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Abstract

Lateral prefrontal cortex (LPFC) neurons signal the allocation of voluntary attention; however, the neural compu-
tations underlying this function remain unknown. To investigate this, we recorded from neuronal ensembles in the
LPFC of two Macaca fascicularis performing a visuospatial attention task. LPFC neural responses to a single
stimulus were normalized when additional stimuli/distracters appeared across the visual field and were well-
characterized by an averaging computation. Deploying attention toward an individual stimulus surrounded by
distracters shifted neural activity from an averaging regime toward a regime similar to that when the attended
stimulus was presented in isolation (winner-take-all; WTA). However, attentional modulation is both qualitatively
and quantitatively dependent on a neuron’s visuospatial tuning. Our results show that during attentive vision,
LPFC neuronal ensemble activity can be robustly read out by downstream areas to generate motor commands,
and/or fed back into sensory areas to filter out distracter signals in favor of target signals.
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(s )

Lateral prefrontal cortex (LPFC) neurons signal the allocation of voluntary attention. The neural computa-
tions underlying this phenomenon remain unknown. Here we show that neurons in the primate LPFC
perform two types of normalization computations, response averaging that calibrates neural activity
according to the number of stimuli in the visual field, and winner-take-all (WTA) that biases neural activity
to represent attended stimuli. These computations are global, across the entire visual field, and their
strength vary across neurons depending on their visuospatial tuning. We show evidence in favor of a circuit
mechanism that flexibly uses normalization computations to generate a signal profile in ensembles of LPFC
Kneurons that carries sufficient information to guide the allocation of visuospatial attention. /

ignificance Statement

Introduction

Response normalization has been reported across
brain areas, sensory modalities, and species (Carandini
and Heeger, 2012) and has been proposed to play a key
role in cognitive functions such as attention (Boynton,
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2009; Lee and Maunsell, 2009; Reynolds and Heeger,
2009; Ni et al., 2012; Verhoef and Maunsell, 2016; Ni and
Maunsell, 2017). It is thought that top-down signals from
executive areas containing maps of relevant objects or
locations modulate normalization strength in sensory ar-
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eas (Moore and Armstrong, 2003; Armstrong et al., 2009),
biasing neuronal representations in favor of attended
stimuli (Reynolds et al.,, 1999; Reynolds and Heeger,
2009). One issue that remains unclear is whether normaliza-
tion also operates within executive areas of the lateral pre-
frontal cortex (LPFC), where neuronal responses are strongly
modulated by task demands and receptive fields (RFs) often
cover large parts of the visual field (Lennert and Martinez-
Trujillo, 2011; Bullock et al., 2017). We hypothesize that
normalization operates at large spatial scales in the LPFC,
allowing the generation of saliency maps across the visual
field that signal the allocation of attention.

Previous studies in visual cortices have shown that direct-
ing attention to one of multiple stimuli activating a neuron
enhances the cell’s response (Moran and Desimone, 1985;
Desimone and Duncan, 1995; Treue and Maunsell, 1996;
Treue and Martinez Truijillo, 1999; Maunsell and Cook, 2002;
Reynolds and Chelazzi, 2004; Boynton, 2009). The resultant
firing rates with attention resemble those when the attended
stimulus is presented alone, approximating a winner-take-all
(WTA) computation that effectively filters out information
from distracters (Reynolds et al., 1999; Wang, 2008; Malek
et al., 2017). Some studies have elaborated on normalization
models to explain these effects (Boynton, 2009; Ghose,
2009; Lee and Maunsell, 2009; Reynolds and Heeger, 2009)
and demonstrated that the effects of attention can be het-
erogeneous depending on the location of targets and dis-
tracters within the RF excitatory (RFe) and inhibitory (RFi)
regions and the size and shape of the focus of attention
(Williford, 2006; Khayat et al., 2010; Niebergall et al., 2011;
Verhoef and Maunsell, 2016).

Some studies have also shown that the components of
normalization may be differentially tuned across neurons
(Ni et al., 2012; Verhoef and Maunsell, 2016; Malek et al.,
2017; Ni and Maunsell, 2017). In parietal area 7a of ma-
caques, involved in exogenous attention (Meyers et al.,
2017) normalization follows a WTA rule (Oleksiak et al.,
2011). This deviates from results in other areas such as
MT, where normalization follows an average (AVG) rule
(Snowden et al.,, 1991; Recanzone et al., 1997). These
discrepancies may be due to differing roles of brain areas
in different types of attention (e.g., exogenous vs endog-
enous) and/or differences in task design and stimuli
across studies. In the LPFC, where neurons encode at-
tention signals across the entire visual field (Lennert and
Martinez-Trujillo, 2011; Tremblay et al., 2015) normaliza-
tion has not been thoroughly studied.

LPFC area 8a is located anterior to the frontal eye fields
(FEF) on the prearcuate convexity, and posterior to area
9/46 (Petrides, 2005). Lesions to area 8a severely impair
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allocation of spatial attention in the contralateral visual
field (Rossi et al., 2007; Pasternak et al., 2015). Neurons in
this area are strongly modulated by visual stimulation and
attention (Goldman-Rakic, 1995; Lennert and Martinez-
Trujillo, 2011; Tremblay et al., 2015), and can be divided
into contralaterally and ipsilaterally tuned relative to their
hemispheric and RF center location. These tuned popu-
lations differ in the amount of suppression below their
baseline firing rates when visual stimuli are shown far from
their RF center (Bullock et al.,, 2017). The latter result
suggests that normalization mechanisms may differen-
tially operate in these two categories of LPFC neurons.

We trained two monkeys in a visuospatial attention task
and recorded single cell responses from area 8a (referred
here as LPFC) using multielectrode arrays. Neuronal re-
sponses to multiple stimuli were sublinear and well-
described by an averaging (AVG) computation. Ipsilateral
neurons were more normalized than contralateral-tuned
neurons. Attending toward a neuron RFe center modu-
lated contralateral neurons responses, shifting them from
AVG to WTA. Ipsilateral neurons were less modulated and
remained better explained by an AVG computation. We
reduced the dimensionality of the neuronal responses to
two variables representing ipsilateral and contralateral
activities. Trajectories in this reduced state space con-
verge during distracter onset and then diverge during the
allocation of attention, allowing discrimination of the dif-
ferent experimental conditions. Finally, a linear classifier
reading out the activity of all single neurons achieved
quasi perfect discrimination performance using temporal
windows as short as 25 ms.

Materials and Methods

Two healthy adult male Macaca fascicularis (“JL,” 7.8
kg; “F,” 7.6 kg) were trained on an oculomotor task on a
computer screen to measure the effects of attention and
normalization in area 8a of the prefrontal cortex (Fig. 1A).
Monkeys received an allotted amount of fluid (fruit juice)
as a reward for successfully completing trials in the task.
Water was restricted during experimental and training
days, but it was lifted on non-testing days. Overall health,
mental state, physical hygiene, and body weight were
monitored daily. The animals were not sacrificed for this
study. All experimental parameters were approved by the
McGill Animal Care Committee, and complied with the
rules of the Canadian Council of Animal Care.

Surgical procedures

Animals underwent surgical operations under general
anesthesia using isoflurane administered via endotracheal
intubation. We first implanted titanium head posts to re-
strain head motion during experiments. We then chroni-
cally implanted one 10 X 10 Utah multielectrode array
(Blackrock Microsystems) in the left dorsolateral prefron-
tal cortex of each monkey. Arrays were positioned on the
cortex anterior to the arcuate sulcus and posterior to the
caudal end of the principal sulcus, otherwise known as
area 8A in the macaque monkey (Petrides, 2005). A Cere-
bus array connector (Blackrock Microsystems) was then
fixed to each of the animals’ skulls with titanium screws.
These screws protruded through the scalp to facilitate
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Figure 1. Task, methods, and behavior. A, Experimental task design. Top, Attention trials. While the animals maintained fixation on
a central point (red color represents gaze location), an initial target cue (Gabor grating at 100% contrast) was randomly presented in
one of four quadrants on a computer screen. Three additional stimuli with identical contrast and orientation then appeared in the
remaining quadrants of the screen (distracters). The animals needed to covertly attend to the cued stimulus to correctly saccade
toward it after it rotated 90° (blue arrows). Bottom, Interleaved fixation trials in which four identical stimuli appeared without an initial
cue; animals needed to hold fixation on the central fixation point until the end of the trial. B, Performance of both monkeys in the
experimental task (12 recording sessions in Monkey JL; 11 sessions in Monkey F). C, Microelectrode array implantation site:
Recordings were collected from area 8a of the left LPFC of each animal.

easier access during each recording session. Specific
surgical procedures are described in a previous study by
Leavitt et al. (2013). Some data from this study were
previously used in another study by our group (Tremblay
et al., 2015). However, in the current study, we include
additional data not yet examined from the attention trials
and fixation trials of our task (described below).

Recordings

We recorded neural data using a Blackrock Microsystems
Cerebus Neural Signal Processor and Cereport Adapter
(Blackrock Microsystems). We recorded from one of three
blocks of 32 channels on the 96-channel array; these blocks
were fixed across all experimental sessions.

The broadband signal was bandpass filtered (0.3-7.5
kHz) and digitized to 16 bits at a sampling rate of 30 kHz.
We detected individual spikes from this signal using a
digital high-pass filter (250 Hz/four pole) in conjunction
with a voltage threshold crossing of 4X root mean
squared noise amplitude. These spikes and their associ-
ated waveforms were sorted offline manually using Offline
Sorter v2.4 (Plexon Inc.). Single units (referred to as single
neurons in this study) were distinguished from multi-unit
activity, and were used for the remainder of the study. We
isolated in 458 single units (199 across 11 sessions in
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Monkey F; 259 units across 12 sessions Monkey JL). We
did not assume that recorded units were the same from
day to day.

Experimental setup

Gabor stimuli were projected onto a computer screen
placed 1 m from the subjects’ eyes using a video projec-
tor (NEC WT610, 1024 X 768-pixel resolution, 85-Hz
refresh rate). Experimental parameters of the task were
controlled using custom-made software. Animal gaze po-
sitions were monitored using an infrared-based eye-
tracking system (Eyelink 1000, SR Research). Saccade
detections were accomplished by thresholding eye move-
ment velocity at 25°/s. Subjects were seated in a standard
primate chair, and were administered juice rewards via an
electronic reward system (Crist Instruments) via a tube
attached to the chair. A lever was installed to the chair and
used by the monkeys to commence a trial. The chair +
screen + pre-amplifier setup was shielded from electro-
magnetic interference with a Faraday cage.

