module (Supplementary Fig-
ure S4A-C). Machine learning assigned SNRNP200 and its
co-factor SNW1 to strand invasion/D-loop formation, re-
flecting their association to RAD51 and its paralogs (Sup-
plementary Figure S4C).

To functionally characterize the contribution of the
spliceosome to DNA repair, we focused our attention on
SNRNP200, the core component of the U5 small nu-
clear RNA proteins (snRNPs) complex (Figure 4A) (69).
We performed systematic transcriptomic analysis in HeLa
cells transfected with either two distinct siRNAs targeting
SNRNP200 (SNRNP200-1 and -2) or a scramble siRNA
(siCtrl), followed by cisplatin (CIS; 10�M for 6hrs and
24hrs) or vehicle (H2O) treatment (Figure 4B). Principal
component analysis of our RNA-seq data showed lim-
ited variation between the two distinct siRNAs target-
ing SNRNP200 (Figure 4C), which allowed us to com-
bine both experimental conditions and compare them to
control conditions (Supplementary Tables S10-13). Im-
portantly, none of the gold standard HR genes that we
able to detect by RNA-seq were significantly affected by
SNRNP200 knockdown in our different experimental con-
ditions (Log2FC←1.5 or >1.5, P <0.05; Figure 4D, Sup-
plementary Table S10).

Global gene expression profiling identified a limited sub-
set of targets that were significantly down-regulated in
all three experimental conditions (Log2FC←1.5, P <0.05;
Figure 4E-F, Supplementary Tables S11-13). We noticed
that CCDC33, which encodes for a coiled-coil domain
containing factor, was down-regulated in all three experi-
mental conditions (Figure 4F, Supplementary Tables S11-
13). Interestingly, previous yeast two-hybrid studies have
linked it to several known players in the response to
DNA double-strand breaks (70–72), including SMAD3 and
SMARCB1 (summarized in our STRING analysis in Fig-
ure 4G). Altogether, these data suggest that the splicing fac-
tor SNRNP200 participates in the DDR, at least in part,
by modulating the expression of a limited subsets of genes
linked to DNA repair.

Splicing factors identified by our HRbase act as prognostic
factors in both HGSOC and BC

To determine whether our Classifier predictions may
have clinical relevance, we focused our attention on the
four spliceosome factors that we functionally validated
(SNRNP200, SNW1, XAB2 and SF3B3) and interrogated
their RNA expression in an in-house cohort of high grade
serous ovarian cancer (HGSOC patients; n = 26). RNA
expression levels from patient samples were compared to
normal fallopian tissue, which is thought to represent the
cell-of-origin of HGSOC (73). We found that SNRNP200,
SNW1, XAB2 and SF3B3 RNA expressions were signif-
icantly altered compared to normal fallopian tube (Fig-
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Figure 4. Differential gene expression analysis identified a limited subset of targets impacted by SNRNP200 depletion during the DNA damage response.
(A) Schematic representing the spliceosome factor SNRNP200 and its structural domains. (B) Schematic representing the experimental design used to
perform gene expression profiling by RNA-seq analysis in HeLa cells depleted by SNRNP200 and treated with the DNA inter-strand crosslinking agent
cisplatin. (C) Principal component analysis performed on the first two most significant components of each sample processed for RNA-seq. (D) Expression
profiling of 73 gold standard HR genes in the experimental conditions monitored by RNA-seq (vehicle, cisplatin 6hrs and 24 hrs). Data are represented
as the mean log2FoldChange (log2FC) between compiled siSNRP200 (#1 and #2) and siCtrl conditions (n = 2 biological replicates) on the x-axis and
the -log10 of adjusted p-values (padj) on the y-axis. Significant differentially expressed genes are considered for those with log2FC←1.5 or >1.5 and padj
<0.05. (E) Global differential gene expression profiling as described in (D). (F) Venn diagram representing the overlap between the different experimental
conditions described in (B), where genes are significantly down-regulated (log2FC←1.5 with a padj<0.05. We indicated the targets that were significantly
downregulated in all three experimental conditions (vehicle, cisplatin 6hrs and 24 hrs). (G) STRING analysis of CCDC33 that was downregulated upon
SNRNP200 depletion in all three experimental conditions (vehicle, cisplatin 6hrs and 24 hrs) monitored by RNA-seq.
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Figure 5. Clinical validation identified SNRNP200 and its co-factors as prognosis factors for both breast and serous ovarian cancers. (A) RNA expression
analysis of the indicated HR predictions by qPCR in an in-house cohort of HGSOC patients (n = 26 patients). Normal fallopian tube tissues were used
as control (n = 6). RNA expression of each gene was normalized to GAPDH. (B) Progression free survival analysis based on SNRNP200, SNW1, XAB2
and SF3B3 RNA levels in a cohort of HGSOC patients using KMplot (n = 1104 patients). (C) Relapse free survival analysis based on SNRNP200, SNW1
and SF3B3 RNA levels in a cohort of BC patients using KMplot (n = 4929 patients).

ure 5A). Thus, we interrogated a publicly available cohort
of more than a thousand HGSOC patients to determine
whether the RNA expression of these 4 validated HR genes
could correlate with prognosis (74). Remarkably, low ex-
pressers of SNRNP200, SNW1, XAB2 and SF3B3 dis-
played a significantly better progression free survival than
their high expressers counterparts (n = 1104 patients; Fig-

ure 5B), on average of ∼2 months. Furthermore, HGSOC
patients expressing low RNA levels of SNRNP200, XAB2
and SF3B3 have, on average, a better overall survival of 9
months compared to their high expresser counterparts (n =
1207; Supplementary Figure 5A).

