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Abstract

Advances made in chimeric antigen receptor (CAR) T cell therapy have

revolutionized the treatment and management of certain cancers. Currently, B

cell malignancies have been among the few cancers to which CAR T cells have

shown persistent and resilient anti-tumor responses. A growing body of

evidence suggests that the persistence of CAR T cells within patients following

infusion is linked to the mitochondrial fitness of the CAR T cell, which could

affect clinical outcomes. Analysis of CAR T cells from patients undergoing

successful treatment has shown an increase in mitochondrial mass and fusion

events, and a reduction in aerobic metabolism, highlighting the importance of

mitochondria in CAR T cell function. Consequently, there has been recent

interest and investment in approaches that focus on mitochondrial

programming. In this regard, miRNAs are promising agents in mitochondrial

reprogramming for several reasons: (1) natural and artificial miRNAs are non-

immunogenic, (2) one miRNA can simultaneously modulate the expression of

multiple genes within a pathway, (3) the small size of a sequence required for

producing mature miRNA is ideal for use in viral vectors and (4) different

precursor miRNAs (pre-miRNAs) hairpins can be incorporated into a

polycistronic miRNA cluster to create a miRNA cocktail. In this perspective, we

describe the latest genetic engineering strategies that can be used to achieve the

optimal expression of candidate miRNAs alongside a CAR construct. In

addition, we include an in silico analysis of rational candidate miRNAs that

could promote the mitochondrial fitness of CAR T cells.

INTRODUCTION

Advances in cancer therapy have benefited from

understanding the complexities of cellular and molecular

biological processes, both in terms of the improvements

to traditional treatments such as chemo- or radiotherapy,

as well to more recent treatments such as

immunotherapy. Immunotherapies seek to facilitate or

engineer the patient’s immune cells to identify and

destroy cancerous cells within the body. In this regard, T

cells are the primary engineering target of many

immunotherapeutic targets owing to their native

functions in targeting antigen-displaying cells for

destruction. Chimeric antigen receptor (CAR) T cell

therapy utilizes engineering of T cells to express a CAR

that recognizes tumor-associated antigens to enable

destruction of the target cell. Upon recognition,

activation signals are propagated through ITAMs and

costimulatory domains resulting in cytotoxic effects

against the target cell, as well the initiation of activation
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and cell survival mechanisms in CAR T cells. Generally, a

CAR consists of an antigen specific single-chain variable

fragment (scFv) from a monoclonal antibody, attached to

intracellular signaling domains from the T cell receptor

(TCR).1, 2

At the time of publication, only selected hematological

malignancies, such as acute lymphoblastic leukemia,

chronic lymphocytic leukemia, diffuse large B cell

lymphoma and multiple myeloma, have been successfully

treated with CAR T cell therapy. Failure of CAR T cell

therapy may be due to poor long-term persistence and

memory differentiation – factors which are critical in

achieving a durable and effective response.3 The

treatment of solid tumors is further hindered by the

development of a tumor microenvironment (TME) which

imposes metabolic pressures and promotes the formation

of dysfunctional CAR T cells as well as regulatory T cells

(Treg).
4–6 Recent studies have described a direct link

between metabolism and the mitochondrial status of

CAR T cells and the effect this has on their persistence.4, 7

CAR T cells utilizing oxidative phosphorylation

(OXPHOS) and fatty acid oxidation (FAO) as their main

metabolic pathways as well as possessing a higher

mitochondrial mass as result of mitochondrial fusion, have

shown improved patient responses in clinical trials.

Consequently, there has been growing interest in the

metabolic reprogramming of CAR T cells to improve their

efficacy. Approaches shift the metabolic pathway from

glycolysis to OXPHOS/FAO or promote mitochondrial

fusion by blocking fission factors have shown promising

results.7 Restricting glycolysis to favor OXPHOS and FAO

can be achieved through limiting glucose uptake,8 blocking

glycolytic enzymes9, 10 or inhibition of the positive

regulators of glycolysis.11, 12 Such approaches involve the

use of loss-of-function strategies, small molecule inhibitors,

or upregulation of negative regulators.13–18

MicroRNAs (also known as miRNAs and miRs) are

small non-coding RNAs that regulate gene expression

post-transcriptionally. miRNA biogenesis begins with the

transcription of primary miRNA (pri-miRNA) via RNA

polymerase II or RNA polymerase III in some cases. The

pri-miRNA contains 5’ cap and 3’ polyadenylation and is

processed into precursor miRNA (pre-miRNA) by a

microprocessor complex that includes the RNase III

enzyme, named Drosha, and the RNA binding protein

DiGeorge Syndrome Critical Region 8 (DGCR8) within

the nucleus. The pre-miRNA is a stem-loop structure, ~85
nt in length with a 50-monophosphate and a 30-2-nt
overhang. Exportin5 and Ran-GTPase are responsible for

