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Abstract
MicroRNAs (miRNAs) play key roles in the initiation and progression of various cancers by

regulating genes. Regulatory interactions between genes and miRNAs are complex, as

multiple miRNAs can regulate multiple genes. In addtion, these interactions vary from pa-

tient to patient and even among patients with the same cancer type, as cancer development

is a heterogeneous process. These relationships are more complicated because transcrip-

tion factors and other regulatory molecules can also regulate miRNAs and genes. Hence, it

is important to identify the complex relationships between genes and miRNAs in cancer.

In this study, we propose a computational approach to constructing modules that repre-

sent these relationships by integrating the expression data of genes and miRNAs with

gene-gene interaction data. First, we used a biclustering algorithm to construct modules

consisting of a subset of genes and a subset of samples to incorporate the heterogeneity of

cancer cells. Second, we combined gene-gene interactions to include genes that play im-

portant roles in cancer-related pathways. Then, we selected miRNAs that are closely asso-

ciated with genes in the modules based on a Gaussian Bayesian network and Bayesian

Information Criteria. When we applied our approach to ovarian cancer and glioblastoma

(GBM) data sets, 33 and 54 modules were constructed, respectively. In these modules,

91% and 94% of ovarian cancer and GBMmodules, respectively, were explained either by

direct regulation between genes and miRNAs or by indirect relationships via transcription

factors. In addition, 48.4% and 74.0% of modules from ovarian cancer and GBM, respec-

tively, were enriched with cancer-related pathways, and 51.7% and 71.7% of miRNAs in

modules were ovarian cancer-related miRNAs and GBM-related miRNAs, respectively. Fi-

nally, we extensively analyzed significant modules and showed that most genes in these

modules were related to ovarian cancer and GBM.

Author Summary

AmicroRNA (miRNA) is a small RNA molecule that regulates the expression of mRNA
genes. A miRNA can regulate multiple genes, and a gene can be regulated by multiple
miRNAs. The regulation of genes by miRNAs may vary from patient to patient, even if
they suffer from the same type of cancer. In this study, we identify the relationships
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between genes and miRNAs in cancer patients using expression data. Because these rela-
tionships are complicated by the involvement of transcription factors, which are among
the most influential regulators of genes, we also attempt to explain the triple relationship
among genes, miRNAs, and transcription factors. We constructed modules consisting of a
set of genes and miRNAs, in which the expression levels are highly correlated. In most of
these modules, genes and miRNAs are related to specific cancer types; their relationships
are explained both by direct regulation of genes by miRNAs and by indirect relationships
via transcription factors.

Introduction
Cancer is one of the leading causes of death worldwide. Although remarkable progress has
been achieved in cancer therapies, the molecular mechanisms of cancer have not yet been fully
identified. Among various regulations of cancer-related genes and pathways in several stages,
the regulation of genes by microRNAs (miRNAs) in cancer cells has drawn particular atten-
tion, because many miRNAs are located in chromosomal regions that are frequently altered in
cancer [1]. MiRNAs are small RNAs, known as important regulators of genes through binding
to 3’UTR regions of target genes [2]. In many cancer types, miRNAs have been studied as im-
portant biomarkers for diagnosis and prognosis of cancer, as many miRNAs function as onco-
genes or tumor suppressors by regulating other oncogenes or tumor suppressor genes [1, 3].

Because miRNAs regulate genes by binding to the 3’UTR regions of genes, many methods
were developed to identify conserved sequence regions between miRNAs and mRNAs [4].
However, sequence-based approaches generate many false positive bindings sites and cannot
identify functional changes of genes. Hence, the expressions of genes and miRNAs were also
integrated to address possible negative correlations between the two sets of expression data [5,
6]. With the advances in high throughput technologies, large-scale mRNA expression and
miRNA expression data sets from the same tumor samples have become available, due to col-
laborative efforts such as The Cancer Genome Atlas (TCGA) project. [7, 8]. These data sets en-
able researchers to apply computational approaches to identify relationships between mRNAs
and miRNAs and help understand their effects in cancer.

Another important approach to understanding relationships between mRNAs and miRNAs
is to analyze multiple genes and miRNAs simultaneously by constructing modules of them
rather than analyzing each gene-miRNA pair separately [5, 9, 10]. It is widely known that a
miRNA can regulate multiple genes [11], and a gene can be targeted by multiple miRNAs [12].
Changes in these numerous relationships can significantly alter the biological functions or sig-
naling pathways associated with a specific cancer [13]. Although it is known that several path-
ways, such as the p53 and TGF-beta signaling pathways, are related to ovarian cancer [14, 15],
the functions of miRNAs in these pathways have not yet been fully explained.

Although a few algorithms for finding gene-miRNA modules have been proposed, improve-
ments are still needed. Peng et al. [5] proposed a bi-clique approach based on a gene-miRNA
correlation matrix; however, most of the modules contained only one miRNA, and a few mod-
ules contained at most three miRNAs. Hence, it may be difficult to address multiple relation-
ships between genes and miRNAs. Zhang et al. [6] integrated miRNAs, gene expression and
gene-gene interactions based on a non-negative matrix factorization (NMF) framework [16].
The decomposed matrix components were considered as gene-miRNA regulatory modules. Al-
though many modules were enriched with known pathways, the relationships between genes
and miRNAs were not explained.
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Relationships between genes and miRNAs become even more complicated because mole-
cules such as transcription factors or signal transducers regulate genes and miRNAs. For exam-
ple, p53, the most frequently mutated gene in cancer, regulates hundreds of genes and a set of
miRNAs, including miR-24 family, miR-145, miR-107, and miR-192 [17, 18]. In [19], the au-
thors constructed modules that contain highly correlated genes and miRNAs in their expres-
sion levels and found that miR-200a regulates the transcription factor ZEB1, which regulates
genes contained in the same module as miR-200a.

To enhance the understanding of relationships between genes and miRNAs, we propose a
framework that combines a biclustering approach and a Gaussian Bayesian network. Using the
biclustering approach, gene-sample modules are first constructed based on gene expression
and gene-gene interaction data sets. Here, a subset of genes that are correlated with each other
in a subset of samples is clustered, because gene aberrations are different among patients, even
if cancer occurs in the same organ or tissue type [20]. Next, using a Gaussian Bayesian network,
gene-miRNAmodules are constructed to identify miRNAs that regulate genes in gene-sample
modules. Here, we use the expression data on genes and miRNA. When we applied our ap-
proach to ovarian cancer data sets and glioblastoma (GBM) data sets from TCGA, we identi-
fied several modules consisting of genes and miRNAs related to ovarian cancer and GBM. In
many modules, relationships between genes and miRNAs were explained either by direct regu-
lations of genes by miRNAs or by indirect relationships via transcription factors. In addition,
functional pathway enrichment tests using several biological and signaling pathways demon-
strated that these modules were biologically coherent. Based on ratios of cancer-related genes
and cancer-related miRNAs, we extensively analyzed several significant modules and per-
formed network analyses of these modules to demonstrate the regulation of genes by miRNAs.

Materials and Methods

Materials
Ovarian cancer. We collected mRNA expression and miRNA expression data sets for 587
tumor samples and 8 unmatched normal samples for ovarian cancer from TCGA [8]; mRNA
and miRNA expression data were generated using an Affymetrix HG-U133Amicroarray and
an Agilent H-miRNA_8X15Kmicroarray, respectively. We normalized the expression levels of
12,042 genes using log2 ratios between tumor samples and the average of normal samples for
each gene, and then selected 2,933 differentially expressed genes using a t-test (p-value< 0.001).
Similarly, we normalized the expression levels of 479 miRNAs using the log2 ratios between
tumor samples and the average of normal samples for each miRNA (Fig. 1 (A)).

Glioblastoma. We collected mRNA expression and miRNA expression data sets for 482
tumor samples and 10 unmatched normal samples for GBM [7]. These data sets were
generated using the same microarray platforms used in the ovarian cancer study. After normal-
ization, we selected 4,059 differentially expressed genes using a t-test (Bonferroni corrected
p-value< 0.05). We used the expression levels of 423 miRNAs normalized using normal
samples.

Selecting a p-value threshold for a t-test. The degree of expression changes depending on
the cancer type. In this study, the number of differentially expressed genes was small in ovarian
cancer compared to GBM. Hence, we used a less strict threshold for ovarian cancer.

Gene-gene interactions. We collected gene-gene interaction data from the HPRD database [21].

Constructing gene-sample modules
In this study, we first hypothesized that if a group of genes has similar expression tendencies in
a subset of samples, and they are differentially expressed in these samples, then these genes
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might be related to similar functions or pathways in the development of cancer. We also hy-
pothesized that a gene might have multiple functions and could function in several pathways.
To incorporate these hypotheses, we use a biclustering algorithm to allow the duplication of
genes and samples in multiple clusters. First, we construct a matrix of differentially expressed
genes and samples, and then we normalize the expression values for each gene using a z-score
to determine the tendency toward changes of gene expression in the samples. Next, we apply a
SAMBA biclustering algorithm [22] to the normalized matrix to construct modules in which
genes and samples are highly correlated (Fig. 1 (B)). The SAMBA biclustering algorithm mod-
els gene expression data in a bipartite graph G = (U,V,E), where genes in V are represented as
nodes on one side and samples in U on the other side. There is an edge in E between a gene v in

Figure 1. Overview of the proposed approach. (A) Collect gene expression and miRNA expression data sets from paired tumor samples, and calculate
log2 ratios between tumor samples and normal samples. (B) Construct gene-sample modules (GSM) from a differentially expressed gene expression matrix
using a biclustering algorithm, which allows duplications of genes and samples in multiple modules. (C) Add genes to GSM using gene-gene interactions, if
the included genes increase the average PCC values among genes in the module. (D) Construct gene-miRNAmodules (GMM) by selecting gene-regulating
miRNAs in GSM. Use a Gaussian Bayesian network and the BIC score to evaluate the relationship between genes and miRNAs. (E) To determine the
functional relevance of the modules, test whether the genes from the modules are enriched for specific biological functions or signaling pathways. To validate
that modules are related to a specific cancer, check that the genes and miRNAs are related to the specific cancer.

doi:10.1371/journal.pcbi.1004042.g001
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V and a sample u in U if the expression value of gene v changes significantly in sample u, hav-
ing high absolute expression values. The biclustering algorithm generates subgraphs from the
bipartite graph, in which most of the genes are connected to most of the samples as edges.
These subgraphs represent highly correlated gene-sample clusters, where the tendency toward
gene expression changes is similar for a subset of samples. Additional details are provided in
Fig. S1. We calculate the statistical significance of each module based on a null hypothesis that
the expression level of a gene is independent of the expression level of other genes for samples
in a module, assessing that the average Pearson correlation coefficients (PCCs) of gene expres-
sion levels for genes in the module are higher than the ones from random modules for selected
samples. For each module, we conduct the following test.