Experimental task

The paradigm consisted of two classes of experimental
trials: attention trials, and fixation trials (Fig. 1A). In both
trial types, subjects initiated a trial by fixating within 2° of
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a central fixation dot and depressing a lever, which had to
be depressed for the entire length of a trial. Following a
fixation period of 110 ms, the trial protocols diverged. The
animals performed several hundred trials of randomly
interleaved attention and fixation trials in each recording
session. Successfully completed trials of either type
yielded a juice reward and were followed by a 300-ms
intertrial interval, while error trials had a 3000-ms waiting
time with a black screen and no reward. The rule for all
trial types can be succinctly stated as follows: saccade
quickly to a cued change, otherwise maintain fixation.

Attention trials

In attention trials, after the 110-ms fixation period, a
circular Gabor stimulus (the “cue”), 1.5° wide with a spa-
tial frequency of 2.5° and tilted at 45°, was presented at
one of four possible positions around the fixation point,
selected at random: an angle of 45° (top left), 135° (top
right), 225° (bottom right), or 315° (bottom left), at 5°
eccentricity. The cue indicated where on the screen they
should covertly direct spatial attention while maintaining
fixation in the center of the screen. After 363 ms of cue
presentation (cue epoch), three distractor stimuli identical
to the cue appeared at the remaining three positions, and
all four stimuli (three distracters and cue) remained fixed
on the screen for a random interval [585,1755 ms] (delay
epoch), after which the trial would proceed in three pos-
sible ways, chosen randomly. (1) In “target” trials, the
target orientation rotated 90° clockwise for 200 ms. Sub-
jects had 400 ms following the onset of the target rotation
to saccade to the target to successfully complete the trial.
(2) In “distracter” trials, the 90° clockwise rotation oc-
curred in the distractor stimulus diagonal to the target,
and the monkey was required to maintain fixation to
successfully complete the trial. (3) In “target + distracter”
trials, changes occurred simultaneously in the target and
distractor at the diagonal location. Subjects had to sac-
cade to the target to successfully complete the trial, while
an “error” trial was defined as the lack of a saccade to the
target or the presence of a saccade to the distractor.
Animals typically completed 200 of each type of attention
trial in a single recording session.

Fixation trials

On trial start in fixation trials, no cue stimulus was
presented to the animals, and the screen remained blank
for the duration of the cue epoch (363 ms) before four
stimuli, identical to those used in attention trials, popu-
lated the four visual quadrants of the computer screen
simultaneously. As in the attention trials, these four stimuli
remained on the screen for a jittered duration of 585-1755
ms; however, in these trials, the subjects had no explicit
instruction directing their covert spatial attention. A “cor-
rect” trial required the subject to maintain their gaze on
the central fixation point for the duration of the trial.

Calculation of chance performance levels

We calculated chance performance levels by consider-
ing the types of responses the animal can produce and
the probability to get a reward if the animal chooses to
randomly produce one of these responses after the
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change in the target. The target, distracter, and target +
distracter trials comprise five options: saccade to one of
the four targets, or withhold a saccade, yielding chance =
20%. Fixation trials comprise two options: saccade or
withhold a saccade, yielding chance = 50%.

Analyses
Single neuron selection

For the purposes of this study, we exclusively analyzed
correct trials. For each neuron, we computed a non-
parametric Kruskal-Wallis one-way ANOVA to compare
the average firing rates of the units across all trials during
the cue (for visual tuning) and delay (for attention tuning)
epochs of the task. We computed firing rates in statically
defined 300-ms windows in each ftrial. For cue epoch
firing rates, we computed firing rates in a 300-ms window
starting from 63 ms after cue onset. Delay epochs were
jittered in length, ranging from 585 to 1755 ms. to include
all available trials in our analysis, we computed firing rates
using a window spanning 285-585 ms (i.e., the minimum
jittered duration) after delay onset.

Of the 458 isolated single neurons, we included neu-
rons that met the following criteria in our study: pos-
sessed an overall mean spike firing rate over 1 Hz;
exhibited a significant change from pre-cue epoch base-
line firing rate when presented with one of the four pos-
sible single stimuli (paired t test with threshold of « =
0.05, Bonferroni corrected), visually selective (Kruskal-
Wallis test with threshold of a = 0.05), and attentionally
selective (Kruskal-Wallis test with threshold of « = 0.05).
A total of 236/458 (51.5%) units met each of these criteria.
Spatial tuning for sensory and attention activity was as-
sessed using mean firing rate responses during cue and
delay epochs, respectively.

To determine sensory spatial tuning, we compared
mean firing rates during trials in which the animals were
presented a single stimulus in one of the four possible
quadrants. If a stimulus in the hemifield ipsilateral to the
recording site elicited a maximal response, that unit was
deemed to be ipsilateral-tuned; similarly, a unit was clas-
sified as contralateral-tuned if a single stimulus displayed
in the contralateral hemifield elicited a maximal response.
For attention tuning, we compared mean responses dur-
ing trials in which animals were attending to one of four
simultaneously presented stimuli on the screen; the at-
tended quadrant that elicited the maximum mean re-
sponse in a unit was defined to be its preferred attended
region of space. We excluded oculomotor-related neural
activity during the saccade epoch of our task for this
study.

Normalization analyses

To characterize the effects of sensory normalization in
these isolated single units, we compared each unit’s firing
rate during the cue epoch to its responses during the
Fixation trials, in which four stimuli were presented simul-
taneously without a preceding cue. We computed firing
rates during the cue epoch as explained above using
windows spanning 63-363 ms after cue onset. We com-
puted firing rates during fixation trials using identical pa-
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rameters: 300-ms windows 63 ms after multiple-stimulus
onset.

Multiple stimulus response index
We quantified the normalization response using a mul-
tiple stimulus response index (MSRI),

Fan
4
>
-1

where r,;, is a unit’s mean response during Fixation trials,
and r; is its mean response to one of the four possible
presented single stimuli. Only units which exhibited a
sublinear response to four simultaneously presented stim-
uli (i.e., MSRI > 0) were included for the remainder of the
analysis (232/236 units; 98%).

MSRI = 1 —

Normalization response fitting

We compared unit firing rates to three simple models
that each describe a candidate normalization scheme.
Each model has zero free parameters. The first of these
theoretical models was a linear summation (SUM):

4

fi = Er,-,,

j=1

Where r;; is unit i’'s mean response to one stimulus
presented in one of four possible quadrants j, 7 is its mean
response to four stimuli presented simultaneously, and n
is the total number of recorded units. The second model
described an averaging scheme (AVG):

4
1
I’,= Z;ru

which is equivalent to the linear scheme, but with an addi-
tional 1/4 scalar multiplier included to average the sum of the
four responses. Finally, we fit a WTA response model:

f; = max(R));where Ri{fi1, li2, lia, 4}

We characterized the goodness of fits using root mean
squared error (RMSE) for each of the three models.

To graphically visualize all three models simultaneously
for Figures 2, 3, we scaled each ith unit’'s 7 and R by
max(R;). We then plotted each unit’s scaled 7 against the
sum of its scaled R. Units which lie on the horizontal y = 1
line exhibited a WTA response; units which lie on they = x
line exhibited a linear response; and units laying on the
y = 1/4x line exhibited an averaging response.

Attention analyses

We characterized attention versus no-attention normal-
ization responses by comparing firing rates during the
fixation trials (no cue, and therefore no directed attention),
and delay epoch of attention trials (four possible quad-
rants to allocate spatial attention). We repeated the nor-
malization analyses described above replacing the
fixation trial firing rates (f) with rates computed during the
delay epoch of the task. The monkeys covertly attended
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to one of four possible cued quadrants during the delay
epoch in which four stimuli were presented simultane-
ously. For our analyses, we examined the attention re-
sponse differences for each unit during “attend in” and
“attend out” conditions. Attend in trials were trials in
which the monkey covertly attended toward the preferred
spatial quadrant of a neuron (i.e., the quadrant in which a
single stimulus elicited the maximum sensory response).
With three possible remaining quadrants to direct atten-
tion toward, there were thus three possible attend out trial
conditions for each unit. For our study, unless otherwise
stated, we used attend out trials in which the monkey
attended toward the quadrant adjacent to its preferred
quadrant, across the vertical meridian (i.e., directly left or
right of the preferred quadrant). However, our results were
robust to our choice of attend out trial conditions.

Attention WTA dynamics

We quantified each unit’s attention response with re-
spect to its response to its preferred stimulus (i.e., maxi-
mal single-stimulus response). We first computed spike
density functions (SDFs) to estimate continuous time-
varying firing rates by convolving spike rasters with a
Gaussian kernel with SD 15 ms. Following this, we nor-
malized each unit’s SDF to its maximum mean firing rate
during the cue epoch in trials where a single stimulus was
presented in its preferred quadrant. This scaled SDF al-
lowed us to evaluate how attending into the preferred
quadrant of a unit dynamically modulates its response
onset toward a WTA computation.

Anatomic clustering of spatial selectivity

To determine whether spatial selectivity is anatomically
clustered, we first determined the preferred hemifield of
each multiunit cluster recorded on each array electrode.
We restricted the analysis to a single recording session
from each block of electrodes such that there was only
one multiunit cluster per electrode. Next, we computed
Moran’s | (Moran, 1950; Zuur et al., 2007; Leavitt et al.,
2018) across the entire array. Moran’s | is a measure of
spatial autocorrelation, the degree of clustering or simi-
larity among objects in space, defined as:

- N > DwiX = X)X — X)
2 EWU E(Xi — X)

where N is the number spatial units indexed by i and j; X
is the variable of interest; X" is the mean X; and W is an
element of a matrix of spatial weights. Values of | range
from —1 to 1. Positive values of Moran’s / indicate that
similar feature values are spatially clustered, while nega-
tive values of Moran’s I indicate that similar feature values
are spatially repellant or dispersed. Moran’s | was com-
puted iteratively, extending the radius of included loca-
tions (the spatial radius) each time, until the whole array
was included. This allowed us to determine the clustering
of preferred location similarity across different spatial
scales. For example, computing Moran’s / for the smallest
cluster radius (400 um) only included adjacent units, while
computing it for the largest cluster radius included all

/
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Figure 2. Normalization in area 8a. A, Example single unit response to individually-presented stimuli (colored lines) and
simultaneously-presented stimuli (black line). B, Responses to multiple versus single stimuli. Each gray point is the sum of a unit’'s
spiking responses to four individually presented stimuli (x-axis) versus its firing rate when those four stimuli were presented
simultaneously (y-axis). The red and green lines are predictions of linear additive (SUM) and averaging (AVG) responses. C, Single unit
spiking responses scaled to mean maximal response. Points are the same as in A, but units with super-additive responses (those lying
above the red line) were omitted (n = 4). Responses to all stimuli and responses to single stimuli were scaled (divided) by the
maximum response to individual stimuli. WTA responses lie on the y = 1 line. D, Bootstrap distributions of RMSEs of each of the three
models. The AVG model yielded lowest RMSE (bootstrap t test between Averaging and WTA RMSE; samples; p < 1 X 10™%). Black

lines are mean, and colored boxes are bootstrapped 95% Cls.

units on the array. Significance was assessed using per-
mutation tests.