the export of pre-miRNA from the nucleus to the

cytoplasm, where the loop is cleaved by the RNase III

Dicer. Next, the double-strand miRNA duplex (~20-22 nt)

is loaded into the RNA-induced silencing complex (RISC).

One of the strands from the miRNA duplex remains in the

RISC complex (guide strand), while the complementary

passenger strand one is ejected. Based on the direction of

the guide strand in the pre-miRNA hairpin, the miRNA

genes produce �5p or 3-p mature miRNAs.19, 20

MiRNAs predominantly bind mRNA through 3’

untranslated regions (UTRs), resulting in mRNA

degradation or translational interruption.21 miRNAs are

encoded from distinct miRNA genes or other genomic

regions such as introns or exons.19, 20 Although most

miRNAs regulate gene expression in the cytoplasm, a

fraction of miRNA known as mitomiRs are imported into

the mitochondria.22 The mitomiRs have been shown to

regulate the expression of genes involved in

mitochondrial function and metabolic regulation.22

T cell metabolism is dynamic and linked to function

and differentiation state. Quiescent na€ıve T cells (TN)

have minimal metabolic requirements and use OXPHOS

to generate ATP. Following T cell activation, rapidly

proliferating effector T cells (TEFF) undergo metabolic

reprogramming, switching to glycolytic metabolism to

generate both ATP and metabolic precursors needed to

meet biosynthetic requirements of activation such as

DNA and cell membrane synthesis. Following antigen

clearance, T cells undergo contraction leaving only 5% of

T cells to differentiate into long-lived memory cells (TM)

responsible for long-term protection. TM cells utilize

OXPHOS metabolism to maintain their cellular

processes.3,4

Complete inhibition of metabolic gene expression or

function through gene knock-out or small molecule

inhibition can compromise the effector function of T

cells. Deletion of glucose uptake receptor, Glut123 or

AMP-activated protein kinase (AMPK),24 have been

shown to diminish the in vivo expansion of T cells or to

increase the number of suppressive Treg cells, respectively.

In a similar fashion, blocking of pyruvate dehydrogenase

kinase (PDHK), a positive regulator of glycolysis, with

dichloroacetate reduces proinflammatory cytokine

production and encourages Treg differentiation.25

Therefore, due to the relationship of metabolism, cell

function and cell fate, immune homeostasis and

functionality must be considered when metabolic genes

are targeted.

The manipulation of metabolic pathways through

miRNA expression is an ideal strategy for manipulation

of CAR T cell therapy for several reasons. Firstly,

miRNAs fine-tune rather than completely inhibit gene

expression. A single miRNA can modulate the expression

of multiple genes simultaneously within a pathway. The

small sequence size required to produce mature miRNA

is ideal for gene transfer as well as different precursor

miRNA (pre-miRNAs) hairpins can be incorporated into
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a polycistronic miRNA cluster to create a miRNA

“cocktail”.26 Finally, artificial miRNA can be produced

with a lower risk of immunogenicity and unwanted off-

target effects.26

Few studies have investigated the use of miRNA in

CAR T cell therapy; therefore, we will discuss potential

miRNAs that can be used to enhance CAR T cell function

through metabolic reprogramming. We have focused on

genes whose downregulation resulted in a metabolic shift

toward OXPHOS/FAO as well as mitochondrial fusion

were selected. The functions of target genes are involved

in one of four categories: glucose uptake receptors,

glycolytic enzymes, positive regulators of glycolysis and

mitochondrial fission. miRNAs that have at least one

target gene in all categories were identified using

bioinformatic analysis alongside published data. Lastly, we

discuss genetic engineering approaches to express

miRNAs within CAR T cells.

