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Abstract

Flowering phenology is an important determinant of a plant’s reproductive success. Both assortative mating and niche
construction can result in the evolution of correlations between phenology and other reproductive, functional, and life
history traits. Correlations between phenology and herbivore defence traits are particularly likely because the timing of
flowering can allow a plant to escape herbivory. To test whether herbivore escape and defence are correlated, we estimated
phenotypic and genetic correlations between flowering phenology and latex production in greenhouse-grown Lobelia
siphilitica L. (Lobeliaceae). Lobelia siphilitica plants that flower later escape herbivory by a specialist pre-dispersal seed
predator, and thus should invest fewer resources in defence. Consistent with this prediction, we found that later flowering
was phenotypically and genetically correlated with reduced latex production. To test whether herbivore escape and latex
production were costly, we also measured four fitness correlates. Flowering phenology was negatively genetically
correlated with three out of four fitness estimates, suggesting that herbivore escape can be costly. In contrast, we did not
find evidence for costs of latex production. Generally, our results suggest that herbivore escape and defence traits will not
evolve independently in L. siphilitica.
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Introduction

The timing of flowering has significant effects on plant fitness

[1,2]. For outcrossing plants, flowering time determines the

availability of both mates and pollinators. Plants that flower when

mates or pollinators are scarce will have reduced seed set [3,4].

Furthermore, flowering time can affect the probability of damage

by herbivores that consume reproductive tissue, such as florivores

and seed predators. Plants that flower when these herbivores are

abundant can have reduced seed set [5,6,7]. Flowering time also

determines the abiotic environment in which plants reproduce.

For example, plants that flower prior to the onset of drought can

have higher seed set than those that delay flowering [8,9].

Similarly, alpine plants that produce flowering buds later can have

higher fitness because they avoid frost damage [10]. Because of

these effects on interactions between plants and their environment,

flowering time is frequently under natural selection in the wild

[2,11].

Flowering time is likely to be correlated with other reproductive,

functional, and life history traits for two reasons. First, plants

assortatively mate by flowering time [12]. Plants that flower early

are more likely to mate with other early bloomers, while plants

that flower late are more likely to mate with other late bloomers.

This mating pattern will increase genetic correlations between

flowering time and other functional traits [13]. Second, the timing

of flowering determines the environment experienced by any traits

expressed after flower initiation [14], and by extension the strength

and direction of natural selection on those traits [15]. This niche

construction can result in the evolution of genetic correlations

between flowering time and subsequently expressed traits [15].

Such correlations can result in fitness trade-offs that may constrain

the rate of adaptation [16], as well as contribute to the evolution of

syndromes (suites of correlated traits that increase fitness [17,18]).

Flowering time is likely to be correlated with herbivore defence

traits, particularly those expressed in reproductive tissue. As a

niche construction trait, flowering time determines whether a

plant’s reproductive structures are exposed to herbivores [5,19]. If

a plant escapes herbivory, then there should be selection against

costly defence traits [20]. Such niche construction is predicted to

result in the evolution of genetic correlations between flowering

time and defence traits [15]. Specifically, genotypes that escape

herbivory because of their flowering phenology should have

reduced investment in defence traits [21,22,23]. Genetic correla-

tions between flowering time and defence traits could also be

inflated by phenological assortative mating [13]. This is because

mates will have both similar flowering times and a similar level of

investment in herbivore defence. Despite increased interest in

defence syndromes [18], few studies have estimated correlations

between flowering time and other herbivore defences [24,25,26].

However, life history traits such as flowering time are often better

predictors of herbivore damage than physical and chemical
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defence traits, perhaps because life history traits have larger effects

on herbivore preference and performance [27].