State space neural trajectory analysis

In this study, we reduced the dimensionality of our
232-dimensional neuronal ensemble to two dimensions
comprising average ipsilateral-tuned activity along one
axis, and average contralateral-tuned activity along an
orthogonal axis. Single-neuron SDFs were first scaled to
their average maximal response, as described above. We
then combined these single-neuron SDFs to compute
grand mean responses to each condition (four attention
conditions and one fixation condition) for ipsilateral-tuned
and contralateral-tuned populations. These two grand
mean population responses were plotted against each
other for each condition, with time along a third orthogo-
nal axis to display how these neural trajectories evolve
during each trial condition.

Population spatial decoding
To assess visuospatial information content in the re-
corded population during the cue and delay epoch s of
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the task, we constructed a pseudo-population of single
units from which to decode the location of the cue, and
locus of covert spatial attention (quadrant of the screen).
We analyzed successfully-completed attention trials of all
types (target, distracter, target + distracter). Note that
because the trial format for target, distracter, and target +
distracter trials are identical until after the delay period
(Fig. 1A), information about the type of attention trial is
irrelevant to the decoding analyses. We sampled firing
rates from 400 trials (100 trials X 4 quadrant trial condi-
tions) for each unit. We extracted (decoded) information
from this high-dimensional neural data using multinomial
logistic regression with L2 regularization trained on these
pseudo-populations (glmnet algorithm; Friedman et al,,
2010). We repeated the below described decoding pro-
cedures, controlling for ensemble size used in the regres-
sion by subsampling the number of contralateral neurons
to match the number of ipsilateral neurons (i.e., n = 69),
and found quantitatively and qualitatively similar results.
The results and figures in the main text show analyses
using the entire recorded sample (69 ipsilateral and 163

eNeuro.org



eNeU ro New Research 7 of 23

A Ipsilateral | Contralateral
n = 163 contralateral-tuned neurons
n = 69 ipsilateral-tuned neurons
I
recording
site
08 Ipsilateral-tuned ) Contralateral-tuned

Preferred Opposite

0 06 |
®
o
£
B o4
e}
o
2]
N
0.2 + . . . . . . + - L - . L - L L ;
-100 0 100 200 300 -100 0 100 200 300
Time from stimulus onset Time from stimulus onset
4 0.70 0.78
ipsilateral-tuned neurons 4t ——
contralateral-tuned neurons ipsilateral-tuned neurons
== contralateral-tuned neurons
3
=1 [7])
&E g
0B 2 2 2t
T ® =
n 1 o 1t
— = 0'
0 C e . , 0 il - s s L
1 2 3 4 0.2 0.4 0.6 0.8 1
Sum of scaled individual responses MSRI

Figure 3. Tuned neural visual responses. A, Individual unit spatial selectivity categorized by visual hemifield relative to recording site.
B, Average estimates of continuous firing rates (SDFs) for ipsilateral-tuned (left panel) and contralateral-tuned (right panel) popula-
tions. Colored lines are average responses to single stimuli presented in one of four possible quadrants; stimuli were shown inside
a unit’s preferred quadrant (i.e., the stimulus which elicited a maximal response; solid blue), in a quadrant adjacent to the unit’'s
preferred quadrant within the same visual hemifield (dotted blue), adjacent quadrant in the opposite visual hemifield (solid red), or the
quadrant located diagonal to the preferred quadrant (dotted red). Black lines are average population responses to these four stimuli
when presented simultaneously. C, Same as Figure 2C, but with units classified by their spatial tuning. Bootstrapped moving averages
for each tuned population are displayed for visualization purposes (10,000 samples; window size 0.2; step size 0.05). Solid line
denotes mean, shaded region denotes 1 SD of the bootstrap sample. D, MSRI for ipsilateral-tuned and contralateral-tuned cells. Bars
along top of plot denote median, shaded regions denote central 95% bootstrapped Cls (contralateral-tuned CI [0.67,0.73];
ipsilateral-tuned CI [0.75,0.81]).

contralateral neurons) without subsampling the contralat-  on firing rates during the cue epoch, and tested on firing
eral population. Chance decoding was computed by rates during the delay epoch. Firing rates were computed
training the model using shuffled trial condition labels, and  in 300-ms time windows (the same cue and delay epoch
testing on intact labels. We found that shuffled decoding  windows used in the single neuron analyses). We per-
accuracy closely matched theoretical chance decoding  formed a nested k-fold cross-validation to optimize the
accuracy of 25% (i.e., guessing 1/4 quadrants correctly).  regression weights. The dataset was first split into k = 5
Sensory and attention information similarity partitions with 4/5 partitions used as the training set and

To measure the similarity between sensory and atten-  the remaining 1/5 held out as the test set. Within this
tion representation in these units, we trained a classifier  training set, we split the data again into k = 5 sub-
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partitions with 4/5 sub-partitions used to tune the regu-
larization hyper-parameter by testing on the remaining 1/5
sub-partition. With the optimized model we then used the
original test set to assess decoding performance. We then
repeated this procedure 1000 times using newly sampled
trials for each neuron on each iteration.

Temporal evolution of population responses

Using the classifiers trained on firing rates computed
during the cue epoch described above, we then tested on
sliding windows of sampled firing rates during the delay
epoch to predict the location of covert spatial attention.
Sliding windows had a boxcar shape (width 25 ms, step
size 25 ms), and firing rates were computed in a trailing
fashion, i.e., at time step t, the boxcar window integrated
spiking information from t-25 ms to t. We chose bin
widths of 25 ms after repeating the analyses for bin sizes
of 5 ms through 35 ms, in increments of 5 ms. We found
that decoding accuracies began to saturate at 100% at 25
ms, and thus used bin widths of this size for our temporal
analyses.

Delay epoch decoding

As with previous decoding analyses, we used linear clas-
sifiers (glmnet multinomial logistic regression with L2 regu-
larization) to decode the locus of spatial attention during the
delay epoch when the cued stimulus and distracters were
both present on the screen. The decoding accuracy of these
classifiers could be used as a proxy for information content
available to a downstream neuron to be read out (Moreno-
Bote et al., 2014; Tremblay et al., 2015; Boulay et al., 2016).
Three different configurations of neuronal ensembles were
used to train the decoders. These were ensembles that
comprised: exclusively ipsilateral-tuned neurons (69 neu-
rons); exclusively contralateral-tuned neurons (163 neurons);
or both ipsilateral-tuned and contralateral-tuned neurons
(232 neurons). We found similar results when controlling for
either RF size of each neuron included in the classifier, as
well as number of neurons in each population. Firing rates
were computed in bins of 25 ms, and stepped in time by 25
ms, as before.

Bootstrapping procedures

All nonparametric bootstrapping statistical tests were
two-tailed. Unless otherwise stated, all bootstrap tests
used 10,000 samples with replacement (1000 samples for
decoding analyses). Two bootstrap-sampled distributions
were deemed statistically different if 97.5% of their boot-
strap distributions were non-overlapping (« = 0.05). When
possible, p values for bootstrap statistical tests are re-
ported exactly. However, when the observed p value is
lower than the lowest possible p value achievable given
our bootstrapping procedures (i.e., p = 10~* for 10,000
samples or p = 102 for 1000 samples), then we report
either p < 107* or p < 1073, respectively (Table 1).

Results

We trained two male macaque monkeys to direct gaze
to (fixate) a dot at the center of a screen and covertly
attend to a grating stimulus (the target) located in one of
four possible screen quadrants while ignoring distracters
located in the other quadrants. The location of the target
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was indicated by a cue appearing at the beginning of
every trial. When the target changed orientation, the ani-
mal made a saccade toward it (attention trials; Fig. 1A,
top). These attention trials were randomly interleaved with
trials of a fixation condition wherein the four stimuli ap-
peared simultaneously on the screen and the animal was
required to maintain fixation until the end of the trial (Fig.
1A, bottom). Both subjects were trained to a level of task
performance well above chance (20% for target, dis-
tracter, and target + distracter trials; 50% for fixation
trials; see Materials and Methods; Fig. 1B). We implanted
a multielectrode array (Utah array, Blackrock Microsys-
tems) in the left LPFC of each monkey (Fig. 1C) and
recorded the simultaneous activity of multi-units and sin-
gle units (referred to here as single neurons) while the
animals performed the tasks. We isolated 458 single neu-
rons across 23 recording sessions (248 neurons across
11 sessions in monkey F, 210 neurons across 12 sessions
in Monkey JL). Using firing rates computed in each ftrial
during the cue epoch (300-ms time bin; 63-363 ms after
cue onset) and sustained attention (i.e., delay) epoch
(800-ms time bin; 285-585 ms after distracter onset), we
found that 236/458 (51%) of these neurons were tuned for
both the cue location (sensory tuning) and the allocation
of attention (attentional tuning; assessed using Kruskal-
Wallis ANOVA with a threshold of « = 0.05; see Materials
and Methods). For the remainder of our analyses, we
primarily focused on single neurons across all recording
sessions that were selective during both the sensory (cue
tuned) and delay (attention tuned) periods.

Sensory normalization in LPFC area 8a

In a given attention trial condition, the cue was pre-
sented alone at the start of the trial, allowing us to exam-
ine the responses of the neurons to single stimuli
presented in different quadrants of the visual field. The
responses in the fixation trials allowed us to quantify the
responses to all the stimuli presented together (Fig. 1A,
bottom). Figure 2A shows an example neuron’s response
to a lone cue stimulus presented in each of the four
quadrants. The cue evoked the strongest response when
presented in the upper left visual quadrant, and evoked
minimal change from baseline when shown in the other
quadrants. When all the stimuli were presented together
the response was in between the maximal response to the
cue on the upper left quadrant and the responses to the
cue in the other quadrants. For each cell, we computed
responses during the cue epoch or equivalent time win-
dow during fixation trials when the four stimuli were pre-
sented together. We tested whether the responses of
single neurons to multiple stimuli equaled the sum re-
sponses to those stimuli presented alone, as predicted by
a linear SUM model (Fig. 2B, SUM, red line). The vast
majority of our tuned units’ (232/236; 98%) responses to
multiple stimuli were sublinear and resembled those pre-
dicted by an average model computation (AVG, green
line).