CANDIDATE GENES TO TARGET FOR

REPROGRAMMING CAR T CELL METABOLISM

Active metabolic pathways within T cells are linked to

both their life cycle and subset differentiation. As such,

the metabolic alteration can influence T cell

differentiation and function. The promotion of

OXPHOS/FAO metabolism or mitochondrial fusion has

been shown to increase the number of TM cells and to

enhance anti-tumor activity.7 Strategies used to induce

metabolic reprogramming away from glycolysis and

toward OXPHOS/FAO in T cells have included the

targeting of glucose uptake receptors,8 glycolytic

enzymes,9, 10 metabolic regulators13 and mitochondrial

fission factors to promote mitochondrial fusion.27

Therefore, 36 genes described here as involved in these

four functions could be used as targets to identify

candidate miRNAs (Figure 1). It is worth noting that not

all receptors or enzymes have a high expression level, or

sometimes they are dispensable with their other family

members in T cells, and therefore their inhibition may

have little or no effect on T cell metabolism. Thus, out of

these 36 genes, 20 of them are only high-value targets

that have a predominant function in T cells or express at

a higher level (discussed below).

Glucose uptake transporters

Glucose uptake in lymphocytes is carried out by five

members of the GLUT family of non-concentrative

glucose carriers (Glut 1, 3, 4, 6 and 8) and the Na+-

coupled glucose carrier SGLT128 (Figure 1). Glut1 and

Glut3 are the main glucose uptake transporters in T cells

among these transporters,29 but others may be expressed

following T cell activation or insulin stimulation.30–33

Downregulation of Glut1 via overexpression miR143 in

Her2-CAR T cells was shown to increase the number of

central memory (TCM) CD8+ T cells, as well as to boost

effector function as a result of metabolic reprogramming.8

Glycolysis enzymes

Glycolysis begins with the phosphorylation of glucose and

ends with the conversion of phosphoenolpyruvate to

pyruvate through a sequence of enzymatic reactions

(Figure 1). The restriction of glycolysis through the

targeting of glycolytic enzymes or positive regulators,

favors the differentiation of TM subsets and improves the

anti-tumor activity of T cells.4,7,9,10 Such an effect is seen

via inhibition of the first glycolytic enzyme, hexokinase-1

and 2 (HK) using 2DG, which enhances CD8+ TM cell

formation by shifting metabolism toward OXPHOS.10 In

contrast, upregulation of the glycolytic enzyme

phosphoglycerate mutase-1 (PGAM1) diminishes the

development of TM cells.10 It should be noted that only

three reactions are rate-limiting and irreversible among

the ten steps of glycolysis.34 The three key rate-limiting

enzymes include HK, phosphofructokinase 1 (PFKM) and

pyruvate kinases (PKM).34 Changing the level and activity

of the reversible steps in glycolysis does not determine

the direction of the pathway and is unlikely to have a

significant effect on glycolysis.35

Metabolic regulators

Several metabolic regulators have been recognized in T cells.

A metabolic shift toward OXPHOS/FAO metabolism,

mitochondrial fusion and TM cell development occurs when

these regulators are inhibited. These regulators include

mammalian target of rapamycin (mTOR),13,36,37 AMP-

activated protein kinase (AMPK),38 phosphoinositide 3-

kinase (PI3K),11,12,17,39–41 hypoxia-inducible factor 1-alpha

(HIF1A),42 basic leucine zipper ATF-like transcription factor

(BTAF),43,44 lactate dehydrogenase A (LDHA),45,46

monocarboxylate transporters (MCT 1, 2 and 4),9 AKT

serine/threonine kinase (AKT1 and 2)47 and Acyl-CoA

cholesterol acyltransferase (ACAT1 and 2)14,16 (Figure 1).

Some of the metabolic regulators have a controversial

function in T cell development. For instance, deletion of

the AMPK gene can cause defective CD8+ TM generation,

or an increased level of AMPK promotes the T fitness,

expansion and formation of TM cells.48,49 Recently, Mayer

et al. showed that AMPK deficiency does not affect T cell

fate, clonal diversity, the number of activated T cells and

survival in vivo, rather it reduces the magnitude of T cell

activation, expansion and protein translational capacity.50

Conversely, others showed that reducing AMPK signaling
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via miR17-92 (indirect effect) or shRNA targeting of

AMPK promotes metabolic reprogramming to aerobic

glycolysis and restores T cell proliferation in senescent

cells.38,51 We omitted AMPK in the high-value target

group due to the lack of research using knockdown

approaches, but we cannot rule out the possible positive

effects of miRNA targeting of the AMPK based on the

scant data available.

