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Mapping allosteric communications within
individual proteins

Jian Wang® !, Abha Jain?, Leanna R. McDonald?, Craig Gambogi?, Andrew L. Lee? &
Nikolay V. Dokholyan@ 34

Allostery in proteins influences various biological processes such as regulation of gene
transcription and activities of enzymes and cell signaling. Computational approaches for
analysis of allosteric coupling provide inexpensive opportunities to predict mutations and to
design small-molecule agents to control protein function and cellular activity. We develop a
computationally efficient network-based method, Ohm, to identify and characterize allosteric
communication networks within proteins. Unlike previously developed simulation-based
approaches, Ohm relies solely on the structure of the protein of interest. We use Ohm to map
allosteric networks in a dataset composed of 20 proteins experimentally identified to be
allosterically regulated. Further, the Ohm allostery prediction for the protein CheY correlates
well with NMR CHESCA studies. Our webserver, Ohm.dokhlab.org, automatically determines
allosteric network architecture and identifies critical coupled residues within this network.
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ince Nabuhiro Go introduced his model of protein folding!,

whereby attractive amino acid interactions are assigned

based on whether these residues are in proximity in the
native state of the protein, it has been accepted that the native
structure of a protein is determined to a significant extent by its
folding pathway. If naturally selected sequences fold into unique
structures, then both sequences and structures also possess
information about folding dynamics, although this relationship
remains an enigma. Directly related to this protein folding pro-
blem is the phenomenon of allostery?, whereby perturbation at
one site (the allosteric site) in a protein is coupled to a con-
formational change and/or dynamics elsewhere in the same
protein. Perturbation at an allosteric site, induced by a stimulus
such as phosphorylation?, a point mutation?, binding of a
molecule?, light absorption®, or post-translational modification”,
can lead to changes in catalytic activity3, structural disorder?, or
oligomerization!?. Allostery regulates processes, including ligand
transport!! and metabolic function!?. Allostery is an intrinsic
property of all proteins: all protein surfaces!> are potential
allosteric sites subject to ligand binding or to mutations that ma
introduce structural perturbations elsewhere in the protein!41°,
Drugs targeting allosteric sites could offer improved selectivity
compared with traditional active-site targets!®17, and allosteric
pathways can be engineered to regulate protein functions!8-21,
We posited that dynamic couplings in atomic motions are related
to protein structure and sought to predict allosteric coupling
based solely on established protein structures with the goal of
building maps of dynamic coupling in proteins without the use of
expensive computational or experimental approaches.

Both experimental and computational methods have been
proposed to identify putative allosteric sites and to study how
perturbations at the allosteric site affect the active site®22-28, Two
different types of computational approaches have been
developed?>?%30. One is based on molecular dynamics simula-
tions or normal mode analysis, such as SPACER3!, which is based
on elastic network model (ENM)32. The other one is based on
information theory or spectral graph methods?®233. In recent
years, there has been a surge in the number of studies of allostery
using network models, a type of spectral graph methodology. For
example, Amor et al.?? proposed an atomistic graph-based cal-
culation to reveal the anisotropy of the internal propagation of
perturbations in proteins. Chennubhotla and Bahar343° intro-
duced a novel approach for elucidating the potential pathways of
allosteric communication based on Markov propagation of
information across the structure. Vishveshwara and coworkers3°
proposed protein structure graph (PSG) and then represented
proteins as interaction energy weighted networks (PENs)37 with
realistic edge-weights obtained from standard force fields to
identify stabilization regions in protein structures and elucidate
the features of communication pathways in proteins. Atilgan
et al.3® proposed to calculate the average path lengths in weighted
residue networks to analyze the perturbation propagation. They
also introduced perturbation-response scanning (PRS)3%40 to
calculate the effectiveness and sensitivity of residues in propa-
gating allosteric signals.

Based on physical considerations, here we develop a compre-
hensive platform for allosteric analysis, Ohm (http://Ohm.
DokhLab.org). Ohm facilitates four aspects of allosteric analysis:
(1) prediction of allosteric sites, (2) identification of allosteric
pathways, (3) identification of critical residues in allosteric
pathways, and (4) prediction of allosteric correlations between
pairs of residues. For backward validation, we identify allosteric
sites and pathways in Caspase-1 and CheY, and compare our
predictions with known experimental results. We also validate
Ohm on a dataset consisting of 20 proteins of known structure
that are regulated allosterically. For forward validation, we

determine all residue-residue correlations in CheY and compare
these with nuclear magnetic resonance CHEmical Shift Covar-
iance Analysis (NMR CHESCA) results. We also utilize muta-
genesis to disrupt allosteric communication in CheY and
compare changes in allosteric behavior with Ohm predictions. In
sum, Ohm detects allosteric coupling in proteins based solely on
their structures, enabling us to build maps of dynamic coupling in
proteins without the need for expensive and time-consuming
computational and experimental approaches.

Results

Implementation of a perturbation propagation algorithm. A
perturbation propagation algorithm is the foundation for allos-
teric network analysis in Ohm; this algorithm predicts allosteric
sites, pathways, critical residues, and inter-residue correlations.
The workflow of Ohm is illustrated in Fig. 1. The perturbation
propagation algorithm is a repeated stochastic process of per-
turbation propagation on a network of interacting residues in a
given protein. First, contacts are extracted from the tertiary
structure of the protein. Next, the algorithm calculates the
number of contacts between each pair of residues, and further
divides the number of contacts by the number of atoms in each
residue. This information, in turn, is used to obtain a probability
matrix P; (via Eq. (3) (“Methods”)). Each probability matrix
element, Py, is a measure of the potential that the perturbation
from one residue is propagated to another residue. Next, the
algorithm perturbs residues in the active site and the perturbation
is propagated to other residues according to the probability
matrix. At each step in the propagation, a random number
between 0 and 1 is generated. If this random number is less than
the perturbation propagation probability between residue i and
residue j, P;;, then we propagate this perturbation from i to j; if the
number is greater than the perturbation propagation probability,
the perturbation is not propagated. This process is repeated 10*
times. Finally, the frequency with which each residue is affected
by a perturbation is calculated. We call this frequency the allos-
teric coupling intensity (ACI). Next, we cluster all residues
according to their ACI values and their three-dimensional (3D)
coordinates (“Methods”). Each cluster is predicted as an allosteric
hotspot. To further utilize the perturbation propagation algo-
rithm to identify allosteric pathways, in each step of the described
perturbation propagation process, the residues through which the
perturbation passes are recorded. This process yields the allosteric
pathways that connect the active site with the allosteric site or
sites.