To further explore this issue, we transformed the data in
Figure 2B by scaling each unit’s activity by its mean
response to the cue that evoked the strongest response
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Table 1. Statistical table
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Data structure

Type of test

Power/Cls

a Three non-negative continuous distributions of model fits" RMSE Bootstrap t test 95% Cls; AVG: [1.29,1.80]; WTA: [3.05,4.69]; SUM: [10.14,13.00]
b Three non-negative continuous distributions of model fits" RMSE Bootstrap t test 95% Cls; AVG: [1.14,1.80]; WTA: [4.87,7.97]; SUM: [13.92,19.44]
c Three non-negative continuous distributions of model fits" RMSE Bootstrap t test 95% Cls AVG: [1.22,1.89]; WTA: [1.66,2.24]; SUM: [7.29,9.69]
d Non-negative continuous within the range [0,1] Non parametric Mann— 95% Cls; ipsilateral MSRI: [0.75,0.81]; contralateral MSRI: [0.67,0.73]
Whitney U test
e Integers within the range [1,4] Bootstrap t test 95% quantile interval ipsilateral: [2.64,3.15]; contralateral: [2.24,2.58]
f Spearman’s correlation coefficient within the range [-1,1] Bootstrap t test 95% Cl [0.06,0.29]
g Proportions within the range [0,1] X test Post hoc power: 35.4%
h Spearman’s p within the range [-1,1] Bootstrap t test 95% Cl [0.41,0.61]
i Spearman’s p coefficient within the range [-1,1] Bootstrap t test 95% Cl [-0.44,-0.22]
j Two continuous non-normal distributions within the range [0,1] Bootstrap t test 95% CI of MSRI; purely inhibitory: [0.783,0.840], mixture: [0.643,0.682]
k Two continuous non-normal distributions within the range [0,1] Bootstrap t test 95% ClI of MSRI; purely inhibitory: [0.783,0.840], purely excitatory:
[0.729,0.795]
| Two continuous non-normal distributions within the range [0,1] Bootstrap t test 95% ClI of MSRI; mixture: [0.643,0.682], purely excitatory: [0.729,0.795]
m Proportions within the range [0,1] Z test for proportions 95% Cl [71.39,80.20]
n Proportions within the range [0,1] Z test for proportions 95% CI [67.74,77.82]
o Normal distribution t test 95% Cl [0.035,0.215]
p Normal distribution t test 95% Cl [0.164,0.257]
q Two continuous normally distributed distributions Bootstrap t test 95% Cls; contralateral slope: [0.81,0.96]; ipsilateral slope [0.59,0.65]
r Paired non-negative RMSE Bootstrap t test 95% Cls; RMSE; AVG: [2.04,3.08]; WTA: [3.81,6.43]
s Paired non-negative RMSE Bootstrap t test 95% Cls; RMSE; AVG: [1.48,2.20]; WTA: [6.40,11.04]
t Paired non-negative RMSE Bootstrap t test 95% Cls; RMSE; AVG: [1.44,2.27]; WTA: [2.18,3.04]
u Paired non-negative RMSE Bootstrap t test 95% Cls; RMSE; AVG: [2.25,3.54]; WTA: [1.83,2.40]
\ Two continuous normally distributed distributions Bootstrap t test 95% Cls; ipsilateral slope: [-2.588,-1.412]; contralateral slope: [-1.388,-0.212]
w Two continuous normally distributed distributions Bootstrap t test 95% Cls; ipsilateral slope: [0.104,0.496]; contralateral slope: [0.204,0.596]
X Two continuous non-normal distributed distributions Bootstrap t test 95% Cls; ipsilateral WTA index: [0.49,0.69]; contralateral WTA index
[0.71,0.82]
y Two continuous normally distributed distributions Bootstrap t test 95% Cls; ipsilateral slope [-2.38,-0.42]; contralateral slope: [-2.784,-1.216]
z One continuous normally distributed distribution Bootstrap t test (test if 95% Cl [-0.18,0.08]
different from zero)
aa One continuous normally distributed distribution Bootstrap t test (test if 95% CI [-0.10,0.13]
different from zero)
ab Two continuous non-normal distributed distributions Bootstrap t test 95% Cls; ipsilateral WTA index: [0.40,0.57]; contralateral WTA index
[0.60,0.73]
ac One continuous normally distributed distribution Bootstrap t test (test if 95% CI [0.010,0.066]
different from zero)
ad Two continuous normally distributed distributions Bootstrap t test 95% Cls; distance from cue activity shortly after distractor onset; ipsilateral:
[0.19,0.20]; contralateral: [0.10,0.11]
ae Two continuous normally distributed distributions Bootstrap t test 95% Cls; distance from cue activity after sustaining attention; ipsilateral:
[0.16,0.18]; contralateral: [0.09,0.11]
af One continuous normally distributed distribution Bootstrap t test (test if 95% CI [0.061,0.149]
different from zero)
ag Two non-negative distributions within the range [0-100]% Bootstrap t test 95% Cls; ipsilateral trial accuracy: [-48,52]; contralateral trial accuracy: [78,82]

For information regarding the statistical procedures, please see the main text.

(preferred location or stimulus; Fig. 2C). This enabled the
comparison of responses to a WTA response model pre-
diction (blue line). WTA can be considered as a form of
response normalization wherein a unit’s response to mul-
tiple stimuli is equal to its response to the preferred
stimulus alone. We computed the RMSE from the data to
the prediction of the SUM, AVG, and WTA models. Of
these three response configurations, the AVG computa-
tion yielded the lowest RMSE (bootstrap t test, p < 10%2
Bonferroni corrected; Fig. 2D). This demonstrates that
neurons in area 8A undergo response normalization when
multiple stimuli are presented in the visual field and that,
from the three models considered, the AVG model best
describes the computation.

Spatial tuning and normalization

We divided our sample into two subsets: neurons that
produced a maximal response when the single stimuli
were presented ipsilateral to the recording hemisphere
and neurons that produced a maximal response when the
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stimulus was presented contralateral to the recording
hemisphere (referred to as ipsilateral and contralateral
neurons, respectively; Fig. 3A,B). Figure 3C shows the
same plot as Figure 2B with each neuron labeled accord-
ing to its visuospatial tuning. By comparing RMSE be-
tween models, we found that both populations of tuned
neurons were best described by an AVG response (boot-
strap t test on RMSE, p < 10™4,°° Bonferroni corrected).
We further quantified the strength of normalization in each
neuron using a MSRI,

Fan
4
>
i—1

where r,, is a unit’s average response to the four stimuli
presented simultaneously, and r; is its response to a single
cue stimulus presented in quadrant i on the screen (i = 1
... 4 for the four quadrants). If a unit’s response to all

MSRI = 1 —
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Figure 4. Receptive field properties. A, Distributions of receptive field sizes (number of quadrants) for ipsilateral and contralateral neurons.
A quadrant of the visual field was classified as being part of a unit’s receptive field if a singly presented stimulus in that quadrant elicited
a response (excitatory or inhibitory) different from pre-stimulus baseline. B, Corresponding MSRI of units with a given receptive field size.
Medians (black vertical lines) were computed using 10,000 bootstrap samples, and gray bars indicate the central 95% Cls of the distribution
of medians. Cls for top row: [0.65,0.72], second row: [0.66,0.76], third row: [0.73,0.81], and fourth row: [0.71,0.76]. C, Receptive field
configurations. Singly presented stimuli may either excite or suppress neuronal activity relative to baseline. Thus, the receptive field of a
given neuron can be (1) purely inhibitory, (2) purely excitatory, or (3) a mixture of both. Neuronal responses (z-scored to baseline) were
combined for each of the three possible groups. Preferred responses were the responses to stimuli which elicited the greatest response
(or the stimuli which elicited the least amount of suppression, in the case of the purely inhibitory RFs). Non-preferred responses are the
average response to the three stimuli, excluding the preferred stimulus. Insets show proportion of ipsilateral-tuned and contralateral-tuned
cells in each group. D, MSRI of units with RF compositions shown in C. MSRI was greater in units with a greater proportion of inhibitory
receptive quadrants. Each dot is one single unit. Dots are horizontally jittered with reduced opacity for clarity. Vertical length of diamonds
are 2.5th and 97.5th percentile Cls of the bootstrapped distributions (10,000 samples) of medians. Cls for purely inhibited cells: [0.79,0.83],

cells with a mixture of excited and inhibited activity: [0.73,0.79], and purely excited cells: [0.64,0.68].

stimuli (r,,) equals the sum of the responses to each
stimulus alone (2r) then MSRl is 0; if r,, is greater than =r;,
MSRI is <0; and if r,, is lower than 2r, MSRI is between
0 and 1. For our task with four stimuli, an average (AVG)
response would occur when r,, =1/4%r, and MSRI =
0.75. Although the distributions of MSRI overlap, the av-
erage MSRI was greater for ipsilateral neurons (median =
0.78, 95% confidence interval (Cl) [0.75,0.81]) than for
contralateral neurons (median = 0.70, 95% CI [0.67,0.73];
Mann-Whitney U test, z = 4.32, p = 7.97 x 10759 Fig.
3D). This indicates a stronger response normalization in
ipsilateral than in contralateral units.

Receptive field size and normalization

The difference in normalization between contralateral
and ipsilateral neurons could be explained by differing RF
properties between units, such as RF size. Here, we
consider the RF as the region of the visual field that is
modulated by the appearance of the single cue and in-
cludes both excitatory (RFe) and inhibitory (RFi) regions.
To investigate this issue, we first estimated the size of
each unit’s RF (pooling across both RFe and RFi) by
examining whether individually presented stimuli in each
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quadrant modulated the firing rate relative to the pre-
stimulus baseline response (paired t test with threshold of
a = 0.05, Bonferroni corrected; Fig. 4A; see Materials and
Methods). On average, ipsilateral-tuned units had RFs
spanning more quadrants (bootstrapped mean = SD: 2.9
+ 0.1 quadrants) than contralateral-tuned units (2.24 =
0.09 quadrants, bootstrap t test, p < 107%).2 However, the
overall size of a unit’s RF was only weakly correlated with
its MSRI (Spearman’s p = 0.18, bootstrap 95% CI
[0.06,0.29], p < 10~%' Fig. 4B), and thus it is unlikely to
fully account for the difference in MSRI between the two
populations.

It is possible that the difference in normalization be-
tween the populations are related to the specific compo-
sition of the RF in terms of excitatory and inhibitory
regions. Specifically, the suppressed response to many
stimuli may depend on whether specific regions of the RF
are excitatory (RFe) or inhibitory (RFi). We determined
whether a region was excitatory or inhibitory by quantify-
ing the difference in responses between a single cue, and
pre-cue baseline when the animal was only fixating the
center point with no stimulus present. Indeed, in our
recorded population we obtain a heterogeneous sample
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of RF compositions: purely inhibited (all responses below
baseline), purely excited (all responses above baseline)
and mixture of the two (Fig. 4C). However, we found a
trend for a larger proportion of ipsilateral tuned neurons to
be purely inhibited, and an opposite trend of a higher
proportion of contralateral neurons to be purely excited
that did not reach statistical significance (x* test p =
0.099).