To test whether herbivore escape and defence are correlated,

we estimated phenotypic and genetic correlations between

flowering phenology and latex production in the wildflower Lobelia

siphilitica L. (Lobeliaceae; Fig. 1A). This species is attacked by the

specialist pre-dispersal seed herbivore Cleopmiarus hispidulus Le-

Conte (Coleoptera: Curculionidae; Fig. 1B) [28]. In a previous

study, Parachnowitsch and Caruso [5] found that late-flowering L.

siphilitica escaped attack by C. hispidulus, resulting in direct natural

selection for later flowering. However, L. siphilitica also produces

an alkaloid-rich latex exudate [29], which likely acts as a defence

against seed predation when exuded from the ovary walls [30].

Because late-flowering L. siphilitica escape attack by C. hispidulus

there should be relaxed selection on defensive traits such as latex

and/or alkaloid content in these plants. This niche construction, in

combination with assortative mating, should result in the evolution

of a negative genetic correlation between flowering time and latex

production in L. siphilitica. Our prediction assumes that there are

intrinsic fitness costs to delaying flowering and investing in latex

production [31,32] when herbivores are absent. However, costs of

herbivore escape and defence are inconsistently observed [33].

We measured flowering phenology, latex production, and four

fitness correlates (flower size, final plant height, rosette number

and final biomass) of greenhouse-grown L. siphilitica in order to

answer the following questions:

(1) Are flowering time and latex production negatively pheno-

typically and genetically correlated in L. siphilitica, as expected

if plants that escape herbivory have reduced investment in

defence traits?

(2) Are flowering time and latex production negatively correlated

with flower size, final plant height, rosette number, and/or

final biomass of L. siphilitica, as expected if herbivore escape

and defence are costly?

Results

There was significant phenotypic (Table 1) and genetic (Table 2)

variation for flowering phenology, latex production, and fitness

correlates of L. siphilitica. Day of first flower and latex production

(wet and dry mass) varied significantly among maternal families. In

addition, we detected effects of maternal family on all four fitness

correlates (flower size, inflorescence height, rosette number and

final biomass). The final position of the plant in the greenhouse

(planting tray) also had a significant effect on flowering phenology,

latex production (wet and dry mass), inflorescence height and final

biomass, but not flower size or rosette number (Table 2).

Flowering phenology and latex production were both pheno-

typically and genetically negatively correlated (Table 3; Fig. 2).

Lobelia siphilitica plants and families that flowered later produced

significantly less latex, although the genetic correlation between

wet latex mass and flowering phenology was not significant when

corrected for multiple comparisons. Furthermore, the phenotypic

Figure 1. Lobelia siphilitica flower (A) and its specialist pre-dispersal seed herbivore, Cleopmiarus hispidulus (B). Photo credits: flower by
Brian Husband, seed herbivore by Amy Parachnowitsch.
doi:10.1371/journal.pone.0037745.g001

Table 1. Summary statistics for the phenotypic
measurements of greenhouse-grown Lobelia siphilitica plants.

Phenotypic traits Mean Range N

Days to first flower 123 101–153 483

Wet latex mass (mg) 1.31 0–8.85 478

Dry latex mass (mg) 0.32 0–2.25 478

Flower size (mm) 12.00 9.89–14.91 483

Inflorescence height (cm) 61 28–106 477

Rosette number 10 0–25 477

Final biomass (g) 16.76 5.40–36.17 397

doi:10.1371/journal.pone.0037745.t001

Temporal Escape from Herbivory and Latex Defence
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correlation between phenology and latex remained significant

after correcting for final biomass (wet latex mass: rpartial = 20.218,

P,0.0001, N = 392; dry latex mass: rpartial = 20.257, P,0.0001,

N = 392).

Correlations between flowering phenology and fitness estimates

were generally negative in L. siphilitica. Early flowering plants

produced larger flowers, taller inflorescences and accumulated a

greater final biomass than late flowering L. siphilitica (Table 3). In

contrast, day of first flower was not phenotypically correlated with

rosette number. Of the three fitness estimates that were

phenotypically correlated with day of first flower, only final

biomass was significantly genetically correlated after Bonferroni

correction.