Validation of Ohm predictions. The primary objective of the
perturbation propagation algorithm is to identify candidate
allosteric sites in proteins. We utilized a dataset compiled by
Amor et al.22, which consists of 20 known allosteric proteins
(Supplementary Table 1), to test how accurately Ohm predicts the
locations of allosteric sites. The dataset was compiled from SCOP
database, which is a manually curated database using a hier-
archical classification scheme to collect protein domains into
structurally similar groups: &, f, a/f, a4 f3, and multi-domain,
which cover all the major fold-types for cytosolic proteins. They
randomly selected proteins from each of the five major classes.
The dataset includes seven monomers, two dimers, one trimer,
seven tetramers, two hexamers, and one dodecamer proteins. The
ligands of these proteins include chemical compounds, nucleo-
sides, peptides, and DNA molecules. The lengths of proteins
range from 147 to 3311 amino acids. Thus, the dataset covers a
broad region of protein structure space. For each of the proteins,
we used the 3D structure and the position of active sites as input
and calculated the ACIs of all residues using Ohm. One of the
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Fig. 1 The Ohm workflow. The Ohm workflow begins with input of the 3D structure of a protein. Next (moving clockwise), a contact matrix is calculated
and a perturbation propagation probability matrix is generated according to Egs. (1)-(3) (“Methods"). The perturbation propagation probability matrix
provides the foundation of the perturbation propagation algorithm. If the position of the active site is known, the perturbation propagation algorithm
calculates ACls of all residues relative to the active site. We further devised a program to identify allosteric hotspots based on ACI values. If the position of
both the active site and the allosteric site are known, the perturbation propagation algorithm can determine the allosteric pathways that connect the active
site and the allosteric site. Further, Ohm identifies critical residues in allosteric pathways based on Eqg. (4) (“Methods"). If neither the active site nor the
allosteric site is known, the perturbation propagation algorithm can calculate allosteric correlations of each pair of residues. These correlations are then

clustered to interrogate how residues in the protein are allosterically coupled.

proteins in the dataset is Caspase-1, a protein involved in cellular
apoptosis and inflammation processes that is allosterically regu-
lated*!. Despite strong pharmacological interest, targeting the
active sites of caspases with drug-like molecules has been very
difficult. However, small molecules that bind to the allosteric sites
of the protein have been shown to be potent inhibitors of caspase-
1 enzymatic activity*2. The structure of Caspase-1 contains two
asymmetric dimers further organized into a tetrameric struc-
ture3. Each dimer contains one active site that is allosterically
coupled to a distal active site*2. With the tertiary structure of

Caspase-1 (PDB ID: 2HBQ) as input, Ohm was used to calculate
atom contacts, construct the perturbation propagation probability
matrix, and determine ACI values of all residues. There are 6
prominent peaks in ACI values along the sequence (Fig. 2a). The
known allosteric site, which is at the center of the dimer, exactly
corresponds to peak P6, indicating that the allosteric site of
Caspase-1 was successfully identified by Ohm. In fact, these peaks
are all around the allosteric site, and our clustering algorithm
clustered them into one allosteric hotspot. We observed that
residues having high ACI values typically have low solvent-

NATURE COMMUNICATIONS | (2020)11:3862 | https://doi.org/10.1038/s41467-020-17618-2 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17618-2

Start - A/285 - A/286 - End
Start - D/285 - D/286 - End

Start - A/285 - A/284 - B/332 - B/333 - A/286 - End I
Start - D/285 - D/284 - E/332 - E/333 - D/286 - End .

Start - D/285 - D/284 - E/332 - E/331 -
Start - A/285 - A/284 - B/332 - B/331 -
Start - A/285 - D/284 - B/390 - B/391 -
Start - D/285 - D/286 - E/390 - E/391 -
Start - D/285 - D/286 - E/390 - End NN
Start - A/285 - A/286 - B/390 - End NN

accessible surface areas (SASA) (Fig. 2a), and most low ACI areas
are located on the surface.

To further evaluate how reliably Ohm predicts the allosteric
pathways, we compared the predictions with previously reported
experimental data. Datta and coworkers*! mutated nine residues
of Caspase-1 to test their roles in allosteric pathways

N

A/286

Importance

0.10 0.15 0.20 0.25 0.30

(Supplementary Table 2). Of these nine residues, R286A and
E390A mutants strongly altered allosteric regulation, and S332A,
S$333A, and S339A had moderate effects, and S334A, S336A,
$337A, and S388A mutants had little effect (Supplementary
Table 2). Ohm predicted that R286 and E390 are the most critical
residues in the Caspase-1 allosteric network (Supplementary
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Fig. 2 Allosteric analyses of Caspase-1. a ACls and SASAs of all residues in Caspase-1 (PDB ID: 2HBQ). The inward bar chart and the tertiary structure of
CheY are colored by ACI of residues. Gray bars represent SASAs. In the tertiary structure of CheY, the active site ligand is colored by blue, and the

allosteric site is at the center of the structure near P6. Peaks P1, P2, P3, P4, P5, and P6 of ACI are labeled both in the bar chart and the tertiary structure. b
Allosteric pathway predicted by Ohm rendered as green cylinders in the 3D structure of Caspase-1. Yellow spheres are experimentally validated residues. ¢
Critical residues in the allosteric pathways of Caspase-1 predicted by Ohm. The radius of each node indicates the importance of the residue in allosteric
communication. Red color means high importance and green color means low importance. Each node is labeled by the chain name followed by a slash
before the residue number. d Weights of 10 most important allosteric pathways of Caspase-1. The weights of the nodes in ¢ and the pathways in d are

illustrated in “Methods".