(Step 1) Construct a random module by randomly selecting the same numbers of genes and
samples from the normalized matrix.

(Step 2) Calculate the PCC matrix of expression level values of genes in the module across a
subset of samples. Then, calculate the average value of the PCC matrix, excluding diagonal
elements.

(Step 3) Repeat Steps 1 and 2 N times, letting the average value from the i-th permutation
serve as the randomavg(i).

(Step 4) Let the average PCC value of genes in the observed module be the moduleavg.

(Step 5) Calculate the p-value of the observed module using the following equation, where I is
an indicator function.

p� value ¼
PN

i¼1 Iðmoduleavg < randomavgðiÞÞ
N

When we calculate the p-value, we try to take into account that observed modules are not inde-
pendent of each other as genes overlap among modules. Hence, we construct random modules
where genes in the modules share the same overlap ratio as the observed modules.

Recent research has shown that not all of the genes in cancer-related pathways undergo ex-
pression or genomic changes [23]. Consequently, certain genes that play important roles in
cancer-related pathways might not be differentially expressed. To include functionally related
genes in the gene-sample modules, we expand the gene-sample modules using a gene-gene in-
teraction network. If a gene interacts directly with at least one gene in a module, then this gene
can be regarded as a candidate gene for the module. For each module, we collect candidate
genes and calculate the average PCC values of expressions between a candidate gene and the
genes in the module. We add candidate genes to the module in descending order from the gene
having the highest PCC value until the average PCC values of the expressions of genes in the
module do not increase.

Constructing gene-miRNAmodules
Because a set of genes with similar expression changes might be regulated by common miR-
NAs, we construct gene-miRNA modules by including regulating miRNAs in the gene-sample
modules. For this task, we employ a Bayesian network model. Bayesian networks have been ex-
tensively used for analyzing gene expression patterns [24]. They are useful in modeling local
dependencies and causal influences among variables. Hence, we estimate dependencies be-
tween expression values of genes and expression values of miRNAs based on a Bayesian net-
work model. A joint distribution of genes X = {X1,X2, . . . ,Xn} and miRNAs Y = {Y1,Y2, . . . Ym}

Gene-microRNAModules in Cancer

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004042 January 22, 2015 5 / 33



is represented by a Gaussian Bayesian network. If Xi is normally distributed around a mean
that linearly depends on its parents, then the conditional probability of Xi given its parents
PaG(Xi) = {Yj, . . . Yk} can be represented by

PðXijPaGðXiÞÞ ¼ PðXijYj; . . . ;YkÞ � Nða0 þ
X

j 0
aj 0 � Yj 0 ; s

2Þ ð1Þ

Then, the likelihood of X and Y can be represented by

LðX;YÞ ¼ PðX1;X2; . . . ;Xn;Y1;Y2; . . .YmÞ ¼
Yn

i¼1

PðXijPaGðXiÞÞ ð2Þ

To determine which sets of miRNAs explain the expression levels of genes in gene-sample
modules, we use a Bayesian information criterion (BIC) as a measure for determining a Bayes-
ian network structure between genes and miRNAs, which can be represented by

BIC ¼ logðLÞ � logM
2

þ Oð1Þ; ð3Þ

whereM is the sum of the number of genes and miRNAs. To determine the parents PaG(Xi) of
a gene Xi yielding the optimal BIC score, we should consider all combinations of miRNAs;
however, this approach is highly time-consuming. To reduce the search space, we select candi-
date miRNAs whose average of absolute Spearman’s rank correlation coefficient (SCC) values
for genes in a given module are within the top T% among all miRNAs. Note that we use SCC
values for selecting candidate miRNAs to reduce the effects of possible outliers in the PCC.
From candidate miRNAs, we first add a miRNA with the highest SCC value as a regulator and
calculate the BIC score. Then, we add miRNAs with the next highest SCC values, until adding
more miRNAs no longer improves the BIC score. After adding miRNAs to gene-sample mod-
ules using the above approach, modules with fewer than two miRNAs are filtered out because
these modules cannot represent the combinatorial effects of genes and miRNAs. Finally, gene-
miRNA modules are obtained.

Module validation
To validate the relationships between genes and miRNAs in the modules, we consider four
cases of gene regulations. In the first case, genes are directly bound and regulated by miRNAs.
To validate this case, we select gene-miRNA pairs from miRTarbase [25] and MicroCosm
(http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/). Interacting pairs in miR-
Tarbase are validated by various molecular experiments. Among them, reporter assays and
western blot analysis confirm direct interactions. We compare the gene-miRNA pairs in our
modules with these direct interactions in miRTarbase. MicroCosm provides computationally
predicted binding sites for miRNAs in genomic sequences. Among these pairs, we select only
gene-miRNA pairs with a negative correlation in expression values. From this process, we col-
lect target genes for each miRNA, which we use for validation. Then, we perform a hypergeo-
metric test for each miRNA in the modules to check for enrichment of genes in a module
against the target genes of a miRNA.

However, certain genes in the modules are not directly regulated by miRNAs, even though
the expressions of the genes and the miRNAs are highly correlated. To investigate this indirect
relationship, we introduce transcription factors (TFs). We confirm relationships between miR-
NAs and TFs by manually searching the literature for evidence of cases where miRNAs are
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regulated by TFs or TFs are regulated by miRNAs. In the second case, we consider a relation-
ship in which the miRNAs in a module regulate TFs, and these TFs regulate genes in the mod-
ule. Here, it is not necessary that TFs be members of the module. We identify relationships
between TFs and genes using the ChIP-X database [26]. For each TF in the database, we per-
form a hypergeometric test to determine if there is enrichment of genes in a module against the
target genes of the TF. Here, the correlation of expression values between the miRNA and the
TF must be negative, and the correlation values between the TF and the mRNA can be either
positive or negative.

In the third case, genes and miRNAs are regulated by a common TF. In this case, correla-
tions of expression values between gene-TF and miRNA-TF should be both positive or both
negative.

In the fourth case, interacting pairs in miRTarbase [25], experimentally validated by the
coexpression of miRNA and mRNA, are used to validate gene-miRNA pairs in our module.
Molecular experiments for this case include quantitative real-time PCR (qPCR), microarrays,
stable isotope labeling with amino acids in culture (SILAC) and pulsed SILAC.

To determine the functional relevance of the modules, we test whether the genes from the
modules are enriched for specific biological functions or signaling pathways. We perform a
pathway enrichment test using gene ontology (GO) biological process terms [27], KEGG path-
ways [28], and BioCarta pathways (http://www.biocarta.com). First, we download these path-
ways from GSEA (http://www.broadinstitute.org/gsea) and apply a hypergeometric test to each
module, obtaining the p-values. We exclude biological functions or signaling pathways con-
taining more than 300 genes, as such functions are too general. Supplementary Fig. S2 shows
the distribution of GO biological functions as well as KEGG and BioCarta pathways. It can be
seen that 51 of 825 GO terms contain more than 300 genes. To address any issues with multiple
comparisons, we compute the q-values from the p-values based on a Benjamini & Hochberg
correction. Then, we use a q-value< 0.05 for the enrichment threshold.

To validate that modules are related to the specific cancer, we first examine whether en-
riched pathways are related to the cancer being evaluated. For this task, we collect 2,032 cancer
genes from the allOnco database (http://www.bushmanlab.org/links/genelists), which is a col-
lection of list of cancer genes from several databases [29–32], 379 ovarian cancer genes from
the Dragon Database for Exploration of Ovarian Cancer Genes (DDOC [33]), and 98 GBM
genes from the literature ([34, 35]). Then, we calculate the ratios of these cancer genes in the
modules. We also collect 100 ovarian cancer miRNAs and 92 GBMmiRNAs from the Human
miRNA & Disease Database (HMDD [36]). Then, we calculate the ratios of ovarian cancer-re-
lated miRNAs in the modules.

Associating modules with cancer subtype
Genes involved in the development of cancer vary depending on cancer subtypes. In several pa-
pers [8, 37–39], the expression levels of marker genes are used to determine the subtype. For
example, GBM samples were classified as a proneural subtype if marker genes DLL3, NKX2–2,
SOX2, ERBB3, and OLIG2 were overexpressed [8]. Similarly, we check whether modules iden-
tified by our approach are related to a specific subtype of cancers using marker genes.

For this task, we perform the following two steps. In the first step, we cluster all samples
into subtypes using hierarchical clustering with a dynamic tree cut [40]. For clustering, we use
genes with high variability across the samples. Then, we assign each cluster to a subtype of can-
cers if known marker genes of cancer subtypes are overexpressed or underexpressed. If a cluster
is not related to any subtype or is related to more than one subtype, that cluster is not assigned
to any subtype. In the second step, for each module, we use marker genes of the subtype to
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compare the expression levels of the marker genes of samples in a module to the expression lev-
els of samples in the other subtype clusters using the t-test. If the p-values of markers genes of
the subtype are significant, we consider the module to be related to the given subtype.