In contrast to flowering phenology, latex mass (wet and dry) was

not significantly negatively correlated with any of our four fitness

estimates (Table 3). Instead, plants (but not families) that produced

more latex had significantly taller inflorescences and greater final

biomass. After correcting for day of first flower, the positive

phenotypic correlation between latex mass and inflorescence

length remained significant for dry (rpartial = 0.12, P = 0.009,

N = 472) but not wet latex mass (rpartial = 0.06, P = 0.21, N = 472).

However, the phenotypic correlation between latex mass and final

biomass was not significant for either wet (rpartial = 0.07, P = 0.16,

N = 392) or dry latex mass (rpartial = 0.01, P = 0.8, N = 392) after

accounting for variation in phenology.

Discussion

In our greenhouse population, L. siphilitica plants that flowered

later and therefore would escape pre-dispersal seed herbivory in

the field [5] also produced less latex (Fig. 2). This result is

consistent with the prediction that niche construction [14] and

assortative mating [12] will result in the evolution of correlations

between flowering phenology and functional traits such as

herbivore defence. The negative correlation between flowering

phenology and latex production in L. siphilitica is also consistent

with the prediction from optimal defence theory that plants which

escape herbivory will invest less in herbivore defence [21,22,23].

More generally, our results suggest that herbivore escape and

defensive traits do not evolve independently. Thus for plants where

flowering time acts as an herbivore escape trait, phenology should

be included in plant defence syndromes [27]. Likewise, the

defensive function of flowering time may affect a plant’s

reproductive strategy if herbivory is related to floral phenology.

We found a significant, genetically based negative correlation

between temporal escape from herbivory and a putative herbivore

defensive trait. Our results contrast with those of Juenger et al. [26]

and Berenbaum, Zangerl & Nitao [24], who found that plants that

escaped herbivory by flowering when herbivores were scarce

produced more, rather than less, defensive chemistry against these

herbivores. Genotype by environment interactions may explain

the inconsistency of these three studies if correlations between

herbivore escape and defence are seen in some environments but

not others. However, flowering time may also be correlated with

defence for reasons unrelated to their effects on herbivores

suggesting that further examination of these traits in the field is

necessary to determine their functional significance. For example,

Johnson et al. [25] also detected a negative genetic correlation

between flowering time and a defensive secondary compound in

Oenothera biennis, but flowering time does not act as an herbivore

escape trait for this species.

Escape in time has been documented in other species [34,35],

but this study demonstrates that such escape can be costly in the

absence of herbivores. Moreover, our estimate of the cost of

herbivore escape in time for L. siphilitica reflects only resource-

based trade-offs (‘‘direct costs’’ [32]). Costs can also arise from

interactions with the biotic or abiotic environment (‘‘ecological

costs’’ [32]). Such ecological costs of delayed flowering are

particularly likely in L. siphilitica because it flowers in the late

summer and early fall. Consequently, plants that flower later may

not have adequate time to mature seeds before the onset of winter.

Table 2. Effects of maternal family and planting tray on
variation in six phenotypic traits of greenhouse-grown Lobelia
siphilitica.

Phenotypic traits Maternal family Planting tray

Days to first flower F23,454 = 4.47**** F93,454 = 1.38*

Wet latex mass F23,451 = 2.92**** F93,451 = 1.43*

Dry latex mass F23,451 = 2.61**** F93,451 = 1.36*

Flower size F23,454 = 2.00** F93,454 = 1.13

Inflorescence height F23,450 = 2.34*** F93,450 = 2.21****

Rosette number F23,450 = 21.73* F93,450 = 1.24

Final biomass F23,372 = 3.45**** F93,372 = 1.63**

*P,0.05, ** P,0.01, *** P,0.001, **** P,0.0001.
doi:10.1371/journal.pone.0037745.t002

Table 3. Phenotypic and genetic correlations for six traits of greenhouse-grown Lobelia siphilitica.