Table 2 and Fig. 2b, ¢); $332, $333, and S339 were the next most
important residues, and S334, S336, S337, and S388 were the least
important for allostery (Supplementary Table 2). These predic-
tions are in perfect accord with experimental results. In addition,
Ohm predicts that another residue C285, should be of importance
to the network, although this has yet to be experimentally verified.

A second example of the accuracy of Ohm predictions is the
129-residue response regulator protein, CheY, which has
allosteric properties and numerous crystal structures are available
for both wild-type and mutant proteins*4-46, The phosphoryla-
tion of D57 in CheY allosterically activates binding of FliM within
bacterial flagellar motors*>4743. There were four prominent
peaks in the calculated ACI of residues in CheY (Fig. 3a).
Remarkably, BeF;~ (the ligand binding in the allosteric site) and
D57 (the allosteric site) have the highest and second highest ACI,
respectively. The four ACI peaks P1, P2, P3, and P4 are all around
the allosteric site, and they are finally clustered into one allosteric
hotspot. Based on the analysis of pathways, the most important
allosteric pathway is D57-T87-Y106-FliM (Fig. 3b-d). The two
residues, T87 and Y106 (Fig. 3b), are of significantly higher
importance than other residues based on ACI scores. Cho and
coworkers#? solved the NMR structure of activated CheY and
proposed a Y-T coupling between residues Y106 and T87 to
explain the mechanism of the allosteric activation of CheY: The
phosphorylation of D57 causes T87 to move toward the
phosphorylation site due to enhanced hydrogen bonding
interaction between the two residues, which leaves more space
for Y106 to occupy the buried rotameric state. The Y-T coupling
is the reason for the importance of T87 and Y106 in the allosteric
communication between the allosteric site and FliM, which is in
agreement with our predictions. Thus, for both Caspase-1 and
CheY, the residues predicted by Ohm to be the most critical
components of the allosteric pathways in these two proteins are
those previously established to be of high importance.

The perturbation propagation algorithm in allosteric pathways
identification starts at the allosteric site, because the perturbation
in protein is propagating from the allosteric site to the active site,
but the perturbation propagation algorithm in allosteric site
prediction actually starts at the active site, because the active site
is known and the objective is to find the allosteric site. To
interrogate the difference of perturbation propagation directions,
we used the allosteric site D57 in CheY to predict the active site
(Supplementary Fig. 1A). There are three major ACI peaks and
the third one that includes residues 100-105 is exactly the active
site. We have also identified the pathways from the active site to
the allosteric site (Supplementary Fig. 1B). The most critical
residues in the identified allosteric pathways are still 87 and 106.
These results indicate that the allosteric correlation between the
allosteric site and the active site in CheY is reversible, while the
allosteric correlation in other proteins could also be irreversible>C.

We performed allosteric analysis for all 20 proteins (Fig. 4 and
Supplementary Figs. 2-21) and compared the allosteric site
prediction results to that of Amor’s method (Supplementary
Fig. 22 and Supplementary Table 4). We utilized the clustering
algorithm (“Methods” section) to identify allosteric hotspots

based on ACI values and calculated the true-positive ratio (TPR)
—the ratio of the number of true hotspots to the total number of
predicted hotspots. Ohm identifies several allosteric hotspots for
small proteins and less than 15 hotspots for large proteins (such
as 1EYI, 6DHD, and 7GPB). In stark contrast, if we apply the
clustering algorithm to the quantile scores, which is the metric in
Amor’s method to evaluate the allosteric correlation, the number
of predicted hotspots is much larger than that predicted by Ohm
(Supplementary Fig. 22a). A plethora of identified hotspots create
hurdles for users to identify the true allosteric site. For large
proteins such as 1D09, 1XTT, 1EFA, 7GPB, and 1YBA, >30
hotspots are identified based on quantile scores because the
quantile scores are scattered around the structure (Supplementary
Fig. 23). Most importantly, the TPR of hotspots predicted by
Ohm is much higher than that predicted by Amor’s method for
most proteins in the dataset (Supplementary Fig. 22b). The
average TPR of Ohm is 0.57, compared to 0.23 of Amor’s method.
TPR of Ohm-predicted hotspots for the four small proteins—
1F4V, 2HBQ, 1PTY, and 3K8Y—are all equal to 1. Besides,
although 1XTT is a large tetramer protein composed of 868
residues, the TPR of Ohm is still equal to 1. We also calculated
the positive predictive value (PPV)—the ratio of the number of
identified allosteric site residues to the total number of all
allosteric site residues—of Ohm and Amor’s method, respectively
(Supplementary Fig. 22c). Ohm can recapitulate more allosteric
site residues than Amor’s method for most proteins. The PPV of
Ohm is 0.72, compared to 0.48 of Amor’s method. These results
indicate that Ohm outperforms Amor’s method in the ability to
identify allosteric sites by featuring both higher TPR and higher
PPV.

The pathways are identified by the perturbation propagation
algorithm and the critical residues are identified by the
importance in the pathways according to Eq. (4). Dijkstra’s
algorithm®! has also been utilized by network models to identify
optimal pathways3® and betweenness centrality is usually utilized
to measure the importance of nodes in the network. For each of
the 20 proteins, we compared the top-10 ranked residues
identified by importance of residue in Ohm pathways to residues
identified by betweenness centrality in Ohm pathways and
residues identified by betweenness centrality in Dijkstra optimal
pathways (Supplementary Table 5). The three methods share
some common residues but these residues are ranked differently.
For CheY (1F4V), the most critical residues identified by Ohm
are 87 and 106, while these two residues are lower-ranked by the
other two methods.