Free cholesterols are enriched in microdomains known

as lipid rafts in the plasma membrane. In T cells, TCRs

and associated signaling molecules cluster at lipid rafts

and disruption of lipid rafts impair the TCR signaling

and T cell effector functions.52 ACAT1 and ACAT2

esterify free cholesterol to be stored in the cytoplasmic

lipid droplets. Within 6 hours after activation of CD8+ T

cell, the ACAT1 mRNA level shows overexpression,

whereas the ACAT2 takes 24 hours for an increased level

in mRNA.14 The mRNA level of ACAT1 is nearly 20

times higher in CD8+ T cells and the protein level of

ACAT2 is very low.14 In addition, virus-specific T cells

primarily expressed ACAT1 rather than ACAT2.53

Deletion of ACAT2 does not affect CD8+ T cell function,

suggesting that ACAT1 is the main enzyme in cholesterol

esterification in T cells.14 Inhibition of ACAT1 by small

molecules or gene deletion studies showed an increase in

effector functions of CD8+ T cells with an increase in

TEM cells.14,52,53 CAR T cells treated with siRNAs against

ACAT1 showed higher cytotoxicity, secretion of

proinflammatory cytokines and enhanced tumor

regression in vivo.16 Although we excluded ACAT2 in our

high-value target group, it should be noted that the

ACAT2 mRNA level in CD4+ T cells is ≥ 2 fold higher

that that in CD8+ T cells.14 Moreover, the positive impact

of ACAT1 deletion is restricted to CD8+ T cells

suggesting that ACAT2 may compensate for the ACAT1

lost in CD4+ T cells.14,54 More studies are needed to

uncover the function of ACAT2 in CD4+ T cells.

Activation of T cells through TCR engagement,

costimulatory molecules or IL-2 stimulation leads to

activation of PI3K.55 PI3K activates AKT and promotes

mTOR signaling (Figure 1).55 PI3K orchestrates with

mTOR and AKT to promote T-cell glycolytic metabolism

Figure 1. Schematic of T cell metabolic processes and the candidate genes for miRNA targeting. These include glucose transporters, glycolytic

enzymes, metabolic regulators and mitochondrial fission factors. * High-value target genes in T cells. The figure was created with Biorender.com.

427

SMAH Rad et al. miRNA, metabolism and CAR T cells



and differentiation toward short-lived TEFF cells, making

PI3K an attractive target to enhance the quality of CAR T

cell production. So far, several studies have shown that

inhibiting PI3K in CAR T cells improves T cell

expansion, anti-tumor activities in vitro and in vivo,

reduces the expression of exhaustion markers, TM

phenotypes.11,12,17,39–41

Accumulating evidence suggests the positive effects of

the AKT inhibition pathway on the CAR-T cell

performance.15,47,56,57 Treating the epithelial cell adhesion

molecule (EpCAM)-CAR T cells with an AKT inhibitor,

MK2206, promotes CAR T antitumor activity in vivo and

increases CAR T cell expansion and the number of TM

cells.15 The treatment was carried out 2 days post-

transduction concurrently with CD3/CD28 stimulation

and continued only 3 days after transduction.

Interestingly, the authors showed that pre-treating with

AKT inhibitor increases the transduction efficacy of T

cells due to upregulation of low-density lipoprotein

receptor that serves as a cellular receptor for the

lentivirus with a VSVg envelope.15 In addition,

continuous culture of CAR T cells with AKT inhibitors

also showed positive effects in CAR T cells, including

lowering the level of glycolysis enzymes and MCT4,

while FOXO1-dependent target genes such as IL7R,

KLF4, CD28, ICOS and CD95 showed upregulation.47

Similar results were obtained where 40% of CAR T

cells treated with an AKT inhibitor co-expressed

CD28 and CD62L compared with 10% in untreated

CAR T cells.56

mTOR regulates the T cell function and differentiation,

and targeting mTOR has negative and positive impacts

on T cells. The immunosuppressive effect of mTOR

blockage by small molecule or gene deletion reduces T

cell proliferation and increases the generation of non-

functional TM population and CD4+ Treg cells.58,59

Conversely, lowering the level of mTOR by aptamer-

targeted siRNA, IL-15 treatment or a low level of

rapamycin treatment (20 nM vs. 100 nM) enhanced TM

phenotypes and antitumor activity of CAR T cells.13,36,37

This highlights the potential of knockdown approaches,

such as miRNA, for reducing the mTOR level rather than

completely abolishing its activity.