Results

Gene-Sample modules for ovarian cancer and GBM
To construct gene-sample modules, we applied the SAMBA biclustering algorithm to the gene
expression matrix, allowing duplication of genes and samples in modules using an overlap fac-
tor of 0.5 in [0, 1], where 1 represents non-overlap. For ovarian cancer and GBM, we identified
90 and 135 modules, respectively, that represent similar tendencies of gene expression changes
for a subset of samples. After performing 1000 permutation tests, we selected 58 and 88 mod-
ules with a q-value< 0.05 for ovarian cancer and GBM, respectively. Then, we enlarged these
modules by adding genes using gene-gene interactions. On average, we added 15 and 33 genes
to each module for ovarian cancer and GBM, respectively.

Gene-miRNAmodules for ovarian cancer and GBM
We constructed gene-miRNAmodules from gene-sample modules by including miRNAs. As
described in the Methods section, we pre-selected the candidate miRNAs based on the SCC val-
ues between the genes and the miRNAs and then added miRNAs to the module, which in-
creased the BIC score. As shown in Fig. 2, we applied 20 different SCC thresholds (T% in
[1%, 20%] of candidate miRNAs among all miRNAs) to reduce the search space. In Fig. 2 (A),
the number of modules for ovarian cancer decreased as the thresholds decreased. We observed
similar trends when the PCC was used instead of the SCC or when we did not integrate the
gene-gene interaction data. Fig. 2 also shows that the ratios of cancer genes, ovarian cancer
genes, and ovarian cancer miRNAs were similar for various SCC thresholds> 5%, and that
these ratios increased when SCC thresholds decreased. Fig. S3 shows similar results for GBM.
Note that we filtered out modules with fewer than two miRNAs, as such modules cannot repre-
sent the combinatorial effects of genes and miRNAs.

Among the various thresholds for candidate miRNAs, we selected a value of 3% (SCC value
= 0.157 for ovarian cancer and 0.194 for GBM) for further analysis and constructed 33 and 54
modules for ovarian cancer and GBM, respectively. Tables S1, S2, S3, and S4 present lists of
genes and miRNAs for the modules. For ovarian cancer, the average size of the modules was 34
genes and 10 miRNAs. On average, 19.1% of genes were cancer genes, 5.7% were ovarian can-
cer genes, and 51.7% of miRNAs were ovarian cancer-related miRNAs in the ovarian cancer
modules. When combining genes and miRNAs from all modules, 18.6% (145 out of 777) of
genes were cancer genes, 6.0% (47 out of 777 genes) were ovarian cancer genes, and 43.5% (47
out of 108) of miRNAs were ovarian cancer-related miRNAs. Based on the pathway enrich-
ment test, 48.4% of the modules were enriched with biological functions or signaling pathways,
and most of the modules contained at least one ovarian cancer gene. Table 1 shows ovarian
cancer genes and miRNAs for the selected modules. Table S5 presents lists of cancer genes,
ovarian cancer genes, and ovarian cancer miRNAs for all of the ovarian cancer modules. For
GBM, the average numbers of genes and miRNAs for each module were 66 genes and 14 miR-
NAs. In the GBMmodules, on average, 23.2% of the genes were cancer genes, 1.2% were GBM-
related genes, and 71.7% of the miRNAs were GBM-related miRNAs. For all genes and miR-
NAs in the GBMmodules, 20.6% (386 out of 1867) of the genes were cancer genes, 1.7%
(32 out of 1867 genes) were GBM-related genes, and 48.4% (46 out of 95) of the miRNAs were
GBM-related miRNAs. Table S6 presents lists of cancer genes, GBM genes, and GBMmiRNAs
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for all of the GBMmodules. Based on the pathway enrichment test, 74.0% of the modules were
enriched in biological functions or signaling pathways.

Because our approach includes genes belonging to multiple modules, we calculated the over-
lap ratios of genes and miRNAs among the modules. The overlap ratio is defined as jm1 \m2j/
jm1 [m2j, wherem1 andm2 are the number of genes or miRNAs in module 1 and module 2,

Figure 2. Performance comparison of gene-miRNAmodules for ovarian cancer. For ovarian cancer, we compared the performance of gene-miRNA
modules generated from four cases: SCC with GGI information, SCC without GGI information, PCC with GGI information, and PCC without GGI information.
For all cases, the x-axis presents different percentages of candidate miRNAs (T%) among all miRNAs when constructing gene-miRNAmodules. For each
case, the number of modules (A), the ratios of cancer genes (B), the ratios of ovarian cancer genes (C), the ratios of ovarian cancer miRNAs (D), the average
number of enriched pathways (E), and the ratios of modules enriched with at least one pathway (F) are shown.

doi:10.1371/journal.pcbi.1004042.g002

Gene-microRNAModules in Cancer

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004042 January 22, 2015 9 / 33



respectively. Figs. S4 and S5 show the overlap ratios among the modules. The average overlap
ratios of genes were 1.6% and 2.0% for ovarian cancer and GBM, respectively, and the average
overlap ratios of miRNAs were 7.3% and 14.2% for ovarian cancer and GBM, respectively. The
overlap ratios of miRNAs are higher than the overlap ratio of genes, indicating that a miRNA
regulates many genes involved in several pathways.

Relationship among genes, miRNAs and TFs in modules
As described in the Methods section, we examined the direct relationships between genes and
miRNAs and their indirect relationships through TFs in the identified modules, as well as ex-
perimentally validated interactions between genes and miRNAs. For the ovarian cancer mod-
ules, we tested the direct relationship based on whether potential targets of a miRNA in the
module were enriched for the genes in the same module using MicroCosm. Table 2 shows 8
miRNAs and their target genes in 12 ovarian cancer modules. For example, in Table 2, let-7b

Table 1. Cancer genes, ovarian cancer genes and ovarian cancer miRNAs for selected modules.

Module
ID

Cancer Genes Num1a Ovarian Cancer Genes Num2b Ovarian Cancer miRNAs Num3c

2 CD44, MMP9, PLAUR, LTB, GBP1, CTSH, EPB41L3,
POU2AF1, VAV1, CXCL10, MEF2C, HCK, BTK,
CASP1, CD74, LCK, LYN, FGR, SPP1

19/60 CD44, DPYD, IL18, MMP9,
PLAUR

5/60 miR-125b, miR-146a, miR-155, miR-17,
miR-20a, miR-21, miR-218, miR-22, miR-
223, miR-224, miR-335

11/24

3 CDK2, E2F1, PLK1, MCM2, CDC6, EZH2, ASPM,
BUB1

8/35 CDK2, E2F1 2/35 miR-106b, miR-130b, miR-18a, miR-19a,
miR-25, miR-29a, miR-93

7/14

6 BARD1, CDC25A, CDK2, MSH6, MCM2, BUB1,
FEN1, PCNA, CDKN3

9/34 BARD1, CDC25A, CDK2,
MKI67, MSH6

5/34 miR-101, miR-106b, miR-130b, miR-17,
miR-18a, miR-19a, miR-20b, miR-25,
miR-29a, miR-93

10/20

8 PLAUR, MMP11, BGN, COL16A1, THBS2, THBS1,
VCAN, COL1A1, TIMP3, PDGFRB, COL1A2

11/39 FN1, LGALS1, PLAU,
PLAUR, SERPINE1

5/39 miR-152, miR-199a, miR-214, miR-22 4/8

12 E2F3, MCM2, FEN1, DEK, PALB2, PSMA5 6/33 E2F3, NBN 2/33 miR-93 1/2

13 CDC42, PLK1, CDC6, BUB1, PCNA, UCHL5, FANCE,
SMARCB1, FANCG, EIF4EBP1, ECT2

11/78 CDC42 1/78 miR-18a, miR-25, miR-29a, miR-93 4/8

18 MCM2, FEN1, FOXM1, DEK, FANCG, WHSC1 6/31 MKI67 1/31 miR-18a, miR-25, miR-29a, miR-93 4/7

20 AURKA, CDC20, MAD2L1, TOP2A, PLK1, ASPM,
BUB1, FOXM1, MYBL2, KIF14, CCNA2, CCNB1,
BUB1B

13/44 AURKA, CDC20, MAD2L1,
TOP2A

4/44 miR-101, miR-17, miR-18a, miR-19a,
miR-29a, miR-93

6/13

21 HCK, BTK, LCK, IL2RG, IL2RB, ITK, CCR1, LAPTM5 8/30 0/30 miR-146a, miR-155, miR-21, miR-218,
miR-22, miR-223, miR-224

7/17

22 MMP2, MMP11, THBS2, VCAN, COL1A1, LOXL2,
ADAM12, DPT, ECM1

9/27 FN1, MMP1, MMP2, PLAU,
SPARC

5/27 miR-152, miR-214, miR-22 3/6

25 MCM2, FEN1, PCNA, MYBL2, FBXO5 5/29 0/29 miR-18a, miR-25, miR-29a, miR-93 4/8

26 MAD2L1, PLK1, FEN1, PCNA, UCHL5, CCNA2,
CCNB1, FBXO5, RAP1GDS1, RAN

10/44 MAD2L1 1/44 let-7b, miR-101, miR-17, miR-18a, miR-
19a, miR-25, miR-29a, miR-93

8/17

27 MMP14, MMP2, MMP11, BGN, COL16A1, THBS2,
THBS1, VCAN, COL1A1, PDGFRB, COL1A2, LOXL2,
ADAM12, ECM1, COL11A1, TWIST1, SFRP4, LOX,
TAGLN, LHFP