Finally, we utilized a designed four-helix bundle protein
(IMFT) as the negative control (Supplementary Fig. 24). The
tertiary structure colored by the calculated ACI values shows that
apart from the designated pseudo active site—the N-terminus—
there are no ACI hotspots in this un-allosteric protein structure.

Comparison of allosteric correlations from CHESCA and
Ohm. Taking advantage of the celerity of ACI calculation, Ohm
could yield the ACIs of all residue-residue pairs of even a large
protein in a short period of time. Experimentally, inter-residue
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allosteric correlations can be determined using CHESCA based essentially a covariance analysis of NMR chemical shift changes
on the combination of agglomerative clustering and singular caused by local perturbations, such as a series of related com-
value decomposition as proposed by Selvaratnam et al.>2. Aimed pounds or mutations®>>4, We analyzed seven different mutants of
at revealing extended networks of coupled residues, CHESCA is unphosphorylated CheY (F8V, DI13K, M17A, V21A, T87I,
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Fig. 3 Allosteric analyses of CheY. a ACls and SASAs of all residues in CheY (PDB ID: 1F4V). The inward bar chart and the tertiary structure of CheY are
colored by ACI of residues. Gray bars represent SASAs. In the tertiary structure of CheY, the active site ligand (FIiM) is colorerd by blue, and BeF3 is the
ligand in the allosteric site. The four peaks P1, P2, P3, and P4 of ACI are labeled both in the bar chart and the tertiary structure. b Allosteric pathway
predicted by Ohm rendered as green cylinders in the 3D structure of CheY. Yellow spheres are experimentally validated residues. ¢ Critical residues in the
allosteric pathways of CheY predicted by Ohm. The radius of each node indicates the importance of the residue in allosteric communication. Red color
means high importance and green color means low importance. Each node is labeled by the chain name followed by a slash before the residue number.
d Weights of ten most important allosteric pathways of CheY. The weights of the nodes in ¢ and the pathways in d are illustrated in “Methods".

Fig. 4 Tertiary structures of all 20 proteins colored by ACI. Ligands in active sites are colored by blue, and ligands in allosteric sites are colored by
yellow. One of the highest weight pathways identified by Ohm is shown as green consecutive cylinders for each protein. Resides with high, moderate,
low, and extremely low ACI values are colored by yellow, green, and blue, respectively. Ohm analysis results for all 20 proteins are provided in

Supplementary Data 3.

Y106W, and A113P) using CHESCA (see “Methods”). Inter-
residue cross-correlations are determined for residue pairs
(Fig. 5a). As there are errors in the calculated allosteric correla-
tions®> and missing data for certain residues, we subjected the
allosteric correlation matrix to a Gaussian low-pass filter (Fig. 5b).
The most dramatic correlations were found in residues belonging
to the C-terminal helix a5 (Fig. 5b, e region V), indicating that
most residue pairs in this helix respond in a correlated fashion
to the seven mutations. This finding held true even when the
A113P dataset, which is the data collected on the protein with a
mutation in a residue in a5, was removed from the calculation.
Thus, the C-terminal helix appears to be sensitively coupled to
the rest of CheY.

We next utilized Ohm to predict the inter-residue correlations
within CheY (Fig. 5¢). As we used unphosphorylated protein for

the CHESCA, we also used the unphosphorylated state of CheY
(PDB ID: 1JBE) for Ohm analysis. There were 12 regions in
common in the matrices obtained from CHESCA and Ohm.
Regions I, II, III, IV, and V each involve consecutive residues
(Fig. 5e): region I consists of residues 6 to 9; region II consists of
residues 33 to 43; region III consists of residues 50 to 58 and
includes the allosteric site residue D57; region IV consists of
residues 85 to 107, including T87 and Y106, which are the two
critical residues in the dominant allosteric pathway (Fig. 5e, green
cylinders); and region V consists of residues 112 to 124, which are
all in the C-terminal helix, corroborating the speculation that the
C-terminal helix is coupled to the rest of CheY. Besides, the
coupling in the C-terminal helix can also be demonstrated by
Anisotropic Network Model (ANM) through ANM 2.1 server®°.
The other seven regions involve correlations between residues
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Fig. 5 Comparison of allosteric correlations measured by CHESCA and predicted by Ohm. a Allosteric correlations measured by CHESCA. Blank rows
and columns are caused by missing data for residues 1, 2, 13, 14, 15, 16, 18, 19, 59, 60, 61, 65, 82, 90, 92, and 110. CHESCA data are in Supplementary
Data 1. b Allosteric correlations measured by CHESCA subjected to Gaussian filtration. Dashed boxes, including the colored boxes (I, Il, Ill, IV, and V) and
the white boxes, are common regions to CHESCA and Ohm analysis. ¢ Allosteric correlations predicted by Ohm. Regions in dashed circles only appear in
allosteric correlations predicted by Ohm. d The true-positive ratio of allosteric correlations predicted by Ohm, native contacts, the shortest paths lengths,
PRS, and the hitting time. Data of all methods for the comparison can be found in Supplementary Data 3. e Tertiary structure of CheY Regions indicated in
panels b and e are labeled. The green cylinders represent the allosteric pathway.

located in regions I, II, III, IV, and V. The similarities of the
matrices obtained from CHESCA and Ohm indicate the ability of
Ohm to reliably identify inter-residue allosteric correlations in
proteins.