Targeting lactate transporters (MCTs) to restrict

glycolysis has also been investigated in the context of

immunotherapy. T cells express three monocarboxylate

transporters, MCT1, 2 and 4.60 However, studies showed

that MCT1 and MCT4 are the primary lactate transporter

in T cells.61 Upon T cell activation, MCT1 expression

peaks at 12 hours while the MCT4 level induces with a

delay, sometimes between 48 and 72 hours post-

stimulation.61 Blocking MCT1 and MCT4 seems a safe

approach for reducing glycolysis and improving

immunotherapy without compromising the anti-tumor

activities of T cells.9,62–64

HIF-1, a member of the HIF transcription factor

family, binds hypoxia response element (HRE) in the

genome. Activation of HIF1 triggers a transcriptional

program resulting in the adaptation of cells to the low

oxygen level in hypoxia condition by minimizing oxygen

consumption via promoting glycolytic program.65 HIF-1

directly upregulates the expression of several glycolytic

enzymes, LDHA, pyruvate dehydrogenase kinase 1

(PDK1), shifting the metabolic program away from TCA

to glycolysis to generate ATP.65 In combination with the

PI3K-AKT-mTOR pathway following T cell activation,

HIF-1 is a key modulator in the transition to glycolysis in

T cells.42 HIF-1 is critical for T cell’s effector functions

and promotes differentiation of T cells toward terminally

differentiated TEFF cells.42 Genetic deletion of HIF-1 in T

cells impaired acquisition of effector function.66,67

Meanwhile, persistently elevated levels of HIF-1 cause

lethal immunopathology due to the augmented effector

capacity of CTLs. Plus, constitutive overexpression of

HIF-1 results in the upregulation of the exhaustion

markers (e.g. PD-1, CTLA-4, LAG-3 and TIM3) while T-

bet, Emoes and TCF-1 are downregulated. Therefore, due

to the variety of HIF-1 target genes, it seems wise to use

knockdown approaches to reduce the HIF-1 in T cells for

the purpose of metabolic reprogramming.

Mitochondria have several functions within T cells

which are vital for the elimination of cancer. These

functions include energy generation, T cell activation,

biosynthesis, cell fate, cellular survival and cellular

migration.4 Mitochondrial morphology refers to the fused

or fragmented state of the mitochondria within a cell.

The morphological state of the mitochondria is coupled

with its function in T cells and as such different T cell

subsets possess different mitochondrial morphologies

which best suit their function. Mitochondrial fission

factors include dynamin-related protein 1 (Drp1), fission

mitochondrial 1 (FIS1), mitochondrial fission factor

(MFF), mitochondrial dynamics protein of 49 Kda

(MID49), mitochondrial dynamics protein of 51 Kda

(MID51) and dynamin 2 (DNM2).68

Potential miRNA candidates

We will discuss miRNAs identified using DIANA-

microTCDS and TarBase v.8, as well as published

miRNAs experimentally verified through qRT-PCR,

western blot and reporter assay (Supporting Information 1).

There are 455 miRNAs with a 7 - 8-mer match in their

seed sequence to the 36 target genes involved within the

categories mentioned above. Of the 36 target genes, only

five genes, Glut6, SGLT1, BTAF, FIS1 and MID49, had
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fewer than ten potential miRNAs. As mentioned before, 20

target genes are either highly expressed in T cells, or have a

crucial function in T cell metabolism, making them more

suitable as miRNA targets (Supporting Information 1;

Figure 1).

In general miRNAs often target more than one gene.

The implication of this is critical when determining

which miRNA to overexpress within CAR T cells to

prevent unintended gene regulation. In our analysis,

approximately two-thirds of identified miRNAs modulate

more than two target genes (Figure 2). Potentially, 22

miRNAs have ≥ 10 target genes and 59 of them had at

least one target within all gene categories (Supporting

Information 1; Figure 2).