20/55 FN1, MMP14, MMP2, PLAU,
SERPINF1, SPARC

6/55 miR-127, miR-145, miR-152, miR-199a,
miR-214, miR-22

6/12

31 CD82, CTSB, STAT3, TNFSF10, GBP1, EPB41L3,
CXCL10, CASP1, LYN, SPP1, LAPTM5, IRF1, CTSL1,
TACC1, S100A13, CAPG

16/65 ACVR2B, CD82, CTSB,
CTSD, DPYD, RAB25,
SERPINF1, STAT3,
TNFSF10

9/65 miR-125b, miR-130a, miR-146a, miR-
155, miR-17, miR-183, miR-20a, miR-
20b, miR-21, miR-218, miR-22, miR-223,
miR-224, miR-335

14/23

33 AURKA, CDC20, TOP2A, PLK1, ASPM, BUB1,
FOXM1, EfCT2, KIF14, CCNA2, BUB1B, FBXO5,
UBE2C, TK1, CENPF, TACC3, CKS2

17/57 AURKA, CDC20, MKI67,
TOP2A

4/57 let-7b, miR-101, miR-106b, miR-130b,
miR-146b, miR-16, miR-17, miR-18a,
miR-19a, miR-20b, miR-25, miR-29a,
miR-93

13/31

aNum1 represents the number of cancer genes / the number of all genes in a module,
bNum2 the number of ovarian cancer genes / the number of all genes in a module, and
cNum3 the number of ovarian cancer miRNAs / the number of all miRNAs in a module.

doi:10.1371/journal.pcbi.1004042.t001
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may directly regulate several genes (ESPL1, DEPDC1, BUB1B, AURKB and UBE2C) in module
33. Additionally, 19 gene-miRNA direct interaction pairs that were experimentally confirmed
in miRTarbase are shown in Table 3. Previously, it was confirmed using a luciferase reporter
assay and the western blot method that miR-93 targets E2F1. Also, it was confirmed using a lu-
ciferase reporter assay that miR-125b targets BCL3 in ovarian cancer cell [41]. All 156 gene-
miRNA interaction pairs experimentally validated in miRTarbase are shown in Table S7,
which includes both direct and coexpression based interactions.

Table S8 shows the indirect relationships in 19 ovarian cancer modules, where genes and
miRNAs are co-regulated by the same TF. Note that some TFs are not members of the mod-
ules. Regulation of miRNAs by TFs is validated by literature evidence (PubMed IDs are shown
in the table), and the significance of the regulations of the genes in the modules by TFs was
demonstrated using p-values that were obtained based on the ChIP-X database [26]. In many
modules, one TF regulates multiple miRNAs and multiple genes. For example, Fig. 3 (A) shows
ovarian cancer module 22, in which the TF EGR1 positively regulates several genes (AEBP1,
COL1A1, COL5A1, COL5A3, COL6A1, ITGA5, LOXL2, MMP11, MMP2 and THBS2) and
miRNAs (miR-214 and miR-152). Fig. 3 (B) shows ovarian cancer module 8, in which EGR1
positively regulates several genes (AQP1, BGN, CALB2, CEND1, COL1A1, COMP, HNT,
IRX5, ITGA5 and ITGB1) and miRNAs (miR-214, miR-152, miR-199a and miR-199b) in the
module at the same time. In both cases, we can infer that the genes and miRNAs are indirectly
related via EGR1.

Table S9 shows another type of indirect relationship in ovarian cancer, where miRNAs regu-
late TFs, and the TFs regulate genes in 14 ovarian cancer modules. Regulation of TFs by miR-
NAs was found in the literature, and is shown in the third column of the table. One example of
this relationship is shown in Fig. 3 (C): let-7b directly regulates the TF BACH1, and BACH1
regulates several genes (BUB1, CCNA2, CENPF, MCM10, BIRC5, TK1, OIP5, KIF11, RRM2
and CENPA); miR-156b and let-7b regulate the TF E2F1, which regulates several genes and

Table 2. miRNAs regulate genes in ovarian cancer modules.

Module ID miRNA ma kb xc p-valued Genes

2 miR-185 757 60 9 1.21E-02 RASSF4,CTSH,POU2AF1,PSCD4,AIM2,LCK

3 miR-7 997 35 7 2.26E-02 BUB1,ASPM,SEC61A2,CDK2,COQ7,SYT17

6 miR-7 997 34 7 1.94E-02 BUB1,POLE2,KIF23,CDK2,MCM6

7 miR-331 892 25 5 3.38E-02 PYCRL,SHARPIN,PLEC1

13 miR-7 997 78 12 2.60E-02 BUB1,POLE2,MCM6,BXDC2,RBBP9,SMARCB1,GAD1

15 miR-9 863 35 6 3.62E-02 MXD3,C6orf134,DDX25

15 miR-29b 1266 35 9 8.60E-03 DNAH7,COL4A6,DDX25

17 miR-29a 1038 29 7 1.00E-02 MYBL2,TDG,PPIE,MSH2

17 miR-29b 1266 29 7 2.75E-02 TIMELESS,TDG,FAF1

25 miR-7 997 29 8 1.91E-03 FBXO5,POLE2,KIF23,MCM6

26 miR-29b 1266 44 10 1.41E-02 CHEK1,TIMELESS,RIT1,DYNLT1

29 miR-93 946 23 5 3.03E-02 CDCA8,MED8,RLF

30 let-7b 1050 26 6 2.19E-02 EHMT2,RNF5,RGL2

33 let-7b 1050 57 11 9.28E-03 ESPL1,DEPDC1,BUB1B,UBE2C,AURKB

am,
bk, and
cx represent the number of genes regulated by the miRNA collected from MicroCosm, the number of genes in the module, and the number of genes

regulated by the miRNA in the module, respectively. The significant numbers of genes in each module are regulated by the miRNA, and the significances

are shown in
d p-value.

doi:10.1371/journal.pcbi.1004042.t002
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other miRNAs in the modules; and miR-101, miR-29a, miR-29b and miR-29c regulate the TF
MYCN, which regulates genes in the module. This module is related to ovarian cancer-related
pathways such as those involved in mitosis and the cell cycle.

Similarly, relationships among genes, miRNAs, and TFs in GBMmodules are shown in
Fig. 4 and in Tables S10, S11, and S12. Table S10 shows 8 miRNAs and their target genes in 12
GBMmodules. Genes targeted by miRNAs were highly enriched in these modules. In addition,
Tables S11 and S12 show indirect relationships between genes and miRNAs through TFs.
Fig. 4 (A) shows one example of an indirect relationship in GBMmodule 11, where even
though genes might not be directly regulated by miRNAs, they are indirectly related via two
TFs: RUNX1 and TCF4. For ease of reference, the genes in module 11 were divided into three
groups (GA, GB and GC): the TF RUNX1 positively regulates miR-221, miR-222, and genes in
GA and GB; miR-155 negatively regulates the TF TCF4; and TCF4 positively regulates genes in
GB and GC. Similarly, Fig. 4 (B) shows that miR-29a regulates the TF MYCN, which regulates
several genes and miR-93 in GBMmodule 5. Experimentally validated 438 gene-miRNA inter-
actions from the miRTarbase are shown in Table S13, including 112 direct interactions. In ad-
dition, we verified in the literature that miR-21 interacts with BMPR2 and miR-222 interacts
with ICAM1 in GBM cell [42].

Fig. S6 summarizes these direct and indirect relationships in the ovarian cancer and GBM
modules. These analyses show that, in total, 91% (30 out of 33) of ovarian cancer modules and
94% (51 out of 54) of GBMmodules can be explained by direct regulations or indirect relation-
ships, which allows us to understand how genes are regulated in modules.

Pathway enrichment tests and network analysis for ovarian cancer
To determine the functional relevance of modules identified in ovarian cancer, we performed
pathway enrichment tests for GO biological processes, KEGG pathways, and BioCarta

Table 3. Experimentally validated gene-miRNA interactions with strong evidence from miRTarbase in ovarian cancer modules.

Module ID Gene miRNA Validation Method PubMed ID

2 EPB41L3 miR-223 Luciferase reporter assay, Western blot 21628394

2 MEF2C miR-223 Luciferase reporter assay 18278031

2 MEF2C miR-21 Immunofluorescence, In situ hybridization, Luciferase reporter assay 21170291

3 E2F1 miR-93 Luciferase reporter assay, Western blot 19486339

3 E2F1 miR-106b Luciferase reporter assay, Western blot 19486339

3 EZH2 miR-25 Luciferase reporter assay, qRT-PCR, Western blot 22399519

5 CREBZF miR-221 Reporter assay, Microarray 20018759

6 CCNE2 miR-26a Luciferase reporter assay, Western blot 19524505

13 CDC42 miR-29a Luciferase reporter assay, Western blot 19079265

14 BCL3 miR-125b Luciferase reporter assay 20658525

14 HK2 miR-125b Luciferase reporter assay, qRT-PCR 22593586

18 NASP miR-29a Luciferase reporter assay, Western blot 22080513

26 CCNA2 let-7b Immunoblot, Immunofluorescence, Luciferase reporter assay, qRT-PCR 18379589

27 TWIST1 miR-214 Luciferase reporter assay, qRT-PCR, Western blot 22540680

27 MMP14 miR-145 Reporter assay, Microarray 21351259

31 STAT3 miR-21 Western blot, Other 20048743

31 STAT3 miR-20b qRT-PCR, ELISA, ChIP, Western blot 20232316

31 EPB41L3 miR-223 Luciferase reporter assay, Western blot 21628394

31 TNFSF10 miR-222 Western blot 18246122

32 TOB1 miR-218 Luciferase reporter assay 23060446

33 CCNA2 let-7b Immunoblot, Immunofluorescence, Luciferase reporter assay, qRT-PCR 18379589

doi:10.1371/journal.pcbi.1004042.t003

Gene-microRNAModules in Cancer

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004042 January 22, 2015 12 / 33



Figure 3. Regulations among genes, miRNAs, and TFs in ovarian cancer modules. For three ovarian cancer modules-22 (A), 8 (B), and 33 (C)-the
expression values of genes, miRNAs, and TFs are shown. Arrows represent genes and miRNAs regulated by TFs or other miRNAs. Genes and miRNAs are
members of each module, but TFs do not belong to the modules.

doi:10.1371/journal.pcbi.1004042.g003
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pathways. We found that 16 out of 33 modules (48.4%) were enriched in at least one function.
Table 4 presents enriched functions or signaling pathways for selected modules. Several mod-
ules have many enriched functions or pathways related to ovarian cancer, such as the p53 sig-
naling pathway [43], ECM receptor interactions [44], and cell cycles [45]. Tables S14, S15, and
S16 present lists of all enriched pathways. As mentioned previously, on average, 19.1% of genes
in our modules were cancer genes and 5.7% were ovarian cancer genes. Our further manual lit-
erature search revealed that most of the cancer genes in several modules are also ovarian can-
cer-related genes, suggesting that cancer genes in the modules have a high potential to be
ovarian cancer-related genes. In addition, most of the enriched modules had at least one ovari-
an cancer gene, supporting the idea that all enriched modules might be related to ovarian can-
cer. Therefore, we extensively analyzed modules 22 and 8 because module 22 has a relatively
high fraction of ovarian cancer genes (12.8%) and cancer genes (28.2%) and is enriched for im-
portant pathways in ovarian cancer, and module 8 also contains a high fraction of ovarian can-
cer genes (18.5%), cancer genes (33.3%), and three enriched pathways related to ovarian
cancer.