Since PRS?%40, the hitting time in Chennubhotla and Bahar’s
Markov propagation model®#3%, and the shortest paths lengths
have also been used38 to evaluate the correlation between residues
in proteins, we further quantitatively compared Ohm to these
methods, as well as the native contacts (Fig. 5d). We ranked all
residue pairs by the predicted correlation and selected a certain
number of top-ranked residue pairs. We then measured TPR—
the ratio of the number of residue pairs that match CHESCA
results (true positives) to the total number of selected residue
pairs (positives)—to evaluate the accuracy of the calculated
correlations. A selected residue pair matches CHESCA results
when the corresponding CHESCA correlation is higher than 0.5.
The TPR decreases as the number of positives increases, while the
TPR of Ohm is higher than other methods when the number of
positives is less than 60. When 20 top-ranked residue pairs are
selected, the TPR of Ohm and the hitting time are both 47.6%,
while the TPR of native contacts, shortest paths lengths, and PRS
are 38.1%, 33.3%, and 33.3%, respectively.

Stability of allosteric pathways over an MD simulation. The
perturbation propagation algorithm relies only on an input static
structure, but protein structures are dynamic. Therefore we
analyzed whether the conformational changes induced by in the
CheY protein structure during the time course of a molecular
dynamics (MD) simulation®” caused significant variation in the
allosteric network. We used Gromacs to perform a 100-ns
molecular dynamics simulation of CheY using the crystal struc-
ture (PDB ID: 1F4V) as the starting structure. We extracted five
snapshots at 0, 25, 50, 75, and 100 ns, and used Ohm to analyze
the allosteric pathways. The results indicated that the allosteric
network of CheY changes moderately over the simulation time
course but that the core allosteric pathway, D57-T87-Y106-FliM,
remains stable (Supplementary Fig. 25). Only at 75 ns, were T87
and Y106 not the most critical residues, but even at this time
point the pathway D57-T87-Y106-FliM existed. In addition,
W58, 195, G105, and K109 are among the critical residues in
allosteric pathways in all five snapshots. Thus, although Ohm uses
only the static tertiary structure of a protein as input, under
conditions where conformational change is induced the allosteric
pathway calculated by Ohm is stable. This observation is con-
sistent with our proposed view of allostery, whereby protein
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structure is coupled to dynamics and the allosteric phenomenon
is a manifestation of this coupling.

Factors that affect perturbation propagation. As the perturba-
tion propagation algorithm is de facto a random process, the
results of each calculation differ. Hence, to evaluate the statistical
significance of the perturbation propagation algorithm outcome,
we performed multiple perturbation propagation simulations and
ensure convergence of the results. To determine the number of
steps required for convergence and for the statistical error to
reach an acceptable level, we tested the standard deviation of ACI
when different numbers of perturbation propagation rounds were
used (Supplementary Fig. 26A). As the number of perturbation
propagation rounds was increased from 100 to 10,000, the stan-
dard deviation of ACI decreased (Supplementary Fig. 26B). The
standard deviations of ACI values were negligible when the
number of perturbation propagation rounds was 10,000.

To interrogate the difference of using different experimental
structures as input for Ohm analysis, we calculated ACI of
residues in CheY by using four different experimental structures:
1FQW (apo CheY-BeF;7), 3CHY (apo unphosphorylated CheY),
1F4V (CheY-BeF; FliM), and 2B1]J (unphosphorylated CheY-
FliM). Because of the very short lifetime of phosphorylated CheY,
its structure is not available. BeF;~ can bind at the allosteric site
of CheY to mimic the phosphorylation effect to finally result in
the binding of FliM at the active site. We observe that BeF;~ in
1FQW and 1F4V both have the highest ACI values (Supplemen-
tary Fig. 27). On the other hand, the ACI peak at the allosteric site
D57 is much more prominent in apo structures than in holo
structures. In the unphosphorylated holo structure (2B1]), the
ACI peak at the allosteric site is even less prominent than other
regions. Based on this result, we propose a four-state hypothesis
for CheY. In the unphosphorylated state of CheY, multiple
regions are allosterically correlated with the active site, including
the allosteric site. When CheY is activated by phosphorylation or
the binding with BeF;~, the allosteric site is so strongly affecting
the active site that it finally leads to the binding with FliM. After
the binding event, the allosteric correlation in the allosteric site
becomes less prominent. When the holo structure is unpho-
sphorylated, the allosteric correlation at allosteric site is even
lower than other regions so as to protect the holo structure from
being separated by any remotely propagated perturbation at the
allosteric site.

Another factor that largely affects the performance of allosteric
site prediction performance is the selection of residues in the
active site to serve as the start of the propagation algorithm. We
calculated ACI of residues in CheY-FliM complex (1F4V) by
setting all residues in FliM as the start of the algorithm, and also
calculated ACI of residues in apo CheY structure (3CHY) by
setting all residues, residue Y106, or K119 on the CheY-FliM
binding surface as the start of the propagation algorithm,
respectively. By using FliM as the start for the bound structure
(Supplementary Fig. 28A), or using all binding surface residues as
the start for the unbound CheY structure (Supplementary
Fig. 28B), we can successfully find the allosteric site D57.
However, if we choose Y106 (Supplementary Fig. 28C) or K119
(Supplementary Fig. 28D) for unbound CheY structure, we
cannot find the allosteric site D57. Thus, we recommend to use all
residues on the active site for the unbound structure.

Parameter « in Eq. (3) is a user-defined parameter to amplify
or reduce probability. We evaluated the dependence of the
predictions as a function of o on the allosteric interaction
network of CheY (Supplementary Fig. 29). When a was increased
from 1 to 5, the absolute values of ACI increased. However, the
positions of the peaks in ACI did not change. The network of

allosteric interactions within CheY changed only slightly, and the
most important pathway, D57-T87-Y106-FliM, was unaffected,
and the most critical residues remained T87 and Y106. Thus, the
value of o does not affect the accuracy of the results. To further
determine the value of « that can result in the best performance,
we calculate ACI of residues in CheY by using & from 0.5 to 10
(Supplementary Fig. 30). When « is 10, the ACI values of nearly
all residues are approaching 1, driving the identification of ACI
hotspots intractable. Therefore, we prefer low a-values (0.5-3)
than high a-values (>3).