It is not within the purview of this paper to elucidate

the functions and implications of all miRNAs identified,

but previous research has investigated the function of

miR146a and miR29 both of which have target genes

within all gene groups.69 The expression of miR146a is

upregulated following TCR stimulation to support the

TM establishment. miR146a has minimal expression in TN

cells but increased expression in effector memory (TEM)

and TCM cells.69 The role of miR146a in TM development

is unknown, though targeting IL-2 production has been

proposed as a mechanism.69 In addition, ectopic

expression of miR146 protects T cells from activation-

induced cell death (AICD) by directly targeting the Fas-

associated death domain (FADD).69 In our analysis,

miR146a has seven target genes (Glut3, PGK1, AMPK,

AKT2, MCT4, HIF1A and DNM2) which make it among

the few miRNAs that have at least one target in all gene

groups (Supporting Information 2; Figure 2b).

The miR29 family is amongst the most highly

expressed miRNAs in TN and TM populations.70 The

miR29 family includes three members: miR29a and

miR29b located at chromosome 7 and expressed as a

polycistronic primary transcript, whereas miR29c is

located in chromosome 1. The expression of all miR29

members is upregulated in response to IL-21, a cytokine

used to support CAR T cell expansion and to increase the

TCM and TSCM development.71 Overexpression of miR29

in CD8+ T cells reduces the TEFF cell number while

boosting the frequency of TM cells.72 Three members of

the miR29 family were among the miRNAs with the

highest target number in our analysis (≥ 10 targets,

Supporting Information 1). In addition, miR29 has at

Figure 2. Most of the identified miRNAs have shared targets. (a) The Venn diagram shows the number of miRNAs identified for each category

of genes and the number of shared miRNAs between groups. (b) The radar chart illustrates the 59 miRNAs with at least one target gene in each

group of genes. The circular lines represent the number of target genes that a miRNA is predicted to target in each category. TEFF cells have

fragmented mitochondria that utilize glycolytic metabolism, while TN and TM cells have fused mitochondria which use OXPHOS to generate ATP.

Therefore, miRNAs that target glycolytic enzymes might be under-expressed in TEFF cells. To determine this, we looked at the miRNA profile

expressed during TN ? TEFF ? TM stages of development based on published data.75,79,115 A comparison of our identified miRNAs with the

miRNA expression profile of each T cell subset found 12 miRNAs that are expressed at a low level in TEFF cells, whilst being upregulated in TM
cells. These miRNAs have several targets among genes involved in glucose uptake, glycolysis and mitochondrial fission (Table 1).
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least one target in all gene groups (Supporting

Information 2). However, the role of miR29 in T cell

subsets is controversial due to the potential targeting of

TBET, Eomes and IFN-c.72

It is always possible that selected miRNA may have

undesirable off-targets, particularly in regulating the

expression of genes involved in effector functions and

master regulators of TM development. Due to the vast

number of potential genes, transcription factors and

regulators involved in such processes, it is time-

consuming to screen via bioinformatic tools. However, if

researchers choose to perform screening prior to the

functional assays, software such as DIANA-microT-CDS

and TargetScan are helpful in providing extensive lists of

potential target genes. A single complementary sequence

with a weak binding (< 7-mer) in a distal 3’UTR site

may not be considered off-target. In contrast, multiple

complementary sequences throughout the 3’UTR, or a

strong binding site in the proximal region of 3’UTR

(> 7-mer, with full seed complementary) will likely be

considered off-target.

We instead propose that it is more relevant to screen

for deleterious off-targets by monitoring CAR T cell

function following miRNA overexpression. It is arguably

less relevant to be concerned about off-target effects of

miRNA that still yield the desired outcomes. Endpoints

must be carefully selected to predict maximal clinical

effects. Such desirable endpoints should include enhanced

anti-tumor effects against a range of blood and solid

cancers, as well as optimal T cell longevity and memory

cell formation. To this end, an approach of using cluster

pooled miRNA is particularly helpful. If the high number

of potential miRNAs will be tested (such as all the

proposed 59 miRNAs), we suggest using them in the

backbone of miRNA clusters, for example based on a

miR17-92 backbone (see Figure 5). Hence, only < 10

final constructs will be tested rather than ~60 constructs.

Observing any negative effects within individual clusters

makes it easier to narrow an analysis down to find the

culpable miRNA.

miRNAs that translocate to the mitochondria are

referred to as mitochondrial miRNAs or mitomiRs. The

mitomiRs have been shown to influence various

mitochondrial functions such as OXPHOS, TCA, lipid

and amino acid metabolism and Ca2+ homeostasis by

targeting mitochondrial transcripts or nuclear-encoded

genes inside the mitochondria.22,73 The mitomiRs can

cause metabolic reprogramming by regulating gene

expression at the pre-translational level.74 So far, several

human mitomiRs and their targets have been

recognized.73 There are around 60 potential mitomiRs

that are predicted to alter gene expression and

mitochondrial activity (Supporting Information 1). Most

of these mitomiRs have several potential target genes,

with at least one target in each of our target categories

(Supporting Information 2). Such miRNAs may have a

more direct role in metabolic and mitochondrial

regulations.