Traits Phenology Wet latex Dry latex Flower Height Rosettes Biomass

Phenology – 20.30 20.31 20.17 20.29 20.07 20.50

Wet latex 20.34 – 0.74 0.13 0.14 20.01 0.20

Dry latex 20.56 0.89 – 0.11 0.20 20.03 0.16

Flower 20.31 0.12 0.19 – 0.17 20.04 0.10

Height 20.36 0.14 0.22 0.31 – 20.06 0.35

Rosettes 20.09 0.06 0.01 0.15 20.13 – 0.26

Biomass 20.54 0.30 0.40 0.25 0.41 0.31 –

Phenology = days to first flower, Latex = wet or dry latex mass, Flower = flower size, Height = inflorescence height, Rosettes = rosette number, Biomass = final
biomass. Phenotypic correlations are above and genetic correlations are below the diagonal. N = 3922483 for phenotypic correlations. N = 46 for genetic correlations.
Correlations in bold are significantly (P,0.05) different from zero after Bonferroni correction by the Dunn-Šidák method. Correlations in italics were significant prior to
but not after correction.
doi:10.1371/journal.pone.0037745.t003
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Although delayed flowering may also be costly because pollinators

can be scarce later in the season [36], reproduction of late-

flowering L. siphilitica was not pollen-limited in our source

population [5] suggesting that pollination may not impose a

significant ecological cost. More generally, our results suggest that

in addition to the direct and ecological costs of chemical defence

traits [37], traits that allow plants to escape herbivory in time may

also carry costs.

In contrast to flowering phenology, we found no evidence that

latex production was costly in L. siphilitica. Although defence

theories generally assume costs to herbivore defence [38], ours is

one of many studies that have not detected them [33]. There are

three potential reasons why we did not detect costs in our

greenhouse population. First, any negative correlations between

latex production and our fitness estimates may have been masked

by variation in resource acquisition [31]. This is because plants

with high resource acquisition ability will have both high latex

production and increased fitness. In particular, because the

alkaloids in Lobelia spp. latex are rich in nitrogen, costs of latex

production may only be detected in N-limited field soils. Second,

given that L. siphilitica pollen is also nitrogen-rich, direct costs of

latex production may be expressed through male fitness [32].

Although we did not estimate correlates of male fitness, we did find

that female L. siphilitica plants, which by definition do not incur

male fitness costs, had 64% higher dry latex production than

hermaphrodites (unpaired t-test assuming unequal variances;

t = 2.413, df = 15, P = 0.029). Finally, latex production may incur

ecological rather than direct costs [32], which we could not

measure in the greenhouse.

Latex has evolved multiple times in the angiosperms and is a key

innovation in some clades, but little is known about its

evolutionary ecology [30]. We found that there was significant

genetic variation for latex production in L. siphilitica (Table 2). The

only other study [39] that estimated quantitative genetic param-

eters for latex production also detected significant genetic variation

for this trait, suggesting that it could evolve in response to selection

by herbivores. However, Agrawal [39] found that herbivore-

mediated selection for increased latex production was weak.

Measuring selection on latex production in species such as L.

siphilitica could indicate whether this weak relationship between

latex and fitness is common.

Our studies on L. siphilitica suggest that changes in flowering

phenology can not only affect interactions with herbivores, but

may also alter natural selection on defences. Specifically, any

herbivore-mediated selection for later flowering in L. siphilitica

should result in indirect selection for reduced latex production.

Although flowering phenology has often been considered only in

terms of its ecological and evolutionary effects on interactions for

pollinators [1], our study adds to the growing interest in the

relationship between flowering time and herbivory [27,40,41].

Understanding which traits are likely to co-evolve with phenology

is particularly important in the face of shifts in flowering

phenology under a changing climate [42]. Natural selection

imposed by changes in climate can result in the rapid evolution of

flowering time [43], as well as traits that are genetically correlated

with flowering time [44]. Thus, for species where flowering

phenology is related to herbivore attack, shifts in flowering time

due to climatic change could also indirectly shape the evolution of

herbivore defence.

Materials and Methods

Study System
Lobelia siphilitica is a short-lived, herbaceous perennial native to

eastern North America. It reproduces sexually by a single

racemose inflorescence, although some individuals produce

additional lateral inflorescences. It also reproduces asexually by

producing secondary rosettes. Lobelia siphilitica is self-compatible

but cannot autonomously self-fertilize, making pollinators essential

for seed set [45]. In Ontario, Canada, plants flower from late July

into September and fruits ripen from September to early October

[5]. Although L. siphilitica is gynodioecious [46], female plants are

rare in the northern part of its range [47].