For proteins, the backbone-backbone atom contacts between
two sequence-adjacent residues are excluded when computing the
perturbation propagation probability matrix. If contacts between
backbone atoms of two adjacent residues are not excluded,
perturbation propagates mainly through the backbone from one
residue to its sequence-adjacent residues, which generates a large
number of non-dominant pathways, and the identification of
genuine allosteric pathways becomes prohibitively inefficient.
When  versions of Ohm excluding or including
backbone-backbone contacts between sequence-adjacent residues
were used to predict the allosteric pathways of CheY, only the
version that excluded backbone-backbone contacts identified the
correct allosteric site and allosteric pathways (Supplementary
Fig. 31).

Determining the impact of mutations on allosteric pathways.
Although allosteric pathways are insensitive to protein dynamics,
mutations on certain residues, taking CheY as an example#>°8-62,
especially those located in core allosteric pathways, can influence
the allosteric behavior of proteins. To interrogate to what extent
the mutations on peripheral residues, which are irrelevant to
allosteric pathways, influence coupling between the allosteric site
and the active site, we used Ohm to identify the allosteric path-
ways of two CheY mutants, V21A and I55V. The tertiary struc-
tures of these two mutants were generated using Eris®3. The Ohm
analysis showed that the allosteric pathways in these two mutants
changed moderately relative to that in the wild-type protein
(Supplementary Fig. 32). The core pathway, D57-T87-Y106-FliM,
remained dominant in both mutants, however. The ACI values
between the active site and the allosteric site are 0.2, 0.3, and 0.3
in the wild-type protein and V21A and I55V mutants, respec-
tively. Thus, surprisingly, the allosteric correlations in the two
mutants are even stronger than that in the wild-type structure.

To validate this result, we performed autophosphorylation
experiments with wild-type CheY and the two mutants. CheY can
either be phosphorylated by its sensor kinase CheA or autopho-
sphorylated in the presence of an appropriate small-molecule
phosphodonor#’. Autophosphorylation results in a change in the
fluorescence emission intensity at 346 nm, which derives from
W58; this is a useful measure of functional activity*>>°. When the
data were analyzed, the two CheY mutants, V21A and I55V, both
had higher values, by about 50%, of the slope of the plot of the
observed rate constant versus phosphodonor concentration
(Supplementary Fig. 33), which is consistent with the Ohm
predictions.

Discussion

By definition, allostery involves the propagation of signals
between sites in a protein structure through a network of
residues226465, Hence Ohm, which is built upon a network
modeling approach, is intuitively appealing. The benefit of net-
work models is that they are solely dependent on protein struc-
ture, and thus they yield solutions more rapidly and cost-
effectively than models that rely on molecular dynamics simula-
tions. In network methods that are based on Markov model, the

| (2020)11:3862 | https://doi.org/10.1038/s41467-020-17618-2 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

transition matrix (or the conditional probability matrix) is nor-
malized to satisfy the condition that the total sum of the prob-
ability of each residue with respect to other residues equals to 1,
which is the premise of the theoretical derivation to directly
calculate ACI or other metrics of residue correlations. However,
in our propagation probability matrix, this condition is not
satisfied, so we develop a propagation algorithm to calculate ACIL
In actuality, satisfying this condition implies that a perturbation
on one residue could only propagate to one of its contacted
residues, which is not similar to the case of a real protein, where a
residue can propagate perturbation to multiple contacted residues
or even not propagate.

Since allosteric response has also been found in mechanical
networks®® and physical principles allowing for allosteric com-
munication at distant sites have been studied in an artificial net-
work®’, we hypothesize that allosteric phenomena are a general
property of heterogeneous media and that coupling between distal
sites of the heterogeneous material propagates through regions of
higher coupling density. Packing heterogeneities in proteins result
in specific propagation of perturbations between distal sites within
the structure, thus resulting in allosteric coupling. The finding that
allostery is an intrinsic property of heterogeneous protein struc-
ture opens avenues for engineering of allosteric protein switches
and developing allosteric drugs and also sheds light on the rela-
tionship between protein structure and dynamics. Ohm derives
perturbation propagation probability from residue-residue con-
tacts instead of atom-level energies; this is probably the reason that
the network identified by Ohm analysis was stable despite
alterations in protein structure over the time course of a molecular
dynamics simulation. In addition, since the packing density is
higher around residues that have higher numbers of inter-atomic
contacts, perturbation is likely to propagate through these higher
density regions, and the number of contacts is a proxy for the
probability of signal propagation through these residues.

Although here we used Ohm for analysis of interaction net-
works within proteins, the underlying perturbation propagation
algorithm can be extended to other biomolecules, such as RNA,
and even to heterogeneous materials. The calculation of the
perturbation propagation probability matrix will bear great sig-
nificance in extending Ohm to other materials. For proteins, the
selection of an appropriate distance cutoff of contacts, the
exclusion of backbone-backbone atom contacts between two
sequence-adjacent residues, and the formula that converts con-
tacts to probability all play crucial parts in computing the per-
turbation propagation probability matrix. To extend Ohm to
identify RNA allosteric sites and pathways we will interrogate the
relationship between allosteric communication and different
types of inter-residue interactions, such as base stacking, to
construct an appropriate strategy for calculation of the pertur-
bation propagation probability matrix.

In summary, we have developed a model that can predict
allosteric sites, pathways, and inter-residue correlations. We
backward-validated the performance of Ohm by successfully
mapping allosteric networks in a dataset composed of 20 allos-
terically regulated proteins for which high-resolution structures
are available and the allosteric sites are known. We forward-
validated the ability of Ohm to predict inter-residue allosteric
correlations by comparing Ohm predictions with NMR CHESCA
measurements for the protein CheY. We further ascertained the
impact of dynamics and mutations on allosteric pathways. We
anticipate that Ohm will be an essential tool for protein allostery
analysis in drug discovery and protein engineering.