Fig. 5 shows a network representation of module 22, where 25 genes (2 genes are not
shown) and 6 miRNAs are presented as nodes. In this module, 5 genes (FN1, MMP2, MMP1,
PLAU, and SPARC), colored in green, were identified as ovarian cancer-related genes in the
DDOC database. Moreover, the literature showed that 14 genes (ITGA5, COL6A1, THBS2,
COL1A1, MMP19, MMP11, CTSK, ECM1, GREM1, VCAN, LOXL2, ADAM12, FAP, and
INHBA), colored in pink, are ovarian cancer genes (shown in Table S17) and that these genes
have high-average SCC values with at least one miRNA colored in sky blue. Most of the genes
enriched in ECM receptor interaction, focal adhesion and proteolysis pathways are green or
pink nodes, suggesting that these pathways are closely related to ovarian cancer. The literature

Figure 4. Regulations among genes, miRNAs, and TFs in GBMmodules. For two GBMmodules, 11 (A) and 5 (B), the expression values of genes,
miRNAs, and TFs are shown. Arrows represent genes and miRNAs regulated by TFs or other miRNAs. Genes and miRNAs are members of each module,
but TFs do not belong to the modules.

doi:10.1371/journal.pcbi.1004042.g004
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Table 4. Ovarian cancer modules with enriched pathways.

Module
IDa

Pathwaysb Related genesc # of
genes

q-
values

2 Cytokine-Cytokine Receptor Interaction CXCL13, LTB, CXCL11, IL18, CXCL9, CD27, CXCL10, CCR5 8 7.16E-
04

2 Chemokine Signaling Pathway CXCL13, CXCL11, CXCL9, VAV1, CXCL10, HCK, DOCK2, CCR5, LYN, FGR 10 8.02E-
07

2 Cell Adhesion Molecules Cams ICOS, SIGLEC1, ITGB2, CD4 4 4.45E-
02

2 Toll-Like Receptor Signaling Pathway CXCL11, CXCL9, CXCL10, SPP1 4 1.92E-
02

2 Natural Killer Cell Mediated Cytotoxicity VAV1, LCP2, ITGB2, TYROBP, LCK 5 6.05E-
03

2 T-Cell Receptor Signaling Pathway ICOS, VAV1, LCP2, CD4, LCK 5 5.81E-
03

2 B-Cell Receptor Signaling Pathway BLNK, VAV1, BTK, LYN 4 9.50E-
03

2 Defense Response CXCL11, CXCL9, BLNK, CXCL10, CLEC5A, LSP1, CCR5, TYROBP 8 1.93E-
03

2 Immune Response CXCL13, IL18, BLNK, CD96, POU2AF1, AIM2, PSMB10, LCP2, CCR5, ARHGDIB, CD74 11 1.41E-
06

2 T-Cell Activation IL18, CD4, LCK 3 3.49E-
02

2 Response to Wounding CXCL11, CXCL9, BLNK, CXCL10, CCR5 5 4.65E-
02

2 Phosphorylation HCK, ITGB2, BTK, LCK, LYN, FGR 6 4.80E-
02

2 Cellular Defense Response CXCL9, CLEC5A, LSP1, CCR5, TYROBP 5 7.74E-
04

6 Cell Cycle CHEK1, CDC7, CCNE2, MCM4, CDK2, MCM6, CDC25A, MCM2, PCNA, BUB1 10 2.97E-
11

6 p53-Signaling Pathway CHEK1, CCNE2, CDK2 3 1.95E-
02

6 MCM Pathway MCM4, CDK2, MCM6, MCM2 4 3.42E-
05

6 Cell Cycle Process CHEK1, CDC7, TIMELESS, CDK2, KIF15, KNTC1, KIF23, BUB1, RACGAP1, CDKN3 10 9.74E-
09

6 Mitotic Cell Cycle CDC7, CDK2, KIF15, KNTC1, KIF23, BUB1, CDKN3 7 1.04E-
05

6 Response to DNA Damage Stimulus CHEK1, POLE2, FEN1, MSH6 4 3.44E-
02

6 Regulation of Cell Cycle CHEK1, CDC7, CCNE2, TIMELESS, CDK2, KNTC1, CDC25A, BUB1, CDKN3 9 9.44E-
08

6 Regulation of Cell Proliferation CHEK1, CDC7, TIMELESS, CDK2, CDKN3 5 3.44E-
02

8 TGF-Beta Signaling Pathway INHBA, COMP, THBS2, THBS1 4 6.99E-
03

8 Focal Adhesion MYLK, COMP, ITGB1, THBS2, THBS1, COL3A1, COL1A1, FN1, PDGFRB, COL1A2,
ITGA5

11 8.00E-
10

8 ECM-Receptor Interaction COMP, ITGB1, THBS2, THBS1, COL3A1, COL1A1, FN1, COL1A2, ITGA5 9 4.33E-
10

8 Complement and Coagulation
Cascades

SERPINE1, PLAU, PLAUR 3 4.44E-
02

22 Focal Adhesion COL5A3, COL1A1, COL6A1, COL5A1, THBS2, FN1, ITGA5, COL3A1 8 3.94E-
07

22 ECM-Receptor Interaction COL5A3, COL1A1, COL6A1, COL5A1, THBS2, FN1, ITGA5, COL3A1 8 8.02E-
10

22 Proteolysis MMP11, MMP1, CTSK, PLAU, MMP2 5 2.24E-
02

26 G2 Pathway PLK1, CCNB1, CHEK1 3 8.31E-
03

(Continued)
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Table 4. (Continued)

Module
IDa

Pathwaysb Related genesc # of
genes

q-
values

26 Regulation of Cell Cycle FBXO5, BIRC5, CCNA2, MAD2L1, TIMELESS, CHEK1, GMNN, CDC7 8 1.14E-
05

33 Cell Cycle BUB1, TTK, ESPL1, PLK1, BUB1B, CCNA2, CDC20, CCNB2 8 8.53E-
06

33 Microtubule Based Process TTK, KIF11, KIF23, PRC1, NUSAP1, KIF4A, KPNA2 7 2.64E-
06

33 Regulation of Cell Cycle BUB1, FBXO5, TTK, BUB1B, UBE2C, NUSAP1, CCNA2, CKS2, BIRC5 9 2.51E-
06

aSeveral ovarian cancer modules are shown with enriched
bpathways and
ccancer genes. We selected these modules based on the importance of terms and the ratios of cancer genes and ovarian cancer genes.

doi:10.1371/journal.pcbi.1004042.t004

Figure 5. Network presentation of module 22 in ovarian cancer. In this network, diamonds represent
miRNAs: sky-blue nodes for ovarian cancer miRNAs from the HMDD database, pink nodes for ovarian
cancer miRNAs supported by the literature, and yellow nodes for the remaining miRNAs. Genes are
represented by circles: pink nodes for ovarian cancer genes validated by the literature, green nodes for
ovarian cancer genes validated by the DDOC database, orange nodes for cancer genes, and white nodes for
the remaining genes. A blue solid line indicates that the MCC value between a gene and a miRNA is larger
than 0.3. A purple line indicates that the linked genes are enriched together with at least one function. For
example, COL6A1, COL5A3, THBS2, FN1, COL1A1, COL5A1, COLA1A, and COL3A1 are enriched with at
least one function together (ECM receptor pathway or Focal adhesion pathway). Table S17 presents
PubMed identifiers for ovarian cancer genes in pink nodes.

doi:10.1371/journal.pcbi.1004042.g005
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confirms that these pathways are related to ovarian cancer [44, 46, 47]. In this module,
COL3A1 might be related to ovarian cancer, as it is a known cancer gene targeted by all ovarian
cancer miRNAs and belongs to ECM receptor and focal adhesion pathways. COL5A1 and
COL5A3 are also likely to be ovarian cancer genes: they are targeted by ovarian cancer miRNAs
and enriched in the above pathways, although they are not known cancer genes. Similarly,
DPT also might be an ovarian cancer gene, as it is a cancer gene and is targeted by all ovarian
cancer miRNAs. Evidence in the literature shows that the previously known ovarian cancer-re-
lated miRNAs miR-152, miR-22, and miR-214 are also related to enriched pathways in this
module: miR-152 is involved in ECM-receptor-interaction [48, 49], and miR-22 and miR-214
regulate the AKT/PTEN pathway and the p53 signaling pathway [50, 51], which are highly re-
lated to the ECM-receptor, focal adhesion and proteolysis pathways [52–55]. These observa-
tions support the idea that genes and miRNAs interact with each other and play critical roles at
the pathway level.