Whereas the size of the RFi was positively correlated
with the MSRI (Spearman’s p = 0.50 = 0.05, bootstrap
mean = SD, p < 107%)," the size of a unit's RFe was
negatively correlated with the MSRI (Spearman’s p =
-0.34 = 0.06, bootstrap mean = SD, p < 107%)." Thus, the
larger a neuron’s RFi (measured as number of quadrants),
the more normalization it exhibited. Conversely, a neuron
with a larger RFe was likely to show weaker normalization.
In agreement with this result, the median MSRI for neu-
rons with purely RFi was greater than for neurons with
purely RFe (bootstrap t tests between MSRI distributions,
purely inhibitory vs purely excitatory: p < 10™%) purely
inhibited vs mixture: p = 0.012,% mixture vs purely excit-
atory: p < 10™%' Fig. 4D). This result suggests that the
extension of the RFe and RFi, determined using singly
presented stimuli, relates to the amount of response nor-
malization a given neuron undergoes when multiple stim-
uli are presented. Furthermore, contralateral neurons, with
larger RFe regions and smaller RFi regions, undergo less
normalization than their ipsilateral counterparts.

Another possibility that may account for the differences
in response normalization is that the populations of ipsi-
lateral and contralateral neurons mutually inhibit each
other, with the strength of the inhibition being proportional
to the size of the neuronal pool. Previous studies have
shown that contralateral neurons are more numerous than
ipsilateral neurons in this area (Lennert and Martinez-
Trujillo, 2013; Bullock et al., 2017). We observe this again
in the current study, using the multiunit activity obtained
from each electrode to determine its tuning (contralateral
or ipsilateral). Figure 5A shows the locations of ipsilateral
(cyan) and contralateral (orange) units on the microelec-
trode array for each animal; a significantly larger propor-
tion of neurons are contralateral compared to ipsilateral (Z
test for proportions, Hy: 50% ipsilateral tuned, 50% con-
tralateral tuned; Monkey JL, Z = 10.2, p < 10~ %™ Monkey
F, Z =282 p < 104" Fig. 5C) . We also computed
Moran’s I, an index of spatial autocorrelation, to quantify
clustering of these two groups of neurons on the cortical
surface, and observed significant clustering in both animals;
neurons of a given type (e.g., contralateral) are more likely to
be surrounded by neurons of the same type than by neurons
of the opposite type (Fig. 5B, Moran’s /, black line above the
gray null distribution). This trend was more evident in animal
JL for different cluster radiuses, while in animal F the trend
only occurred for small cluster radiuses.

Effects of attention on normalization responses
Stimuli presented during attention trials were identical
to those presented during fixation trials. However, after
the cue presentation during attention trials, when the four
stimuli appear on the screen, the subjects covertly at-
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tended toward the cued stimulus in one quadrant while
ignoring the three distracters located in the other quad-
rants (Fig. 1A, top). We characterized neuronal responses
when attention was allocated to (1) the stimulus that
evoked a stronger response when presented alone (pre-
ferred stimulus, attend in), (2) one of the non-preferred
stimuli (attend out), and (3) the fixation point, when none
of the four stimuli were cued (“fixation”). Ipsilateral and
contralateral neuronal responses in these three different
attention conditions are shown in Figure 6A.

Firing rates were on average higher during attend in
trials than during attend out trials (Fig. 6A, blue and red
lines, respectively). This effect was highly significant for
both the ipsilaterally-tuned population (t test, tgg = 5.5, p
= 6.2 X 1077)° and contralaterally-tuned population (t
test, t4ep = 7.15, p = 2.8 X 10~ "").” We found that attend
in responses of contralateral neurons, but not ipsilateral
neurons, were better described by a WTA model (a linear
regression slope of 1 signifies a WTA response; Fig. 6B).
The regression slope for contralateral neurons (median
slope = 0.89; 95% CI[0.81,0.96]) was greater than that for
ipsilateral neurons (median slope = 0.62; 95% CI
[0.59,0.65]; bootstrap t test, p < 10™4).9 Figure 6C shows
each unit’'s sum of responses to individually presented
stimuli versus its response to four stimuli during attend in
trials. We computed the RMSE corresponding to each
model prediction for contralateral and ipsilateral neurons
during both attend in and attend out conditions. Attend in
and attend out responses of ipsilateral neurons remained
best-described by an AVG model (bootstrap t test on
RMSE, attend in p < 10~ attend out p < 10~%;° Fig. 6D).
For contralateral units attend out responses were also
better described by an AVG model (bootstrap t test on
RMSE, AVG vs WTA p = 3 X 10~%).! However, contralat-
eral attend in responses were best described by a WTA
computation (dashed gray box; bootstrap t test, p =
0.01Y). Thus, when the animals attended to the preferred
stimulus, normalization in contralateral units shifted from
AVG to WTA.

Dynamics of sustained attention

The previous analyses using firing rates averaged over
statically defined time periods of the task overlooks the
temporal dynamics of attentional modulation. We investi-
gated this issue by first examining how responses during
the attentional period change over time relative to the cue
period responses. We scaled each unit’s SDF (Fig. 6A) by
the mean response to its preferred stimulus (i.e., maximal
response) to yield a time-evolving index. We called this
index the WTA index to refer to changes in response
during the attentional period relative to the response when
the cue is presented alone (Fig. 7). A decrease in WTA
index away from 1 indicates a stronger normalization
response toward the AVG regime caused by distracters.

Both population WTA indices decreased following dis-
tracter onset in the attend in condition (Fig. 7A), indicating
that responses to all stimuli decreased relative to the
single target response. In other words, responses were
normalized toward the AVG response on distracter onset.
We computed the temporal rate of normalization in the
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Figure 5. Anatomic clustering of spatial tuning. Multielectrode array data from Monkey JL (left column) and Monkey F (right column).
A, Multi-unit spatial tuning (ipsilateral or contralateral) on each electrode of the array when using three recording sessions (one per
block of 32 electrodes; see Materials and Methods) from each monkey. Black squares are inactive channels, and white squares are
channels in which no tuning was present (for details, see Materials and Methods). B, Spatial autocorrelation of tuned clusters on
recording array using Moran’s /. Black curves are empirical distributions and gray shaded regions are shuffled 95% null distributions.
Although both subjects showed significant clustering at the smallest cluster size, Monkey JL exhibited significant clustering at larger
spatial scales than Monkey F. C, Distribution of multi-unit spatial tuning across all recording sessions (12 sessions in Monkey JL, and

11 sessions in Monkey F).

ipsilateral and contralateral populations after distracter
onset by fitting straight lines to the time evolving WTA
indices (linear regression slopes computed during time
bin 1, indicated by the left shaded gray bar along the
x-axis; Fig. 7A). The ipsilateral population slope (cyan
arrow; time bin 1) was more negative than the contralat-
eral population slope (orange arrow; time bin 1; mean =
SD, ipsilateral: 2.0 = 0.3 s™'; contralateral: -0.8 = 0.3
s '; p = 8 X 1074 bootstrap t test). This shows that
during attend in trials, ipsilateral neurons were more
strongly normalized by the appearance of the distracters
than contralateral neurons. Approximately 250 ms follow-
ing this initial response decrease, there was an upward
trend (time bin 2, indicated by the right shaded gray bar
along the x-axis) toward a WTA response (dashed line),
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with positive average slopes for each population, not
statistically different from one another (orange and cyan
arrows aligned with bin 2; ipsilateral-tuned slope: 0.3 =
0.1 s~ '; contralateral slope: 0.4 + 0.1 s™'; p = 0.18%,
bootstrap t test). This suggests that the rate of response
change toward the WTA regime when the animals main-
tained attention on the target is similar in both popula-
tions. However, the degree of suppression (normalization)
caused by distracter onset is stronger in ipsilateral neu-
rons.

During attend out trials, neural activity after distracter
onset initially moves toward a WTA regime for both pop-
ulations, however this increase was greater in magnitude
for contralateral neurons (comparing means during time
bin 1; bootstrap t test, p < 1 X 10~%* Fig. 7B). During
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Figure 6. Ipsilateral and contralateral population attention responses. A, Bootstrapped population average SDFs for ipsilateral (left
panel) and contralateral populations (right panel). Attend in, attend out, and fixation trial responses are shown in blue, red. and black,
respectively. Attend out trial conditions were averaged across the three non-preferred locations. Single neuron spike trains were
trial-averaged, convolved with a Gaussian kernel (15-ms SD), z-scored, and finally averaged within each ipsi/contra population. B,
Comparison between each unit’s response to a single stimulus presented in its RF center during the cue epoch (x-axis) vs its attend
in response during the delay epoch when distracters were present (y-axis). Dotted line is when a unit’s attend in response matches
its response when presented that stimulus alone (i.e., WTA response). C, The sum of each unit’s responses to individual stimuli (x-axis)
versus attend in responses (y-axis); x-coordinates of each point are identical to those in Figure 2B. D, RMSE for WTA and AVG models
during attend in and attend out conditions for ipsilateral-tuned and contralateral-tuned units. For attend out conditions, we used trials
where the animals were attending to the quadrants adjacent to a given unit’s preferred quadrant and located in the opposite hemifield.
We found similar results using attend out responses for the remaining two quadrants (i.e., either attending to the quadrant diagonal
to the preferred quadrant, or the quadrant adjacent to the preferred quadrant and in the same hemifield) as well. RMSE for SUM
models were omitted for clarity due to being much greater in magnitude compared to AVG and WTA model RMSE.

attend out trials, since the initial cue was outside the
preferred region of each neuron’s RF, the change in nor-
malization during the delay epoch was likely due to a
distracter populating the neurons’ RFs. After this initial
increase, the WTA index promptly decreased in both
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populations. The modulation rate (linear regression slope
during time bin 1) for both contralateral and ipsilateral
units were similar and not significantly different from one
another (ipsilateral: =1.4 = 0.5 s™'; contralateral: -2.0 +

0.4 s '; p = 0.12Y, bootstrap t test). After this initial rapid
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Figure 7. Single neuron characterization of attention dynamic responses. Bootstrapped average population WTA index (y-axis) over
time (x-axis) for (A) attend in and (B) attend out conditions. We computed linear regression slopes (arrows) for the decaying, and
sustained attention portions of the curves during time bins denoted by gray bars on the x-axis. Shaded error bars are 1 SD. Each line

was computed using 10,000 bootstrap samples.

decay, normalization stabilized (Fig. 7B, time bin 2), and
we found that linear regression slopes were not different
from zero for either the ipsilateral (p = 0.42%, bootstrap t
test) or contralateral population (p = 0.86%%, bootstrap t
test) during this period. However, the normalization level
at which ipsilateral responses stabilized was significantly
lower than the level at which contralateral responses sta-
bilized (both relative to the WTA line; p < 1 X 107432°
bootstrap t test comparing means during time bin 2). This
is likely a direct consequence of the initial response in-
crease being stronger in contralateral relative to ipsilateral
units and the decrease being of similar magnitude in both
subpopulations.