Lobelia siphilitica produces an alkaloid-rich latex exudate from the

leaves, stems and ovary walls [29], which likely functions as a plant

defence [30]. Latex is considered one of the most efficient defences

against herbivores because it both physically gums up insect mouth

parts and contains defensive chemical compounds [30]. Female C.

hispidulus are exposed to L. siphilitica latex when they bore a hole

through the wall of the ovary with their mandibles before laying an

egg inside the ovary (A. L. Parachnowitsch, personal observation).

We have observed little foliar herbivory (A. L. Parachnowitsch &

Figure 2. Relationship between flowering phenology and latex defence in greenhouse-grown Lobelia siphilitica. (A) Phenotypic
correlation between days to first flower and dry latex mass (N = 478). (B) Maternal family mean correlation between days to first flower and dry latex
mass (N = 46). Note the scales differ between panels to allow for better visualization.
doi:10.1371/journal.pone.0037745.g002
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C. M. Caruso, personal observation) but high rates of pre-dispersal

seed herbivory in the source population used for this study (89–

92.5% in 2003–4) [5,48], suggesting that C. hispidulus may be an

important agent of selection on latex production.

Two lines of evidence suggest that latex is an effective defence in

L. siphilitica. First, lobeline, a chemical compound found in Lobelia

spp. latex, elicits trenching in Noctuid caterpillars [49]. Trenching

is a typical latex avoidance behaviour [30] that significantly

reduces leaf alkaloids in Lobelia cardinalis [50], as expected if latex

functions as a defence against insect herbivores. Second, when C.

hispidulus oviposits on L. siphilitica flowers, latex exudes out of the

wound on the ovary wall. However, many of these wounds do not

have an egg (A. L. Parachnowitsch, personal observation),

suggesting that latex can prevent C. hispidulus from successfully

attacking L. siphilitica fruits.

Study Design
The seeds used for our study were offspring of L. siphilitica

included in a field experiment designed to estimate the strength of

phenotypic selection on flowering phenology and identify the

agents of this selection [5]. To generate plants for this field

experiment, we collected open-pollinated seeds (hereafter grand-

maternal families) from a L. siphilitica population near Guelph,

Ontario, Canada. No specific permits were required for their

collection. The seeds were grown to flowering in the greenhouse

upon which plants were returned to their source population, where

they were also open-pollinated. We selected 46 of these open-

pollinated maternal families, two from each of 23 grand-maternal

families. Given this design, offspring of each maternal family were

half- or full-siblings and the offspring within each grand-maternal

family were cousins.

We rinsed seeds in a distilled water, bleach and ethanol solution

(16:1:1) to break dormancy [46]. All seeds from each fruit were

germinated on wet filter paper in Petri dishes for two weeks and

the day of first germination for each dish was recorded. To ensure

that we had enough seedlings, we germinated seeds from two fruits

per maternal family. If both dishes had successful germination, we

chose the fruit that began germinating earlier. However, both

fruits were used from two of the maternal families to ensure that

we had enough seedlings. We transplanted 24 seedlings per

maternal family to 72-well plug trays on March 10, 2006 and

replaced any dead seedlings after four days. Families and seedlings

within families were randomly assigned to a position within trays

and trays were rotated within the greenhouse weekly. Seedlings

were grown for six weeks before transplanting 12 randomly chosen

plants per maternal family to 10 cm diameter pots filled with

greenhouse potting soil (PromixH). We randomly assigned plants to

trays that were stationary for the remainder of the study and

bottom-watered to maintain flooded soil conditions. Plants were

treated for common greenhouse pests (thrips, whiteflies and fungi)

approximately once per month and fertilised weekly until the

majority of rosettes had begun bolting.