Fig. 6 illustrates module 8, which contains 34 genes and 8 miRNAs (5 genes are not shown).
Because several genes and miRNAs are duplicated in module 22, the same pathways (ECM re-
ceptor and focal adhesion) are enriched. However, other important pathways in ovarian can-
cer, such as the TGF-beta signaling pathway and the complement and coagulation cascades
pathway, are also enriched [56]. From this module, COL16A1, COL3A1, and COL1A2 are like-
ly to be ovarian cancer genes, as they are cancer genes and are enriched with at least one path-
way containing ovarian cancer genes. For miRNAs, several articles support that miR-199a,
miR-199b, miR-214, and miR-382 are involved in the TGF-beta signaling pathway [57–60],
and that miR-22 regulates the AKT/PTEN pathway [50, 51], which is closely related to the
TGF-beta signaling pathway in several cancers [50, 61].

Figure 6. Network presentation of module 8 in ovarian cancer. The description of this network is the
same as in Fig. 5 except that red lines are used to represent two enriched pathways (complement and
coagulation cascades pathway, and TGF signaling pathway).

doi:10.1371/journal.pcbi.1004042.g006
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Pathway enrichment tests and network analysis for GBM
We performed pathway enrichment tests for modules identified from the GBM data set. Of 54
modules tested, 40 (74%) were enriched with at least one function. Several modules had many
enriched functions or pathways related to GBM, such as the p53 signaling pathway [62], the
ERBB signaling pathway [63], and the MAPK signaling pathway [64]. Tables S18, S19, and S20
present lists of enriched pathways. As mentioned above, on average, 23.2% of genes in the
modules were cancer genes, and 1.2% were GBM genes. A list of GBM genes was extracted
from two articles [34, 35]. Similarly to ovarian cancer, the literature results demonstrated that
most of the cancer genes in our modules were also GBM-related genes, suggesting that cancer
genes in the modules are likely to be related to GBM. We extensively analyzed module 11 be-
cause this module contained many GBM-related genes and pathways.

Fig. 7 illustrates a network presentation of module 11, where 74 genes (15 genes are not
shown) and 7 miRNAs are presented as nodes. In this module, 4 genes (MAPK1, CDKN1A,
SHC1, and ERBB2), colored in green, are GBM genes that were validated by the literature.
Most of the genes on the left side of Fig. 7 are cancer genes and are enriched with at least one
pathway, including the p53, ERBB, and GRNH signaling pathways. CBLC might be involved in
the development of GBM because it is a cancer gene and is contained in the ERBB signaling
pathway, an important GBM-related pathway that includes four GBM genes in this module.
Additionally, the literature shows that miRNAs in this module function together in the en-
riched pathways: miR-34a, miR-135, miR-21, mi-222, miR-221, miR-27a, and miR-34b are in-
volved in the p53 signaling pathway [65–71] and the MAPK signaling pathway [71–75], and
miR-34a, miR-135, miR-21, miR-222, and miR-221 are involved in the ERBB signaling path-
way [76–79].

Figure 7. Module 11 in GBM. The description of this network is the same as in Fig. 5, except that green nodes indicate GBM genes validated by two articles
[34, 35], and pink nodes indicate GBM genes validated by the literature in PubMed. Table S17 presents PubMed identifiers for GBM genes.

doi:10.1371/journal.pcbi.1004042.g007
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Cancer subtypes of modules
In Bell et al. [8], ovarian cancer was classified into four ovarian cancer subtypes depending on
the expression levels of marker genes: “immunoreactive,” “proliferative,” “differentiated,” and
“mesenchymal.” The immunoreactive subtype was identified by the chemokine receptor
CXCR3 and its ligands CXCL11 and CXCL10, indicating that considerable expression changes
of these genes are important markers for identifying the subtype. The proliferative subtype was
identified by the overexpression of transcription factors HMGA2 and SOX11, proliferation
marker genes such as MCM2 and PCNA, and underexpression of MUC1 and MUC16, which
are known ovarian tumor marker genes. The differentiated subtype was identified by overex-
pression of MUC16, MUC1 and SLPI. Finally, the mesenchymal subtype was identified by
overexpression of FAP and ANGPTL2.

In this study, we used the marker genes described above to determine which subtype was re-
lated to the majority of samples in the modules. First, we calculated the average expression
level of the marker gene in the samples belonging to the module. Fig. 8 (A) represents the aver-
age expression levels of the 12 subtype marker genes across 33 ovarian cancer modules, show-
ing that the expression levels of marker genes vary depending on the modules. As explained in
the Methods section, we identified the cancer subtypes of samples by performing a hierarchical
clustering with a dynamic tree cut (minModuleSize = 30) using gene expression data, and then
we calculated the p-values of marker genes for the identified modules. As shown in Fig. 8 (B),
among marker genes in the immunoreactive subtype, CXCL10 is underexpressed in module 5
(p-value: 0.08), and all of the marker genes (CXCL10, CXCL11 and CXCR3) are overexpressed
in module 18 (p-values: 0.04, 0.02 and 0.67). Marker genes of the mesenchymal subtype are
overexpressed in module 10 (p-values: 0.0003 and 0.0002), module 23 (p-values: 0.03 and
0.66), and module 32 (p-values: 0.02 and 0.09).

In Verhaak et al. [37], GBM was classified into four subtypes depending on the marker
genes: “proneural,” “neural,” “classical,” and “mesenchymal.” It was observed that marker
genes DLL3, NKX2–2, SOX2, ERBB3, and OLIG2 were overexpressed in the proneural sub-
type; marker genes FBXO3, GABRB2, SNCG and MBP were overexpressed in the neural sub-
type; FGFR3, PDGFA, EGFR, AKT2, and NES were overexpressed in the classical subtype; and
CASP1, CASP4, CASP5, CASP8, ILR4, CHI3L1, TRADD, TLR2, TLR4, and RELB were over-
expressed in the mesenchymal subtype. Note that marker genes of the GBM subtype were over-
expressed in samples belonging to that subtype, while marker genes of other GBM subtypes
were underexpressed in those samples.

For GBM, we first calculated the average expression levels of marker genes. Fig. 9 (A) pres-
ents the average expression levels of the 23 subtype marker genes across 54 GBMmodules, and
shows the distinct expression levels of marker genes depending on the modules. Fig. 9 (B)
shows 6 modules related to GBMmarker genes. Marker genes in the proneural subtype (DLL3,
NKX2–2, SOX2, ERBB3 and OLIG2) are overexpressed in module 7 (p-values: 0.01, 0.001,
0.0002, 0.07 and 0.004) and module 15 (p-values: 0.001, 0.00003, 0.002, 0.017 and 0.007). All of
the marker genes in the mesenchymal subtype (CASP1, CASP4, CASP5, CASP8, ILR4,
CHI3L1, TRADD, TLR2 and RELB), except TLR4, are overexpressed in module 22 (p-values:
0.001, 0.001, 0.003, 0.022, 0.048, 0.001, 0.036 and 0.0004). Two marker genes (SNCG and
MBP) in the neural subtype are overexpressed in module 32 (p-values: 0.07 and 0.0001), all of
the marker genes in the neural subtype (FBXO3, GABRB2, SNCG and MBP) are overexpressed
in module 45 (p-values: 0.02, 0.02, 0.11 and 0.02), and two marker genes in the neural subtype
(FBXO and MBP) are overexpressed in module 51 (p-values: 0.05 and 0.03). In addition, we ob-
tained the subtype classification of GBM samples from Carro et al. [80], which shares 162 sam-
ples in common with our study (proneural: 62, neural: 22, classical: 35 and mesenchymal: 53).
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Figure 8. Expression levels of ovarian cancer subtypemarker genes. (A) Heat map of the means of marker gene expression levels for 32 ovarian cancer
modules. Red indicates overexpression of genes, and green indicates underexpression of genes. (B) Expression levels of marker genes of selected
modules. Blue bars represent marker genes that determine the subtype and red bars represent other subtype marker genes.

doi:10.1371/journal.pcbi.1004042.g008
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Figure 9. Expression levels of GBM subtypemarker genes. (A) Heat map of the means of marker gene expression levels for 54 GBMmodules. Red
indicates overexpression of genes, and green indicates underexpression of genes. (B) Expression levels of marker genes of selected modules. Blue bars
represent marker genes that determine the subtype, and red bars represent other subtype marker genes.

doi:10.1371/journal.pcbi.1004042.g009
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When we used these subtypes of samples for the enrichment of a particular subtype in our
modules through a hypergeometric test, we confirmed that modules 32 and 45 are closely relat-
ed to the neural subtype (p-values: 0.053 and 0.018).

Performance comparisons
Zhang et al. [6] previously showed that their NMF approach outperformed the bi-clique algo-
rithm proposed by Peng et al. [5]. Hence, we assessed the performance of our approach by
comparing it with the NMF approach using TCGA ovarian cancer data. By applying our crite-
ria to the modules generated from their approach, we selected modules having at least one gene
and two human miRNAs. As a result, we removed 7 out of 50 modules. Fig. 10 shows that the
ratio of modules containing enriched pathways in the NMF approach was slightly higher than
the ratios of our modules. However, the average number of enriched pathways in our modules
was larger than that in the NMF approach.

When we compared enriched pathways, two approaches had 43 common pathways, includ-
ing ovarian cancer-related pathways such as the immune response, ECM-receptor, and TGF-
Beta signaling pathways. In addition, 71 pathways were enriched only in our modules and 67
pathways only in the NMF modules, indicating that the two approaches most likely comple-
ment each other and capture different pathways related to ovarian cancer. Table S21 lists the
common pathways and pathways enriched in each approach.