To make the temporal dynamics of the responses more
intuitive, we applied a state space analysis (Murray et al.,
2017; Ebitz et al., 2018) to the population of ipsilateral and
contralateral neurons. We averaged the SDFs of neurons
(scaled to the mean response to their preferred stimuli) in
each subpopulation for the four attentional conditions.
This effectively reduced the dimensionality of the dataset
from n = 232 to 2 dimensions, with each dimension
representing the activity of cells with opposing spatial
tuning (contralateral or ipsilateral). The two horizontal
axes in Figure 8A represent these two dimensions, the
vertical axis represents time, and trials of different atten-
tional conditions are color coded.

In this plot, by folding the trajectories around the “dis-
tracter onset” plane (corresponding to the time at which
distracters appeared during the attentional conditions),
one can compare how much the trajectories during the
cue epoch and during the attentional delay epoch resem-
ble each other. Identical cue and attentional delay trajec-
tories for a given cue would indicate that attention
operates to bring the population state toward an ideal
WTA regime that fully filters out the neural activity evoked
by distracters. On the other hand, if the trajectories in the
attention conditions approximate the trajectory for the
attention-free fixation condition, the network would be in
a full normalization regime and attention would have no
effect.
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Note that during the cue period, no stimulus was dis-
played in fixation trials, and the animals were simply
holding their gaze on the fixation point. Distances from the
different cue/attentional conditions to the fixation condi-
tion depart from zero after cue onset and reached their
maximum during the first 200-300 ms of the cue period
(Fig. 8B). On distracter onset, neural trajectories con-
verged toward the fixation condition trajectory at ~470—
480 ms. However, as attention was sustained on the
target, trajectories diverge from fixation and the average
separation between the attention conditions and fixation
trajectories increased again over time. We computed a
linear regression slope of the average distance as a func-
tion of time over the delay epoch (dotted black line, slope
computed over gray shaded region) and found it to be
significantly positive (bootstrap t test, 1000 samples, p <
0.0012°). This result indicates that population activity in-
creasingly diverges from the fixation condition as atten-
tion is sustained on the target.

To determine how much the effect of attention migrates
toward an ideal WTA regime, we compared each neural
trajectory during the delay epoch (after distracter onset) to
its respective mean trajectory during the cue epoch (Fig.
8C). This shows how population activity when attending
toward a stimulus surrounded by distracters compares to
its activity when the stimulus was presented in isolation
(i.e., how closely does delay activity resemble a perfect
WTA). Distracter onset (time = 0; Fig. 8C) caused neural
trajectories to diverge quickly away from the WTA regime,
with average ipsilateral trial trajectories (mean of blue and
green lines 50-250 ms after distractor onset) displaced
farther than average contralateral trajectories (mean of red
and yellow lines 50-250 ms after distractor onset; boot-
strap t test, p < 0.00129). Following distracter onset, trial
trajectories on average evolved toward, but did not fully
reach a WTA regime (Fig. 8C, black dashed line). Trajec-
tories of trial conditions in which attention was allocated
toward the contralateral hemifield (i.e., average of red and
yellow lines 285-585 ms after distractor onset) advanced
closer to a pure WTA regime than trajectories of condi-
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Figure 8. Temporal dynamics of attention. A, State space trajectories. Average activity across contralateral neurons (x-axis) is plotted
against average activity across ipsilateral neurons (y-axis) for each point in time (z-axis) and averaged within each trial condition.
Colored lines are average activity during the four possible attention trial conditions, and the black line is the average activity during
the Fixation trial condition in which no cue was presented. B, Euclidean distance through time of each average attention trial condition
trajectory (colored) from the fixation trajectory in A. Dashed black line is the average of the four conditions. A linear regression slope
was computed for the dashed line during the latter portion of the delay epoch (gray time bin). C, Time-evolving Euclidean distance
of each attention trial condition’s delay epoch activity (i.e., activity after distracter onset) from its respective mean activity during the
cue epoch. Dashed line is the average of the four conditions. D, Pairwise Euclidean distance between each attention trial trajectory
in A. Dashed line is the average of all the pairwise comparisons. Comparisons were made between conditions where the animal
attended to the top left (tl), top right (tr), bottom left (bl), or bottom right (br) quadrants of the screen. A linear regression slope was
computed during the latter portion of the delay epoch (gray time bin).

tions in which attention was allocated to the ipsilateral
hemifield (average of blue and green lines 285-585 ms
after distractor onset; bootstrap t test, 1000 samples, p <
0.001%°). Importantly, neither of the trajectories fully
reached a WTA regime but seemed to asymptote and

age separation between each trial condition’s neural trajectory
increased again after they collapsed). Specifically, the linear
regression slope of the average pairwise distance as a function
of time during sustained attention was significantly positive
(dotted black line, slope computed over gray shaded region;

stabilize during the sustained attention period.

To determine how neural trajectories corresponding to
a given trial condition differ from other conditions over
time, we also measured the pairwise Euclidean distances
between each trial condition (Fig. 8D). We found that
trajectories were highly similar during the baseline period,
and maximally differ after cue presentation during the cue
period. Following distracter onset, the trajectories con-
verged to a similar state, and diverged again during the
delay epoch when attention was sustained (i.e., the aver-
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bootstrap t test, 1000 samples, p < 0.001. This shows that as
attention is sustained, neural trajectories become more diver-
gent from each other.

Population coding of sustained attention

Given the non-trivial translation from single neuron cod-
ing to population coding, it is unclear whether the effects
we reported in averaged populations extend to the full
neuronal ensemble activity. Furthermore, given the ob-
served temporal modulation of firing rates and normaliza-
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Figure 9. WTA decoding with sustained attention. A, Linear classifier using a pseudopopulation of 232 single unit firing rates trained
on the latter 300 ms of the cue epoch, then tested on: (1) firing rates computed in a 300-ms time window (pink shaded error bar, using
firing rates integrated over gray time bin shown along x-axis), and (2) dynamic, trailing moving windows during the delay epoch
(window = boxcar with width 25 ms; step size = 25 ms). Solid lines are mean classification accuracy, and shaded error is 1 SD of
entire bootstrapped sample. Classification accuracy slowly increased after recovery from transient activity after distracter onset (linear
regression computed on dynamic classification accuracy during time bin denoted by gray shaded region) with a slope of 0.02 + 0.01
ms~' (mean *+ SD; blue arrow). B, Example confusion matrix derived from the final time point of the blue curve in A. Trials in which
animals attended toward the ipsilateral hemifield were misclassified more than trials where they were to attend toward the

contralateral hemifield (50 = 3% vs 80 *= 3% correct).

tion, it is unclear whether the population code during the
cue period generalizes to the code during the attention
period. Linear classifiers have proven effective for appli-
cations such as comparing the information content in
neuronal ensembles during different trial periods and de-
termining the similarity between different coding regimes
(Moreno-Bote et al., 2014; Leavitt et al., 2017). Thus, we
used linear classifiers to assess how similar the popula-
tion code is when the subject is attending to a target in the
presence of distracters compared to when the target is
presented alone. We can consider the activity profile and
the code used during the cue period as corresponding to
a perfect WTA regime. The more the code generalizes
between the attentional and cue periods, the more similar
sustained attention is to an ideal WTA computation, and
consequently the distracters are filtered.

We used a linear classifier to decode the locus of spatial
attention; we trained our model on average firing rates
integrated over a 300-ms window during the cue epoch
(same window as in previous analyses; see Materials and
Methods), and tested on average firing rates during a
300-ms window of the attention (delay) epoch. Using all
232 single neurons, the classifier achieved decoding ac-
curacy of 87 = 2% (Fig. 9A, pink line, test epoch firing
rates computed in gray time bin). This shows that the
population response with attention toward a target among
distracters is similar to that of when the object was pre-
sented alone, suggesting an approximate WTA regime at
the population level. We quantified the dynamics of this
state similarity using the same classifier trained on the
firing rates during the 300-ms cue epoch time bin and
evaluated the time-evolving state similarity by testing the
classifier on sliding windows of firing rates during the
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delay epoch (Fig. 9A, blue curve). We used a 25-ms
boxcar window stepped by 25 ms to compute firing rates
from the spike rasters. Decoding accuracy was nearly
100% immediately following distracter onset, likely be-
cause the neuronal population still contained residual
cue-evoked activity and the distracter information had not
yet reached PFC. At 80-90 ms after distracter onset,
accuracy drastically fell toward chance level (~25%; gray
line is an estimate of chance level accuracy using shuffled
permutation test). However, the decoding accuracy re-
covered and increased toward ~60% shortly thereafter,
and continued to steadily increase with sustained atten-
tion (linear regression slope of 0.02 = 0.01% ms™'; mean
+ SD; Fig. 9B, blue arrow, regression computed using
gray shaded region). Therefore, with sustained attention
the pattern of neuronal ensemble coding of the attended
stimulus evolved over time, and resembles the WTA ob-
served when the cue was presented alone.

We show a representative confusion matrix derived
from test-set predictions made by a decoder at the final
time bin of the sliding decoding window Figure 9B. Inter-
estingly, the classifiers made a greater number of errors
for trials in which attention was allocated toward the
ipsilateral field than when attention was directed toward
the contralateral field (50 = 1% vs 80 *+ 1%; bootstrap t
test p < 107%).29 Importantly, our findings from Figure
9A,B were robust to controlling for the uneven population
sizes of ipsilateral and contralateral neurons (data not
shown); for this reason, we opt for including all recorded
ipsilateral and contralateral neurons in this analysis as we
believe this to be more representative of the underlying
LPFC neuronal population. Thus, when attending toward
a stimulus in the presence of distracters, the population
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Figure 10. Ensemble decoding of locus of covert attention during delay epoch. A, Linear classifier trained and tested on 25-ms trailing
windows stepped by 25 ms during the delay epoch of the task. Bootstrapped average classification accuracies using ensembles
comprising exclusively the ipsilateral-tuned population (blue) or contralateral-tuned population (orange), or an ensemble comprising
both populations (black). Shaded error bars are 1 SD of the entire bootstrap sample. B-D, Confusion matrices for the ipsilateral-tuned,
contralateral-tuned and full population classifiers derived from the final time points of the curves in A.

read-out of information relevant to the contralateral hemi-
field is more effective than that of the ipsilateral hemifield.
This is likely a resulting effect of the varying differences in
magnitude of attentional modulation between the ipsi-
lateral-tuned and contralateral-tuned populations (Fig. 6).
Here, one may consider that if the same result would be
obtained when recording from the same area in the op-
posite hemisphere, a downstream reader that read out
information from both hemispheres would make few er-
rors in this task.