Phenotypic Measurements
To determine if herbivore escape and defence were correlated

in L. siphilitica, we measured flowering phenology and latex

production. We censused plants daily to determine the day of first

flower (hereafter flowering phenology). As each plant flowered, we

collected latex from two flowers per plant to estimate latex

production. When possible we sampled early-produced flowers

because they are more likely to be attacked by C. hispidulus in the

field [48]. Flowers were clipped at the base of the ovary with

scissors and the latex exudate from the wound on the pedicel was

collected on pre-dried and pre-weighed filter paper (Whatman’s

No. 1) until the flow stopped [51]. Thus latex mass reflects latex

flow to the entire flower, rather than the flow to a single weevil

wound. However, the quantities to a single wound would be too

small to detect with our methods. We weighed the latex-soaked

filter paper both prior to and after drying at 60uC for at least 24 h

to estimate wet and dry latex mass, respectively. Wet mass

measures the overall amount of latex flow to a wound (physical

defence) while dry mass estimates the chemical constituents of the

latex. Latex effectiveness, either in toxicity or physical properties,

was not estimated for these plants. Because flowers within a plant

are not independent of each other, we used the mean latex exuded

by the two flowers collected from each plant for all of our analyses.

To test whether herbivore escape and defence are costly, we

non-destructively estimated three fitness correlates: flower size,

inflorescence height, and rosette number [5,52]. We measured

petal width, petal length and corolla tube width [5] for at least five

flowers per plant sampled from along the raceme. We then took

the geometric mean of these three measurements [5,53,54] as an

overall size estimate for each flower. We use the geometric mean

rather than the first principle component (PC) of a PC analysis

because the mean directly relates to size whereas the PC can

introduce errors in interpretation [55]. Because flowers within a

plant are not independent of each other, we used the mean flower

size per plant for all of our analyses. When all plants had finished

flowering, we measured inflorescence height and the number of

rosettes produced. Inflorescence height is positively correlated with

flower number [5] and previous studies indicate that L. siphilitica

with larger flowers and taller inflorescences produce more seeds

[5,52]. However, the relationship between these traits and male

fitness is unknown. Because L. siphilitica rosettes can overwinter

and produce a flowering stalk in the following year [56], we

interpreted rosette number to be a correlate of fitness via asexual

reproduction.

When all plants had finished flowering (approximately six

months from the start of germination), we destructively estimated

final biomass as an additional fitness correlate. We clipped the

inflorescence and any rosettes and dried them at 45uC for 24 h to

measure aboveground biomass. To estimate belowground bio-

mass, we washed, dried, and weighed the roots of a subset of the

plants (N = 90) in the study. Initially, mass was estimated separately

for the roots that were contained in the pot and those that emerged

out of the pot into the water-filled tray. Because the mass of

contained and emerged roots was positively correlated (r = 0.411,

df = 89, P,0.0001), we estimated belowground biomass for the

remaining plants based on the mass of their emerged roots

(belowground root biomass = 2.79+1.886 emerged root mass +
emerged root mass). We estimated final biomass as the sum of the

aboveground and estimated belowground biomass for each plant.

This estimate of final biomass was strongly positively correlated

with the sum of aboveground biomass and emerged root biomass

(r = 0.976, df = 89, P,0.0001). We estimated final biomass, rather

than biomass at the initiation of flowering, because we were

interested in the consequences of delayed flowering in L. siphilitica,

rather than the causes of delayed flowering (for example, small

vegetative size [57]). Although the overall length of growing time

was similar between the greenhouse and field conditions,

greenhouse plants were not pollinated and were protected from

end of growing season frosts. Consequently, we may underestimate

fitness costs of delayed flowering.

Data deposited in the Dryad Repository: http://dx.doi.org/10.

5061/dryad.n3f4g.
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Statistical Analysis
Our final data set (N = 483 plants) was unbalanced, with 7–12

offspring per maternal family. We eliminated 16 female plants plus

one unsexed plant from our data set because female L. siphilitica

can differ phenotypically from hermaphrodites [52,58]. In

addition, 48 plants died prior to the end of the study and four

plants were excluded because the day of first flower was not

recorded. Finally, some traits were not measured on all plants and

thus had an N ,483.