Methods
Average atom-contacts matrix. From a 3D protein structure, the Ohm algorithm
first extracts all the atom-wise contacts. Two atoms within 3.4 A are counted as a

contact. The distances between every two atoms in the protein structure are then

calculated:
CU:ZbH<rU— ), (1)

where C;; is the number of atom contacts between residue i and residue j, and a and
b are atoms in residues i and j, respectively. a and b cannot be backbone atoms

— rd
i
ra7r1b

—
simultaneously if |i - j| = 1. r, is the distance cutoff, r] is the position of atom a in
—

residue i, and 1} is the position of atom b in residue j. H(x) is the Heaviside step
function.
Subsequently, the number of contacts each atom in residue i forms with atoms
in residue j is determined by dividing the number of contacts between residues i
and j by the number of atoms in residue i. Likewise, we divide the number of
contacts between residues i and j by the number of atoms in residue j to evaluate
how many contacts each atom in residue j forms with atoms in residue i
G G
N.=— N, =2
y G’ i CJ ’ (2>
where Nj; is the number of average atom-contacts of residue i with respect to
residue j; Cj; is the number of contacts between residue i and residue j; C; is the
number of atoms in residue i; and C; is the number of atoms in residue j. Cj; is
always equal to C;;, whereas Nj; is not necessarily equal to Nj;.

Perturbation propagation probability matrix. Based on the average atom-
contacts matrix, the perturbation propagation probability matrix is calculated:

—a-Nj

Py=1-p,=1—c¢
i i
—aN, 3)

Pjizlfpjizlfe

where P is the probability that the perturbation of residue i will be propagated to
residue j; p;; is the probability that the perturbation of residue i will not be pro-
pagated to residue j; «, currently set to 3.0, is a user-defined parameter to amplify
or reduce probability.

The perturbation propagation algorithm. First, a vector (V) of size N is built,
where N is the number of residues in the structure. If residue i undergoes a
conformational change, the ith element V; is assigned a value of 1, otherwise it is
assigned a value of 0. Then, another vector (W) of size N is built. Elements in W are
all initially assigned values of 0. A third vector (B) is built to store the neighbors of
all residues. Element B; is a set consisting of all the residues that have contacts with
residue i. In the fourth vector (T) of size N, all elements are assigned values of 0.

Next, each of the residues in the active site is assigned 1. For instance, if the
residue in the active site is residue #, both V,, and W,, are set to be 1. Subsequently,
based on B,, all neighbors of residue # are identified. If m is one of the neighbors of
residue #, a random number r is generated, and if r < P,,,,, the value of V,,, is set to 1,
otherwise the value of V,, is set to 0. No matter what V,,, is, W,,, is set to 1. All the
neighbors of m as then identified and values in V and W are determined. This
process is repeated until all values in W are 1. Then, T; is added by 1 if V; has been
assigned a value of 1. For the next round, V and W are cleared, and the process is
repeated 10* times. Finally, vector T is normalized. T; is the value of allosteric
coupling intensity of residue i with respect to residue n. The perturbation
propagation process is illustrated in Supplementary Fig. 34.

In order to identify allosteric sites, the residues in the active sites are excluded
and the residue with the highest ACI among the remaining residues is selected as
the allosteric site. The propagation algorithm is slightly adjusted to identify the
allosteric pathways between the active site and the allosteric site. A stack § is
constructed to store all the pathways that pass through the active site and the
allosteric site. Suppose residue #n and residue m are the active site and the allosteric
site, respectively. Starting from residue n, the propagation process is performed,
and the current path is added to S if the end of the path is m. The propagation is
performed 10% times and the histogram of all paths is statistically evaluated and
stored in S. The path identified most often is the most likely allosteric pathway.

Each allosteric pathway is assigned a specific weight, which is a measure of its
importance in allosteric communication. Based on these weights, we identify
critical residues in allosteric pathways. Suppose {p;} is the collection of all pathways
containing residue a, where p; represents the importance of allosteric pathway i.
We use p, to represent the importance of residue a, and we set the initial value of p,
to zero. Then, for each of the pathways in the collection {p;}, we update the value of
Pa according to the equation below:

Pa = PatPi = Pa"Pr: )
When the importance of all pathways has been substituted into the equation,
the value of p, is the final importance of residue a.

Allosteric hotspots identification. We first calculate the distances between all
residue pairs in the protein and initialize a distance matrix M(i, j), where i and j are
residue indices. The distance between two residues is defined as the minimum
distance between their atoms. For each residue, its neighbors G(i) are then identified
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by a distance threshold of 4.5 A. A vector D (direction) is then initialized with a size
of N-the number of residues. D(i) is then assigned by the index of the neighbor
residue that has a higher ACI than residue i. If there is no neighbor with a higher
ACI, then D(i) is assigned by —1. This way, each residue that has a direction value of
—1 represents an allosteric hotspot. All other residues in each allosteric hotspot can
be found by looking for residues that are finally directing to the hotspot center.

Molecular dynamics simulation. Gromacs®® was employed to conduct molecular
dynamics simulations of CheY (PDB ID: 1F4V). The Amber99SB-ILDN®® force
field was used in tandem with the TIP3P water model in a cubic periodic box. The
structure was solvated using water molecules, and sodium counterions were added
to neutralize residue charges. A short initial energy minimization of 50,000 steps
was performed to resolve steric clashes. The temperature of 300 K was maintained
using a V-rescale thermostat with a coupling constant of 0.1 ps. The solvent density
was adjusted under isobaric and isothermal conditions at 1 bar and 300 K. A
Parrinello-Rahman barostat with isotropic pressure coupling and a coupling con-
stant of 0.1 ps was used to set the pressure at 1 bar.