Decoding the allocation of attention
One may ask what the accuracy of the classifier would
be if it were trained on population activity evoked by the
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entire stimulus display during the attention period? To
answer this, we examined the decodable information dur-
ing the delay epoch in the different subpopulations of
neurons and in the entire population (Fig. 10). We trained
linear classifiers using firing rates from ipsilateral-tuned
units, contralateral-tuned units, and the full population,
trained and tested within short-duration windows over the
duration of the delay epoch (stepped by 25 ms; see
Materials and Methods). First, we note that the classifica-
tion accuracy exceeded 95% on average, despite using
very small integration time windows of 25 ms (Fig. 10A,
black curve). Secondly, classification accuracies for to
each oppositely-tuned population (contralateral: orange;
ipsilateral: blue) both decreased following distracter on-
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set, with the magnitude of decrease being greater in the
ipsilateral-tuned population than contralateral-tuned pop-
ulation.

Note that the decoding accuracy decreased to a level
that was still well above chance, suggesting that even
when distracters caused the firing rates to evolve toward
those evoked by the four stimuli during fixation (Fig. 8), the
population code still signals the target location. A possible
explanation for this result is that the classifier may use
information from a subpopulation of neurons (e.g., con-
tralateral neurons) that are less affected by the appear-
ance of the distracter (orange curve). This suggests that
resilience to distracter interference may be a feature of
this subpopulation of contralateral neurons. Here one may
consider that classifiers using single neurons as features
do not use central tendency statistics such as mean
differences across the population (as does the state
space analyses illustrated in Fig. 8) but can use informa-
tion from only a subset of neurons and perform well above
chance. Indeed, we found that both populations con-
verged toward the same level of classification accuracy,
despite there being more contralateral neurons relative to
ipsilateral neurons, and despite attentional effects being
on average larger in contralateral neurons.

Several conclusions can be derived from these results.
First, that a linear classifier would approach ideal perfor-
mance when using the population code based on the
activity profile evoked by both targets and distracters
compared to when using a code based on activity evoked
by the target alone (Fig. 9). This can be further illustrated
by the confusion matrices shown in Figure 10B-D. The
matrix for the full population shows a yellow diagonal
illustrating the classifier made almost no errors, while the
other matrices diagonal show shades of orange (see color
scale). Second, that each subpopulation alone reached a
lower performance than the entire population considered
together. Finally, that the activity of a relatively small
population of area 8a neurons (n = 232) is sufficient to
encode the allocation of attention to one of four target
locations in the presence of distracters using a rate code
that integrates information during time intervals as short
as 25 ms.

Discussion

We found that responses of neurons in LPFC area 8A to
multiple stimuli across the visual field were normalized, and
that the magnitude of normalization of a neuron’s response
was related to its visuospatial tuning: the responses of ipsi-
lateral neurons were more strongly normalized than the
responses of contralateral neurons. Attention affects con-
tralateral and ipsilateral neurons responses by shifting the
normalization computations from AVG to WTA, an effect
that was significantly stronger in contralateral neurons.
We reduced the dimensionality of the data set by pooling
the responses of all contralateral and all ipsilateral neu-
rons and analyzed the temporal dynamics of neural activ-
ity. Neural trajectories for the different trial types departed
from a common point, diverged during the cue period,
converged during distracter presentation (AVG), and di-
verged again during the allocation of attention (WTA).
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Finally, we used linear classifiers to decode the locus of
covert spatial attention from LPFC neuronal activity. Clas-
sifiers were able to decode the allocation of attention on a
single-trial basis at significantly above chance levels when
using a rate code derived from neuronal responses to a
single target stimulus earlier in the trial. When using a
code based on neural responses to the target and dis-
tracters during the period of sustained attention, classifi-
cation accuracy substantially improved, approaching
ideal performance with a temporal resolution as high as
25 ms.

Response normalization in LPFC area 8a neurons

Response normalization can be described as a canon-
ical computation in which the response of a neuron is
divided by a common factor that typically includes the
summed responses of a pool of neurons (i.e., a normal-
ization pool (Heeger, 1992; Carandini and Heeger, 2012).
We found 232/236 (98%) of recorded neurons in LPFC
area 8A exhibited sublinear responses to multiple stimuli
in their RF, compatible with normalization, and were best
characterized by an average (AVG) computation. One
possible limitation to our study is that our quantification of
normalization relied on comparing responses of indi-
vidually-presented stimuli to those of multiple stimuli pre-
sented simultaneously. Specifically, it is important to note
that responses to individual stimuli may be affected by
task demands since the animals knew to attend toward
the stimulus during the subsequent delay period. How-
ever, similar findings have been reported across multiple
visual cortical areas (Recanzone et al., 1997; Britten and
Heuer, 1999; Gawne and Martin, 2002; Lampl, 2004; Zoc-
colan et al., 2005; but see Finn and Ferster, 2007; Maun-
sell, 2015). Normalization allows a neuron to encode
responses to multiple stimuli in the visual field using a
similar dynamic range, independently of the number of
presented stimuli (Carandini and Heeger, 2012). As the
LPFC signals the allocation of top-down attention to a
target among distracters, it may be important that neu-
rons in this area maintain an appropriate bandwidth, cal-
ibrating neuronal responses to variable numbers of stimuli
across the entire visual field before allocating attention.

One distinctive feature of area 8a neurons is the large
size of their RFs, which may span both ipsilateral and
contralateral hemifields (Mikami et al., 1982; Funahashi
and Bruce, 1989; Bullock et al., 2017). Indeed, we found
neurons with RFs spanning up to all four quadrants of the
visual field (Fig. 4). Neurons with larger inhibitory RFs (RFi)
underwent stronger response normalization relative to
neurons with smaller RFi. Many of the strongly normalized
neurons exhibited preference for the ipsilateral visual
hemifield, suggesting that these neurons have stronger
inhibitory drive than contralateral neurons. Importantly,
the large size of excitatory and inhibitory RFs of these
LPFC neurons allows the calibration of responses to mul-
tiple stimuli across the entire visual field. This becomes
important for signaling the allocation of attention across
the entire visual field and contrasts with neurons in visual
cortex, in which RFs rarely extend across both visual
hemifields.
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A recent study mapping visually responsive neuron RFs
in area 8a showed that ipsilateral neurons possess larger
RFi than contralateral neurons (Bullock et al., 2017). In
agreement with this result, we found that ipsilateral neu-
rons underwent stronger normalization than contralateral
neurons when presented with multiple stimuli across the
visual field (Figs. 3, 4). One possible explanation for this
result may be linked to the finding that contralateral neu-
rons comprise ~70% of the population in the area com-
pared to ~30% ipsilateral neurons (Lennert and Martinez-
Trujillo, 2013; Bullock et al., 2017; Fig. 3). If we assume
that (1) contralateral and ipsilateral neuronal populations
are mutually inhibitory, and (2) that the strength of the
inhibition is proportional to the size of the neuronal pool,
then the average ipsilateral neuron would receive more
inhibition than the average contralateral neuron. Thus, in
response to multiple stimuli spanning the entire visual
field, the inhibitory drive to the ipsilateral population would
be larger than the one to the contralateral population. This
would result in stronger response normalization in ipsilat-
eral neurons when multiple stimuli are similarly distributed
across both hemifields. Although we recorded from the
left LPFC, a similar predominance of neurons tuned for
the contralateral visual hemifield has been reported in the
right LPFC of macaques (Lennert and Martinez-Truijillo,
2013), suggesting that this asymmetry in pool size is a
feature of the LPFC independent of its hemispheric loca-
tion. The functional role of this difference in normalization
strength between populations is unclear.

Attentional modulation across neuronal
subpopulations

The effects of attention on the responses of ipsilateral
and contralateral LPFC neurons have been previously
reported (Lennert and Martinez-Trujillo, 2013). In general,
attending to stimuli inside the RF increased the activity of
both tuned subpopulations relative to attending outside.
However, this attentional modulation is stronger in con-
tralateral neurons, which agrees with previous reports
(Lennert and Martinez-Trujillo, 2013). We elaborate on this
finding, showing that with attention, responses of con-
tralateral neurons resemble a WTA computation while
responses of ipsilateral neurons remain better character-
ized by an AVG computation (Fig. 6). These differences in
attentional modulation may be linked to the differences in
normalization we found between the two populations of
neurons.

The link between normalization and attention has been
proposed by several studies (Reynolds and Heeger,
2009). Some studies have proposed that attention in-
creases the gain of excitatory inputs corresponding to the
attended stimulus before normalization (Ghose, 2009; Lee
and Maunsell, 2009; Reynolds and Heeger, 2009). This
attention-normalization framework is built on the assump-
tion that a single neuron undergoes at least two stages of
computation when converting synaptic inputs into trains
of action potentials. Neurons first integrate tuned inputs
from upstream neurons, and in the second stage this
tuned signal is weighted or normalized by the responses
of neighboring neurons via inhibitory connections (Caran-
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dini and Heeger, 2012). To expand on the link between
response normalization and our results, we will first con-
sider the normalization equation proposed by Reynolds
and Heeger (2009) in a simplified form:

response = E/[E + ]

where response is the neuron’s response, E is the excit-
atory tuned input from upstream neurons and / is the
additional inhibitory input from the normalization pool. For
the population of contralateral neurons, the equation can
be written as:

responsecon!ra = Econtra/[Econtra + Eipsi]
where E_, ... represents the integral of the number of
spikes per time unit (firing rate) of the contralateral pop-
ulation and E,; the same quantity but corresponding to
the ipsilateral population. Similarly, the equation for the
ipsilateral population can be written as:

r esponseipsi = Eipsi/ [Eipsi + Econtra]

We can then apply the same attentional gain G to one or
the other population depending on where attention is
allocated (i.e., to the hemifield contralateral or ipsilateral
to the recording site):

response,—contra = G*Econtra/ [G*Econtra + Eipsi]

responseatt—ipsi = G*Eipsi/[G*Eipsi + Econtra]

where response,; co.m, and response,; . are the re-
sponses of the two populations with attention. Because
Econa > Ejps (due to the asymmetric population sizes),
when applying the term G, the response increase in the
contralateral population will be proportionally larger than
in the ipsilateral population. Thus, without changes in the
strength of the signal that triggers the attentional modu-
lation (G), the asymmetries in the size of the populations
can result in a greater increase in firing rates in contralat-
eral than in ipsilateral neurons and thus a departure from
the AVG computation toward a WTA in the contralateral
population.