Additionally, modules identified by our approach contain more differentially expressed
genes and cancer-related genes, because we primarily used differentially expressed genes,
which provide more chances to incorporate cancer type-specific genes. In Zhang et al. [6], the
modules contain a small fraction of differentially expressed genes and cancer-related genes, be-
cause 12,456 genes were used after filtering out genes with small absolute values and little varia-
tion. When we computed the overlap ratios of differentially expressed gene, most genes in our
modules (79.4%, 617 out of 777 genes) were differentially expressed. However, modules gener-
ated by Zhang et al. [6] contained 28.3% (462 out of 1630 genes) differentially expressed genes
on average. When we compared ratios of cancer genes, ovarian cancer genes, and ovarian can-
cer miRNAs in modules, our approach outperformed the NMF approach, as shown in Fig. 10.

The difference between the NMF approach and ours from a methodological viewpoint is
that our approach can be more flexibly generalized to incorporate other regulatory compo-
nents. In our approach, gene-sample modules are first constructed, and then miRNAs regulat-
ing genes are added to the modules (generating gene-miRNA modules). To demonstrate the
range of our approach, we incorporated DNA copy number aberrations (CNAs) as another
type of regulators in gene-sample modules. As a result, 23 out of 58 ovarian cancer gene-sample
modules were explained by the regulation of CNAs, and 15 ovarian cancer gene-sample mod-
ules were explained by both miRNAs and CNAs. A detailed analysis regarding regulations by
CNAs is provided in the Discussion section. By contrast, the NMF approach simultaneously in-
corporates gene-expression, miRNA expression, gene-gene interaction, and gene-miRNA se-
quence prediction information. Hence, when other regulators are included, they generate
modules, where correlations between genes and regulators are simultaneously high. Indeed, in
another paper from the same authors [81], they extended their NMF model to incorporate
miRNAs, genes, and methylation of genes. In the generated modules, correlations of the ex-
pression levels of these three data sets were coordinately high due to a common basis matrix.
Although it is a good approach, it omits modules representing the regulation of genes by a sin-
gle type of regulators when incorporating multiple regulators.

Additionally, we compared our approach with the Context-Specific MicroRNA analysis
(COSMIC) algorithm [82] using TCGA ovarian cancer data. COSMIC combines gene-miRNA
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target prediction information, mRNA expression, and miRNA expression data. The modules
constructed by the COSMIC algorithm consisted of a single miRNA and genes, which indicat-
ed that several genes are regulated by the miRNA. When we applied a q-value threshold of<
0.05 to 479 identified modules, 102 modules were obtained. Since COSMIC generates modules
consisting of a single miRNA, it is difficult to directly compare COSMIC with our approach.
Hence, we applied pathway enrichment tests using GO biological processes and BioCarta and
KEGG pathways with a q-value threshold of< 0.05 to these 102 modules, and observed that
25.5% (27 out of 102) of the modules were significantly enriched. This enrichment ratio is
lower than the value obtained using our approach (48.4%). However, we need to consider that
the higher enrichment ratio in our approach is partially because two studies developed algo-
rithms using different data sets and different assumptions. We incorporated gene-gene interac-
tions and indirect interactions among genes and miRNAs based on mRNA expressions and
miRNA expressions, while COSMIC incorporated direct interactions using sequence informa-
tion of genes and miRNAs, which might reduce false positive interactions. In spite of the differ-
ences, the two approaches had 26 common pathways, including ovarian cancer-related
pathways such as the ECM-receptor, DNA replication, and the G2 pathway. In addition, 88
and 38 pathways were enriched only in our modules and only in the COSMIC algorithm, re-
spectively. Table S22 lists the common pathways as well as the pathways enriched in each
approach.

Discussion
In this study, we developed an approach to constructing gene-miRNAmodules by integrating
genes and miRNAs. We applied our approach to ovarian cancer and GBM data sets from the
TCGA project. Finally, we constructed 33 modules for ovarian cancer and 54 modules for

Figure 10. Performance comparisons.Comparison of modules identified using our approach and the NMF
approach using ovarian cancer data. (A) The ratio of modules with at least one enriched function or pathway.
(B) The average number of enriched functions in the identified modules. (C) The average ratios of cancer
genes, ovarian cancer genes, and ovarian cancer miRNAs in the modules.

doi:10.1371/journal.pcbi.1004042.g010
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GBM. We employed gene-gene interactions to include genes with high absolute correlations
with genes in the modules, because some important cancer-related genes might not be clus-
tered together by the biclustering algorithm or might not be differentially expressed. Fig. 2
shows that incorporating gene-gene interactions increased the performance in terms of the av-
erage number of enriched terms, the number of modules with at least one enriched pathway,
and the ratios of cancer-related genes and cancer-related miRNAs. Although we used gene-
gene interactions to add biologically relevant genes to modules in the proposed approach,
gene-gene interactions can be used to filter out biologically irrelevant genes from modules to
reduce false positives. However, because the currently available human gene-gene interactions
are not complete, closely related but unidentified genes might also be filtered out. It is an im-
portant challenge to incorporate gene-gene interactions to reduce false positive genes in mod-
ules, while true relevant genes still remain. We will address this issue in our future work.

Because the identified modules might miss relevant interactions, we measured a potential
false negative rate using miRTarbase. Let NG be the number of common genes in the modules
and miRTarbase, and let NG_interaction be the number of common genes that interact with the
same miRNAs in the modules and miRTarbase. Then, 1 - NG_interaction / NGmight be a poten-
tial false negative rate. As a result, the rates of false negative were 0.789 (1–118/559) for ovarian
cancer and 0.775 (1–316/1405) for GBM, respectively. However, the false negative rate should
be adjusted when more accurate miRNA-gene interaction data become available, as this ratio is
estimated based on all gene-miRNA interactions from miRTarbase and is not based on the spe-
cific cancer type and miRTarbase, which itself contains only a fraction of the gene-miRNA
interactions.

In the Results section, we described a functional enrichment test of genes in modules using
GO terms, KEGG, and BioCarta pathways. Although we employed a widely used approach in
the enrichment test, a hypergeometric test followed by a Benjamini & Hochberg method for
multiple comparison correction, several issues that require further improvement still remain.
For the first issue, the Benjamini & Hochberg method hypothesizes independence of the terms,
while the biological processes in various ontologies represent a hierarchical structure and inter-
correlation. Thus, we performed an additional enrichment test for ovarian cancer and GBM
modules using TANGO [83], which considers dependencies among biological pathways. It cor-
rects p-values by computing the distribution of enrichment p-values in a large number of ran-
domly generated gene sets of the same size. For ovarian cancer, 16 of 33 modules (48%) were
enriched with at least one GO biological process term. For GBM, 28 out of 54 modules (48%)
were enriched with at least one term. Tables S23 and S24 list all pathways enriched in each can-
cer. Further, Fig. S7 shows a comparison of the two approaches (a Benjamini & Hochberg
method and TANGO) in terms of the ratio of enriched modules and the number of enriched
terms. Although there are small differences in the two approaches, both approaches confirm
that a large fraction of our identified modules were enriched with biologically relevant terms.
For the second issue, because annotated pathways in GO terms, KEGG, and BioCarta pathways
are still incomplete, validations on these pathways might miss biologically related sets of genes.
An approach to reveal the pathways unannotated in GO, KEGG and BioCarta is to search for
evidence about gene functions in the literature, and then to analyze them collectively. As part
of such efforts, we manually searched scientific articles on ovarian cancer-related genes and
GBM-related genes (Table S17), and relationships among genes, microRNAs, and TFs (Tables
S8, S9, S11, and S12). However, this approach only solves the above problem partially so a
more systematic approach is called for. Very few efforts, including LitVan (http://www.c2b2.
columbia.edu/danapeerlab/html/software.html), have been developed to carry out an automat-
ic literature search to connect genes with over-represented biological terms in millions of scien-
tific articles. Although we attempted to analyze our modules using such tools, either there are
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no currently available tools or websites are not connected. Hence, we will further analyze mod-
ules for functional enrichments in the future.

Certain oncogenes and tumor-suppressor genes such as P53 and PTEN may play important
roles in many cancer types rather than only in specific cancer type. Hence, we examined how
many genes in the identified modules were specific to ovarian cancer or GBM. We collected
1393 genes from five cancer type specific databases: the DDOC [33], GBM genes from the liter-
ature [34, 35], the Cervical Cancer gene Database (CCDB) [84], the Dragon Database of Genes
associated with Prostate Cancer (DDPC) [85], and Lung Cancer Gene Database (LUGEND).
We refer to genes contained only in the DDOC as potentially ovarian cancer specific genes. Al-
though these genes are not compared with genes from all types of cancers, it might helpful to
remove common cancer genes. Among the 47 DDOC genes included in our ovarian cancer
modules, 18 genes were potentially ovarian cancer specific genes. Similarly, among the 32
GBM genes included in our GBMmodules, 7 genes were potentially GBM cancer specific
genes. Lists of these cancer type specific genes are shown in Table S25.

The accuracy of the identified modules might be largely dependent on the quality of the
data sets. In this study, we used TCGAmicroarray data sets, as in many previous reports they
have been used to identify core genes and pathways significantly related to ovarian cancer and
GBM. Additionally, when TCGA microarray data sets were compared to RNA-Seq data from
the same samples, their expression values were highly correlated in most cases [86] confirming
that these data sets are less dependent on a particular platform.