Protein expression and purification. A plasmid containing E. coli CheY was
provided by Dr. Robert Bourret (University of North Carolina at Chapel Hill) and
was subcloned into the pET28a plasmid (Novagen). All mutants were prepared by
site-directed mutagenesis. The CheY vector was transformed into BL21 Star (DE3)
cells (Invitrogen) and grown on M9 minimal media with the appropriate isotope
(s): 1'NH,CI (99%) and/or D-glucose (U-13C4—99%) as the sole nitrogen and
carbon sources, respectively. Cells were grown at 37 °C and induced with 1 mM
isopropyl 1-thio-B-p-galactopyranoside when the ODgq, reached 0.6 and were
grown for an additional 22-26 h at 20 °C. The cells were harvested by cen-
trifugation, resuspended in buffer A (25 mM Tris, 10 mM MgCl,, pH 8.0), and
sonicated. The lysate was then centrifuged at 6000 r.p.m. and dialyzed overnight
into buffer A at 4 °C. The protein was purified on a Q-Sepharose Fast Flow column
(GE Healthcare) equilibrated with buffer A and eluted in buffer B (buffer A with
the addition of 1.5 M NaCl. Q-Sepharose purified protein was passed over a

G75 superdex gel-filtration column equilibrated with NMR buffer (50 mM NaP;,
0.02% NaNj3, pH 7.0 and an appropriate amount of MgCl, and/or EDTA). The
CheY elution peak was concentrated for further experiments.

CheY autophosphorylation assays. Changes in tryptophan fluorescence were
used to monitor CheY autophosphorylation kinetics. Protein was transferred to
assay buffer (100 mM HEPES, 10 mM MgCL,, pH 7.0) by passing purified CheY
through a G-25 gel-filtration column equilibrated with assay bulffer, prior to
dilution of CheY to 5 pM. Phosphoramidate solutions were mixed with CheY to
final concentrations of 5, 15, 25, 50, and 75 uM phosphoramidate phosphodonor,
with a final CheY concentration of 2.5 uM. Enough KCl was added to reach an
ionic strength of 200 mM for each reaction. Fluorescence measurements at 25 °C
for F8V, V21A, 155V, and WT were made using a Luminescence Spectrometer
LS50B7%. Tryptophan fluorescence intensity was measured with an excitation
wavelength of 292 nm, an emission wavelength of 346 nm, an emission slit width of
10 nm. Autophosphorylation assays were conducted by mixing CheY with each
phosphoramidate solution and measuring fluorescence intensity over time until the
intensity remained constant. Kinetic curves at each concentration of phosphor-
amidate were fit to three parameter exponential decay curves (I = y, + ae~ b, where
I = fluorescence intensity, b = kobs, and y, is I at t = o). Plots of k,ps vs. [phos-
phoramidate] were fit to lines, with the slope equal to k,p.s/K; and the y-intercept
equal to Kgephos: Curve-fitting was carried out using SigmaPlot.

NMR assignments. All NMR spectra were collected on 1 mM CheY samples in
NMR buffer (50 mM NaP;, 0.02% NaNj, pH 7.0,10 mM MgCl, and 10% 2H,O.
NMR spectra were recorded at 15°C on Varian INOVA spectrometers equipped
with room-temperature (500 and 600 MHz) or cryogenic (700 MHz) probes. Triple
resonance experiments were carried out to assign wild-type CheY in the presence
of 10 mM Mg?+. Assignments for mutants were typically made by comparison to
wild-type spectra, but in select cases HNCACB and CBCA(CO)NH datasets were
recollected for the mutants.

CHEmical Shift Covariance Analysis (CHESCA). CHESCA analysis was per-
formed on chemical shifts of unphosphorylated wild-type CheY and the seven
mutants, F8V, D13K, M17A, V21H, T871, Y106W, and A113P. Chemical shifts
were observed for pseudo-phosphorylated (i.e., bound to phosphomimic BeF;™)
wild-type and mutant forms of CheY, these were discarded from the analysis. As
CheY undergoes a significant conformational change upon phosphorylation,
inclusion of these forms resulted in CHESCA results that simply reflected that
conformational change. By contrast, CHESCA on unphosphorylated (or inactive)
forms should reveal only pre-existing inter-residue correlations present in the
single dominant form of CheY. NMR assignments were made for nearly all resi-
dues in all CheY variants. In cases where an assignment could not be made for a
residue of a particular mutant, rather than removing the residue from analysis, that
assignment was approximated by replacement with the wild-type chemical shift.
With very few missing assignments and a large number of variants analyzed, such
minor errors were not expected to affect the results.

'H and !N chemical shifts were referenced, converted into combined chemical
shifts (CCS), and arranged in a matrix to calculate CHESCA correlations. As the data
were originally collected without CHESCA in mind, exact external 'H referencing was
not carried out, and thus referencing was accomplished by internal re-referencing of a
few variants to yield a self-consistent dataset. CCS values are calculated as

CCS(i) = H(i) + 0.15*N(i), (5)

where H(i) and N(i) are the IH and >N chemical shifts of the ith residue, respectively.
CHESCA was carried out as originally described®>%3 using in-house Matlab scripts.
The correlation matrix of CCS values for all the residues was prepared using the
matlab command “corr” and hierarchical cluster tree was calculated by matlab
“linkage” command where clustering was done using complete linkage along with the
“absolute correlation” metric option.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are in the Supplementary Data including
both the experimental data and the computational data. The experimental data include
the Fluorescence assay data (Supplementary Data 1) and the NMR CHESCA data
(Supplementary Data 2); the computational data include the Ohm analyses of all 20
proteins (Supplementary Data 3), the comparison to Amor’s method (Supplementary
Data 4), and the correlation analysis of CheY (Supplementary Data 5). We have also
provided the analyses results of the 20 proteins in the Ohm website (http://ohm.dokhlab.
org). The links for these analyses are in Supplementary Table 3. All other data are
available from the corresponding author on reasonable request.

Code availability
Ohm is available at http://ohm.dokhlab.org. All source code is provided at https://
bitbucket.org/dokhlab/ohm.
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