Prior to analyzing our data, we used ANOVA to test whether

germination time differed between families. Germination time did

not differ significantly among grand-maternal families

(F22,86 = 2.10, P = 0.09) or nested maternal families (F21,86 = 1.94,

P = 0.11). This suggests that, consistent with studies in other

species [59], variation in date of first flower is independent of

variation in germination time in L. siphilitica. Consequently, we did

not include germination time as a covariate in our analyses.

We also used ANOVA to test whether there was a genetic basis

to variation in flowering phenology, latex production, and our

fitness correlates (flower size, inflorescence height, rosette number,

and final biomass). Our model included terms for grand-maternal

family and maternal family nested within grand-maternal family.

In addition, we included a term for greenhouse position (the final

randomly assigned planting tray) to control for any effect of

location in the greenhouse on phenotype. Because the maternal

families were also greenhouse reared, they are likely less biased by

environmental maternal effects than the grand-maternal families.

Therefore, if the term for maternal family was significant, we

concluded that there was a genetic basis to variation in that trait.

We estimated phenotypic correlations among flowering phe-

nology, latex production and fitness estimates (flower size,

inflorescence height, rosette number, and final biomass) as the

Pearson correlation coefficient. To test whether there was a

genetic basis to these phenotypic correlations, we estimated genetic

correlations as the Pearson correlation coefficient among maternal

family means. Family mean correlations can be biased estimates of

the true genetic correlation [60]. However, for our data set family

mean correlations were similar in magnitude and significance to

genetic correlations estimated using restricted maximum likelihood

approaches (data not shown), suggesting that our conclusions are

robust to the estimation technique used. We maintained an

experiment-wide error rate of a= 0.05 for each matrix of

correlations using the sequential Bonferroni correction by the

Dunn-Šidák method [61].

Correlations between herbivore defence or escape traits and

general vigour may obscure the relationship between these traits

[31]. Therefore, we used partial Pearson correlations controlling

for final biomass to assess whether the relationship between

flowering phenology and latex production was independent of

overall size. If variation in general vigour was driving the

relationship between escape and defence in L. siphilitica, then

these partial phenotypic correlations would be non-significant.

Furthermore, the cost of latex production may have been

masked by correlations with flowering phenology; larger plants

had more latex and flowered earlier (Table 3). Thus, to explore

this possibility, we controlled for variation in flowering phenology

by estimating the partial Pearson correlation between latex

production and the fitness estimates. If variation in phenology

was masking costs of latex production, then these partial

phenotypic correlations would be negative rather than positive.

Four features of our design could have inflated our estimates of

genetic variation and genetic correlations. First, because we have

maternal rather than paternal families, our estimates of these

genetic parameters include not only additive genetic variance, but

also common maternal effects. If common maternal effects are

substantial, then our estimates will be inflated relative to estimates

of genetic parameters calculated from paternal family designs [60].

Second, because we germinated seeds from open-pollinated plants,

our families consist of an unknown mixture of full- and half-

siblings. Consequently, our estimates of genetic variation and

genetic correlations may include dominance genetic variance in

addition to additive genetic variance [60]. Third, our open-

pollinated families could have included offspring produced

through geitonogamous self-pollination. Such inbreeding is

expected to decrease the standing genetic variation within

populations [62]. Fourth, we measured genetic variation and

genetic correlations for plants grown in a greenhouse environ-

ment. Greenhouse estimates of genetic variation for plant

functional [63] and floral [64] traits are generally higher than

field estimates and genetic correlations can be environmentally

dependent [65]. However, the one study to compare greenhouse

and field estimates of genetic correlations found that they can be

quite concordant, at least relative to estimates of genetic variation

[64]. In addition, because costs can only be estimated in the

absence of herbivory, they are often measured in greenhouse

conditions [66], making our estimates of the costs of escape and a

putative defensive trait comparable to many other studies.
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