To further expand our analysis, we interrogated a publicly
available cohort of BC patients (36), and we noted that low
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RNA expression of SNRNP200, SNW1 and SF3B3 corre-
lated with a significantly better relapse free survival in BC
patients (n = 4929 patients; Figure 5C). If SNRNP200 is
truly a HR factor, our model would predict that low ex-
pressers of SNRNP200 would respond better to platinum-
based regimen and chemotherapy. Indeed, HGSOC pa-
tients treated with a platinum-based therapy and express-
ing low RNA levels of SNRNP200 display an overall better
progression free survival than their counterparts (18.27 vs
15.6 months; Supplementary Figure 5B, left panel). Simi-
larly, low expressers of SNRNP200 BC patients treated with
chemotherapy have an improved relapse free survival (53.36
months vs 33.4 months; Supplementary Figure 5B, right
panel). Overall, these data suggest that the splicing machin-
ery play a key role in the pathobiology of both HGSOC and
BC.

DISCUSSION

High-throughput approaches have revolutionized cancer
biology, in part by better modelling biological networks
(75,76). Here, we report the development of a multi-omics
approach to identify novel DNA repair genes relevant for
the HR pathway. Integrating 24 distinct datasets (41–45),
including our phylogenetic co-evolution profiling approach
CladePP (15), into a unique database (HRbase), revealed
the central role of the spliceosome in the repair of DSBs, in
particular the HR pathway.

RNA and their associated binding proteins (RBPs) have
emerged as central elements in the response to DSBs and
their resolution (reviewed in (77)). Aside from their canon-
ical contribution in the processing and expression of sev-
eral DNA repair factors (78,79), RBPs and their struc-
turally diverse RNA-binding domains (80,81), have been
more recently involved in the DNA repair process, includ-
ing the signaling of the break, the remodeling of chromatin
at DNA damage sites, DNA:RNA hybrids stabilization,
RNA-templated DNA repair and liquid-liquid phase sepa-
ration (LLPS) (reviewed in (77)). In that regard, the spliceo-
some machinery exemplifies the versatility of RBPs dur-
ing the detection, signaling and subsequent repair of DSBs.
The splicing of pre-mRNA is a very complex and dynamic
process, carried out by several mega-complexes of ribonu-
cleoproteins (RNPs) (82). In fact, the spliceosome is con-
stituted of uridine-rich small nuclear RNPs, named U1,
U2, U4/U6 and U5, as well as more than 150 co-factors
that assemble on pre-mRNA consensus sequences and per-
form intron excision and exon ligation. Several splicing fac-
tors have been previously involved in the maintenance of
genome stability (43,44,83–85). In particular, the spliceo-
some U2 snRNP factors, such as SF3B3, have been shown
to promote genome integrity by regulating the transcription
of key DNA repair factors, including BRCA1 and RAD51
(83). Previous work suggest that splicing factors may also
be critical in the processing and resolution of R-loops (86).
Interestingly, isolation of proteins on nascent DNA coupled
to mass spectrometry (iPOND-MS) has recently shown that
SNRNP200 accumulates at camptothecin-stalled replica-
tion forks (87), suggesting that this splicing factor may play
a direct role at stalled replication forks during the replica-
tive stress response. Our data clearly points towards a ma-
jor contribution of the U5 snRNP complex (SNRPN200,

SNW1) in the regulation of homology-directed DNA re-
pair pathways. Structurally, SNRNP200 is very unique as
it is the only RNA helicase to contain a tandem array of 2
helicase domains, each of which is made up of 2 RecA-like
domains (88–93), suggestive of a reminiscent role in HR.

Our omics data integration analysis further highlighted
the clinical relevance of the spliceosome in the progression
of both BC and OvC. While the association of defective HR
is well established in BC, genomic analyses of HGSOC tu-
mors have so far identified TP53 mutations as the only com-
mon genetic alteration in this subset of OvC (96% of all
cases) (94), likely contributing to the high level of genomic
instability detected in this histotype. However, dysregula-
tion of the p53 pathway alone appears to be insufficient
for the development of HGSOC in mice (95). Furthermore,
the low penetrance of OvC in patients carrying germline
mutations in TP53 and developing the Li-Fraumeni syn-
drome suggests that alteration of the p53 pathway is a
pre-requisite for HGSOC initiation (96). Inactivation of
the HR is another common genetic feature in HGSOC:
germline and somatic mutations in BRCA1/2 have been de-
tected in up to 50% of HGSOC cases. Alterations in several
additional HR genes, including BARD1, BRIP1, PALB2,
RAD51C, and RAD51D, have been reported in HGSOC,
though at a much lower frequency (97). Importantly, HR
deficiency predicts the therapeutic efficacy of both platinum
analogues and PARP inhibitors (PARPi) in BC and HG-
SOC (98,99). However, PARPi appear to be active beyond
HGSOC tumours carrying BRCA1/2 mutations, in partic-
ular those displaying high genomic loss of heterozygosity
(LOH) (100), suggesting the presence of additional players
in the HR pathway with relevance for the pathobiology of
OvC and chemotherapy response. SNRNP200 and its co-
factors may be the missing piece lacking in the understand-
ing of HGSOC progression and chemotherapy response.

Altogether, our work demonstrates the direct relevance
of using machine learning in the mapping of key molecular
pathways and the identification of clinically relevant factors
for the diagnosis of pathologies that are still challenging to
treat.
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