The proposed approach can be generalized to incorporate other regulatory components. To
demonstrate the range of applicability of our approach and to provide additional support of bi-
ological relevance to the modules, we incorporated somatic DNA copy numbers from the
paired patients of gene expression data. For this task, we downloaded TCGA level 3 data sets
that provide segmented copy number ratio data compared to normal samples. We first recalcu-
lated the copy number aberration ratios for every 1 MB region and filtered out regions whose
absolute copy number ratio values are less than 0.2, corresponding to 99.9% among all ratio
values. Then, CNA regions were incorporated into gene-sample modules based on correlations
between genes in modules and CNA regions. As a result, for the ovarian cancer modules, 23
out of 58 gene-sample modules were explained by the regulation of CNAs, and genes in 15 out
of 33 gene-miRNA modules (45%) were also regulated by CNAs, as shown in Table S26. In
particular, genes in several modules were located in the regulating CNA regions, indicating
that the expression of genes in the modules might be directly affected by CNAs. DNA copy
numbers in the chr 1: 32.1 MB - 53.4 MB region were highly correlated with genes in ovarian
cancer module 9 with a PCC value of 0.301, and 13 out of 18 genes in the module (CDCA8,
C1orf109, AK2, SNIP1, GNL2, RLF, TRIT1, YRDC, RRAGC, PPIE, PSMB2, MED8 and
COL9A2) were located in this CNA region. Similarly, the DNA copy numbers in the chr 1:
180.6 MB - 247.9 MB region were highly correlated with genes in ovarian cancer module 23
with a PCC value of 0.319, and most of genes (14 out of 19 genes) in this module were located
in this region. Additionally, for ovarian cancer module 29, DNA copy numbers in chr 1: 31.9
MB - 59.1 MB regions have a high correlation value (0.345) with gene in the module, and
78.3% of the genes are located in this region. For GBM, 26 out of 88 gene-sample modules were
explained by regulation of the DNA copy numbers shown in Table S27, and 19 out of 54 gene-
miRNA modules (35%) were commonly regulated by CNAs and miRNAs.

Supporting Information
S1 Fig. The SAMBA biclustering algorithm. In a SAMBA biclustering algorithm, it models
gene expression data into a bipartite graph G = (U,V,E). In this graph, U is a set of samples, V
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is a set of genes and E is a set of edges between U and V. Nodes in one side are genes and nodes
in the other side are samples. An edge is linked if the expression value of gene for sample is
high or low. This means that gene expression level of v significantly changes in sample of u. In
this model, we try to find a subgraph G

0
= (U

0
,V

0
,E

0
) of G, where expression values of most

genes in V
0
significantly change in most of samples in U

0
, representing low values or high val-

ues. For example, genes G3, G4, and G5 in V
0
and S3 and S4 samples U

0
are constructed as a

module (a circle colored in grey). For gene expression data normalized by a z-score, the
SAMBA biclustering algorithm generates highly correlated gene-sample clusters that represent
similar tendencies of gene expression changes for a subset of samples.
(TIF)

S2 Fig. Distribution of the number of pathway terms.
(TIF)

S3 Fig. Performance comparison of gene-miRNAs modules for GBM. Performances of
gene-miRNAmodules generated from four cases (SCC with GGI information, SCC without
GGI information, PCC with GGI information, and PCC without GGI information) are com-
pared. For all cases, x-axis presents different percentages of candidate miRNAs (T%) among all
miRNAs when constructing gene-miRNAmodules. For each case, ratios of modules enriched
with at least one pathway, the average number of enriched pathways, and ratios of cancer
genes, GBM genes, and GBMmiRNAs are shown.
(TIF)

S4 Fig. Overlap ratio of genes in ovarian cancer modules. For every pairs of ovarian cancer
modules, the overlap ratios of genes are defined as jm1 \m2j/jm1 [m2j, wherem1 andm2 are
numbers of genes in module 1 and module 2, respectively.
(TIF)

S5 Fig. Overlap ratio of genes in GBMmodules. The description of the overlap ratios is the
same as in Fig. S4.
(TIF)

S6 Fig. Ratios of modules having four types of gene-miRNA relationships in ovarian cancer
and GBMmodules. y-axis represents the fraction of modules containing at least one corre-
sponding relationship in the modules. ‘microCosm’ represents gene-miRNA interactions based
on gene-miRNA sequences from the microCosm database, and ‘miRTarbase’ represents exper-
imentally confirmed gene-miRNA relationships from miRTarbase. ‘TF regulates genes and
miRNAs’ represents that genes and miRNAs are co-regulated by the same TF. ‘MiRNA regu-
lates genes via TFs’ represents that miRNA regulates transcription factors and transcription
factors regulates genes. ‘Union’ represents all four types of relationships.
(TIF)

S7 Fig. Functional enrichment tests using a Benjamini & Hochberg method and a TANGO
tool. GO biological terms were tested for functional enrichment of genes in ovarian cancer and
GBMmodules. Two multiple comparison correction approaches, a Benjamini & Hochberg
(BH) method and a TANGO tool, were used after a hypergeometric test. GO terms employed
in the two approaches were not exactly same, because TANGO, which were included in an EX-
PANDER software, uses its own collection of GO terms, and filters out redundant terms by
computing an intersection between genes in two terms. However, in both approaches, ovarian
cancer and GBMmodules were enriched with GO terms. (A) and (C) show the ratios of mod-
ules enriched with at least one term for ovarian cancer and for GBM, respectively, and (B) and
(D) represent the average numbers of enriched terms in identifiied modules for ovarian cancer
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and GBM, respectively.
(TIF)

S1 Table. Genes in ovarian cancer modules.
(PDF)

S2 Table. MiRNAs in ovarian cancer modules.
(PDF)

S3 Table. Genes in GBMmodules.
(PDF)

S4 Table. MiRNAs in GBMmodules.
(PDF)

S5 Table. Cancer genes, ovarian cancer genes and ovarian cancer miRNAs in modules.
‘Num’ represents the number of ovarian cancer genes (or ovarian cancer miRNAs) / the num-
ber of all genes (or all miRNAs) in a module.
(PDF)

S6 Table. Cancer genes, GBM genes and GBMmiRNAs in modules. ‘Num’ represents the
number of GBM genes (or GBMmiRNAs) / the number of all genes (or all miRNAs) in a mod-
ule.
(PDF)

S7 Table. Exprementally validated gene-miRNA interactions in ovarian cancers.
(PDF)

S8 Table. Genes and miRNAs are co-regulated by the same TF in ovarian cancer modules.
(PDF)

S9 Table. MiRNA regulates TFs and the TFs regulate genes in the ovarian cancer modules.
(PDF)

S10 Table. MiRNAs regulate genes in GBMmodules. The significant numbers of genes in
each module are regulated by miRNAs, and the significances are shown in ‘p-value’. ‘m’, ‘k’,
and ‘x’ represent the number of genes regulated by the miRNA collected from microCosm, the
number of genes in the module, and the number of genes regulated by the miRNA in the mod-
ule, respectively.
(PDF)

S11 Table. Genes and miRNAs are co-regulated by the same TF in GBMmodules.
(PDF)

S12 Table. MiRNA regulates TFs and the TFs regulate genes in GBMmodules.
(PDF)

S13 Table. Exprementally validated gene-miRNA interactions in GBM.
(PDF)

S14 Table. Ovarian cancer modules with enriched GO terms. The significant numbers of
genes in each module are enriched in gene ontology biological process, and the significance is
shown in ‘p-value’. ‘m’, ‘k’, and ‘x’ represent the number of genes in the corresponding GO
term, the number of genes in the module, and the number of genes belonging to the GO term
in the module, respectively.
(PDF)
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S15 Table. Ovarian cancer modules with enriched pathways in KEGG. The significant num-
bers of genes in each module are enriched in KEGG pathway, and the significance is shown in
‘p-value’. ‘m’, ‘k’, and ‘x’ represent the number of genes in the corresponding KEGG pathway,
the number of genes in the module, and the number of genes belonging to the pathway in the
module, respectively.
(PDF)

S16 Table. Ovarian cancer modules with enriched pathways in BioCarta. The significant
numbers of genes in each module are enriched in BioCarta pathways, and the significance is
shown in ‘p-value’. ‘m’, ‘k’, and ‘x’ represent the number of genes in the corresponding Bio-
Carta pathway, the number of genes in the module, and the number of genes belonging to the
BioCarta pathway in the module, respectively.
(PDF)

S17 Table. Literature evidences for ovarian cancer-related genes from ovarian cancer mod-
ules 22 and 8, and GBM-related genes from GBMmodule 22.
(PDF)

S18 Table. GBMmodules with enriched GO terms. The significant numbers of genes in each
module are enriched in GO biological process, and the significance is shown in ‘p-value’. ‘m’,
‘k’, and ‘x’ represent the number of genes in the corresponding GO term, the number of genes
in the module, and the number of genes belonging to the GO term in the module, respectively.
(PDF)

S19 Table. GBMmodules with enriched pathways in KEGG. The significant numbers of
genes in each module are enriched in KEGG pathways, and the significance is shown in ‘p-
value’. ‘m’, ‘k’, and ‘x’ represent the number of genes in the corresponding pathway, the num-
ber of genes in the module, and the number of genes belonging to the pathway in the module,
respectively.
(PDF)

S20 Table. GBMmodules with enriched pathways in BioCarta. The significant numbers of
genes in each module are enriched in BioCarta pathways, and the significance is shown in ‘p-
value’. ‘m’, ‘k’, and ‘x’ represent the number of genes in the corresponding pathway, the num-
ber of genes in the module, and the number of genes belonging to the pathway in the module,
respectively.
(PDF)

S21 Table. Comparisons of enriched pathways from the NMF approach and our approach.
(PDF)

S22 Table. Comparisons of enriched pathways from the COSMIC algorithm and our ap-
proach.
(PDF)

S23 Table. Ovarian cancer modules enriched with GO terms using a TANGO tool.
(PDF)

S24 Table. GBMmodules enriched with GO terms using a TANGO tool.
(PDF)

S25 Table. Ovarian cancer specific genes and GBM specific genes in identified modules.
(PDF)
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S26 Table. DNA copy number aberration regions that regulate gene expressions in ovarian
cancer modules.
(PDF)

S27 Table. DNA copy number aberration regions that regulate gene expressions in GBM
modules.
(PDF)
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