Although our hypothesis needs to be further tested,
some findings from previous studies seem to provide
some support its favor. First, it has been shown that
callosal projections from ipsilateral parietal cortex and
contralateral prefrontal cortex interdigitate in the LPFC
(Goldman-Rakic and Schwartz, 1982; Goldman-Rakic
et al.,, 1984). These anatomic observations likely corre-
spond to the segregation of ipsilateral and contralateral
neurons observed in our MEA (Fig. 5). Second, it has been
shown that ipsilateral and contralateral neurons show
differences in their response latencies and it has been
proposed that they may play different roles in the gener-
ation of saccades and anti-saccades (Johnston et al.,
2009). In the same study the authors showed that a
relatively high proportion of neurons possessing narrow
waveforms were ipsilateral-tuned, and further suggested
that they may be inhibitory interneurons that target con-
tralateral neurons within the same hemisphere of LPFC. It
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has been shown that contralateral and ipsilateral LPFC
neurons show a higher proportion of negative spike count
correlations, which may indicate inhibitory interactions
between them (Leavitt et al., 2013, 2017). Overall, these
results support the hypothesis that during both response
normalization and the allocation of attention, ipsilateral
and contralateral neurons engage in competitive interac-
tions through lateral connections. Since this process is
likely to occur in both hemispheres, it leads to the ques-
tions of what the function is of such a redundant system,
and whether and how computations from both hemi-
spheres are combined into a single saliency map.

Temporal dynamics of attentional modulation

Temporal dynamics of activity in ipsilateral and contralat-
eral LPFC neurons have been shown to differ (Lennert and
Martinez-Truijillo, 2013). Here, we additionally found that ip-
silateral neuronal activity in response to a single stimulus
was suppressed by the distracter appearance more rapidly
than that of contralateral neurons. This may be related to the
stronger impact of normalization on ipsilateral neurons. In-
terestingly, following distracter onset, both populations
tended toward a WTA state at similar rates while attention
was sustained on the target. These dynamics may be ex-
plained within the normalization framework; normalization
models capture the bottom-up distracter response, as in the
responses during fixation trials, with ipsilateral neurons un-
dergoing stronger and more prolonged normalization. The
asymmetry in the strength of inhibitory inputs (see previous
section) may result in the greater magnitude and faster
dynamics of normalization in ipsilateral neurons. Impor-
tantly, a similar attentional gain factor G applied to the
responses of each population when attention is directed
to the contralateral or ipsilateral hemifield increases the
firing rate of the corresponding population at a similar
rate. However, because the ipsilateral population under-
goes greater normalization due to distracter appearance,
the amount of increase and therefore similarity to a WTA
regime is smaller in the ipsilateral population. Thus, the
differences in temporal dynamics can be explained by
differences in the strength of normalization in the different
subpopulations, rather than by difference in the strength
of the attentional signal bias, represented by G. The ori-
gins of G are not clear, but they may originate from
working memory representations of spatial locations ac-
tivated by the cue, or by a persistent sensory represen-
tation of the cue (Mendoza-Halliday and Martinez-Truijillo,
2017).

One potential pitfall of our state space analysis is that
the dimensionality reduction is based on the spatial pref-
erences of the neurons. Some prior studies have opted for
alternative approaches such as principal component anal-
yses to reduce the dimensionality of the dataset and plot
the trajectories as a function of trial time in state space
(Murray et al., 2017). Our approach decomposes the neu-
ronal activity based on experimenter-defined task-
relevant dimensions, and thus we consider it to fall in the
category of “targeted” dimensionality reduction, similar to
other prior work in LPFC (Mante et al., 2013) and FEF
(Ebitz et al., 2018). Our approach may also be justified
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based on the distinction between the response properties
of the ipsilateral and contralateral neurons and their ana-
tomic segregation within the LPFC (Goldman-Rakic and
Schwartz, 1982; Lennert and Martinez-Truijillo, 2013). It is
plausible that downstream projections from contralateral
and ipsilateral neurons reach similar downstream neurons
or populations that integrate information across the entire
visual field. The trajectories plotted in Figure 8 remain
segregated for the different allocations of attention sug-
gesting that the activity of the two subpopulations could
convey information to downstream mechanisms. This in-
formation can be used to generate motor plans, e.g.,
saccades with different directions to different possible
target locations during the response period, or to feed-
back into visual areas to modulate the processing of
sensory signals.

The concept of segregated ipsilateral and contralateral
coding may also be justified by the impact that the me-
ridians of the visual field exert on attention and working
memory, both behaviorally (Carlson et al., 2007; Liu et al.,
2009; Alvarez et al., 2012) and at the neuronal level in
LPFC (Buschman et al., 2011; Matsushima and Tanaka,
2014; Leavitt et al., 2018). Strong inhibitory interactions
between contralateral and ipsilateral neurons may also
explain why distracter interference is lower during atten-
tion tasks where targets and distracters are located in
either the opposite or same visual hemifield (Stormer
et al., 2014). These inhibitory interactions may facilitate
implementation of WTA strategies between targets and
distracters in different hemifields. Future studies using
techniques that allow identification of neuronal types in
behaving animals are needed to reveal the details of the
microcircuitry underlying these interactions.

Wimmer et al. (2016) recorded from PFC neurons while
macaques performed a delayed compare-to-sample task
with random dot patterns. It is difficult to draw major
conclusions between our results and theirs because we
compared the properties of two classes of neurons (neu-
rons preferring ipsi vs contra stimuli), whereas they com-
pared the properties of two classes of neural responses
(responses to ipsi vs contra stimulus presentations). Nev-
ertheless, there are some comparisons that can be made.
Both of our studies found a higher proportion of excitatory
than inhibitory neurons, although we observed approxi-
mately a 60:40 ratio of excitatory to inhibitory neurons
whereas they reported a 79:21 ratio. Wimmer et al. (2016)
found that stimulus selectivity, as measured using
auROC, was similar for contralateral and ipsilateral stim-
uli. Likewise, our population decoding analysis showed
that the amount of contralateral and ipsilateral stimulus
information is similar during the latter portion of the atten-
tional delay for a classifier trained and tested on the same
time bin (Fig. 10). However, we also observed that dynam-
ics in the population representation diminish the informa-
tion about ipsilateral stimuli across the cue and early delay
epochs (Fig. 9).

Ensemble coding of attention
The translation from single neuron responses to ensem-
ble coding and information read-out is nontrivial (Moreno-
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Figure 11. Hypothetical normalization circuit in the LPFC. The diagram illustrates a top view of the left and right hemispheres of a
macaque monkey brain. The arrows illustrate the origin of excitatory inputs into the pools of contralateral and ipsilateral neurons. The
arrows illustrate excitatory (red) or inhibitory (blue) connections between pools of neurons. Triangles are individual units. The colors

indicate their spatial preference.

Bote et al., 2014). However, using linear classifiers allows
us to quantify the evolution of the population state simi-
larity relative to when the attended stimulus is presented
alone (i.e., ideal WTA). A study using similar methods to
these found that attentional modulation drives the re-
sponses of inferotemporal neurons toward a WTA state
(Zhang et al., 2011). We found that a classifier trained on
neuronal firing rates during the cue epoch could be used
to reliably decode the location of covert spatial attention
during the delay epoch (Fig. 9). This shows that the pop-
ulation response to a stimulus presented in isolation ex-
plains a substantial portion of the population response
variance when attending to that stimulus in the presence
of distracters. This finding is consistent with attentional
modulation resembling a WTA response, and agrees with
models in which attention biases neuronal population
activity toward a state resembling that when the attended
stimulus is presented in isolation (Desimone and Duncan,
1995).

On distracter onset, neurons that were previously silent
became transiently excited as stimuli populated their RFs;
concurrently, neurons that were previously excited under-
went normalization (suppressed response) when addi-
tional stimuli appeared. The effect of this was akin to a
decrease in signal-to-noise. As a result, classification ac-
curacy of cue epoch-trained decoders tested on stepped
time windows of firing rates during the delay epoch
steeply declined. However, we found that sustained at-
tentional modulation resulted in a steadily increasing clas-
sification accuracy as time progressed. This indicates that
the population state dynamically migrates toward a state
resembling isolated cue stimulus presentation (Zhang
et al., 2011). The classifier was more prone to making
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errors on trials when the monkey was allocating attention
to the ipsilateral hemifield. This was likely due to con-
tralateral neuronal activity reaching a state closer to an
ideal WTA computation while ipsilateral neurons, although
significantly modulated during attend in trials, remained
best described by AVG. In general, at the full ensemble
level, attentional modulation did not result in a full WTA
computation resembling the activity profile evoked by the
single cue, as the classifier accuracy plateaued at perfor-
mance levels below 100%.

Finally, we used linear classifiers trained and tested on
the attentional delay epoch firing rates (Fig. 10). This
contrasts with our previous analysis using classifiers
trained on the cue epoch when the attended stimulus was
presented in isolation. By training on the delay epoch, we
are assuming that a downstream reader is not using the
template provided by the single cue alone (WTA tem-
plate). In this scenario, the downstream reader would use
the template corresponding to the population response
that underwent response normalization and partially mi-
grated to a WTA regime with attention. We found that the
read-out of information from an exclusively ipsilateral-
tuned ensemble was not different from that of an ensem-
ble composed of exclusively contralateral-tuned neurons.
This finding remained true when controlling for neuron
receptive field size, as well as population size. Thus,
despite ipsilateral-tuned neurons not computing a WTA,
as contralateral neurons did, they encoded sufficient in-
formation regarding the allocation of attention through
changes in response profiles.

Decoders using the full ensemble (232 neurons) activity
during the attention period achieved near-perfect classi-
fication accuracy after distracter onset (although this was
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dependent on window size used to compute firing rates;
see Materials and Methods). If we use classification ac-
curacy as a proxy for information content in the ensemble
(Moreno-Bote et al., 2014; Tremblay et al., 2015; Boulay
et al., 2016; Leavitt et al., 2017), we can conclude that a
downstream neuron reading out normalized activity per-
forms better than one that assumes a WTA population
response. This is not surprising when considering that
monkeys as well as all other animals rarely encounter
environments in which targets exist in isolation, but envi-
ronments in which targets coexist with multiple distract-
ers. Under this assumption, neuronal activity should
always be normalized in cortical circuits, so normalization
is the norm and not the exception. Thus, the weights of
the classifiers trained during the target and distracters
(delay) period are a more realistic estimation of the
weights corresponding to read out downstream mecha-
nisms in natural conditions.

Conclusions

We characterized the properties of LPFC area 8A neu-
rons during different periods of a task that required sen-
sory processing of a single stimulus (the cue) and filtering
out of distracters appearing across the visual field. We
described two groups of neurons, ipsilateral and con-
tralateral tuned, that show differences in their response
properties regarding normalization and attention. These
two groups of neurons likely receive inputs from different
brain areas and compete through inhibitory interactions
(see diagram in Fig. 11) to produce a saliency map at the
level of the population that can be read out by a down-
stream mechanism to accurately signal the allocation of
attention. More generally, our results provide evidence in
favor of the existence of a circuit mechanism in primate
LPFC that flexibly operates across the entire visual field
and dynamically performs different normalization compu-
tations (AVG and WTA) to generate signal maps of behav-
ioral relevance of the entire visual field. This normalization
circuit may have evolved in primates with the expansion of
the LPFC to allow cognitive flexibility.
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