CONSIDERATIONS WHEN SELECTING miRNAS FOR

EXPRESSION IN CAR T CELLS

In T cells, miRNAs are precisely regulated during the

lifespan and during subset differentiation, therefore

selection of miRNA for overexpression within T cells

should take into account not only the potential of

multiple target genes, but also the timing and magnitude

of miRNA expression. A large number of target genes are

targeted by miRNAs belonging to families such as miR17-

92 and miR15-16 (Supporting Information 1). The use of

these families is appealing as they not only target genes of

interest but they also express polycistronic clusters that

make it easier to express multiple miRNAs with a single

DNA cassette. However, previous studies have shown that

continuous expression of these families might impair TM

development.75,76 For example, exogenous upregulation

of miR15-16 family members restricts the TM

development by downregulation Eomes and CD127.77

Moreover, only a transient expression of miR19-72

during expansion time is required for normal memory

formation.75

Table 1. Changes in miRNA expression of T cells during TN ?
TEFF ? TM development. These miRNAs potentially target several

genes involved in glycolytic pathway and mitochondrial fission.

miRNA Targets

miR15a Glut3, HK1, ALDOA, PKM, PI3K, AKT1, AKT2,

Drp1, FIS1 & DNM2

miR15b Glut3, HK1, ALDOA, PKM, PI3K, MCT1 & Drp1

miR26a Glut3, TIP1, GAPDH, PGK1, ACAT2, AMPK,

MCT1, MFF & MID51

miR26b Glut3, TIP1, PGK1, LDHA & AMPK

miR146a, b Glut3, ALDOA, PGK1, AMPK, AKT1, MCT4,

HIF1A & DNM2

miR101 TIP1, mTOR, MCT, MFF & DNM2

Let-7f Glut3, ALDOA, HK2, PGK1, AMPK, AKT2,

MCT4 & MID51

miR142 Glut3, GPI, PFKM, ALDOA, PI3K, AKT2,

MCT2 & HIF1A

miR150 Glut3, GAPDH, PKM, LDHA & MCT1

miR16 Glut4, HK1, ALDOA, PGK1, PKM, LDHA,

AMPK, PI3K, MCT1, MCT2, MCT4, HIF1A & Drp1

miR29a Glut3, GPI, ALDOA, PI3K, AKT2, MCT1, 2, 4,

HIF1A & MID51

430

miRNA, metabolism and CAR T cells SMAH Rad et al.



Another example of the temporal regulation of

miRNAs during TM development is the let-7 family. It

has been shown that the let-7 family is expressed in TN

cells, downregulated in TEFF cells and re-expressed in TM

cells.78,79 Downregulation of the let-7 family during the

expansion phase is necessary for T cell proliferation and

expansion.80 Loss of let-7 increases T cell proliferation

and effector function while it also promotes

differentiation of terminal effector cells, mitochondria

fission and AICD in T cells.78,80

Many studies investigating the role of miRNAs in T

cell function utilize murine models for infection settings.

Whilst conserved miRNAs tend to have comparable

targets and functions both in humans and mice, some

miRNAs are divergent in both their function and targets.

For example, in the murine T cell model, the

downregulation of miR17-92 after the initial expansion

phase is necessary for TM development.75 In contrast,

data from human T cells showed that there is continued

expression of several members of the miR17-92 in human

TM phenotypes, including, miR20a, miR19b and miR92

which are preferentially expressed in human CD8+ TCM

cells.81 In addition, miR17-92 clusters were

experimentally verified to increase T cell survival and

persistence by downregulating the proapoptotic protein

Bim.82

The expansion of CAR T cells is not an equivalent

process to the expansion seen in physiological T cells.3

Under physiological conditions, following antigen

triggered TCR activation, T cells differentiate to TEFF cells

which then expand to a higher number. After antigen

clearance, TEFF cells undergo a contraction phase as a

result of AICD leaving only ~5% of cells as a potential

pool to differentiate to TM cells. The environmental

conditions contributing to each physiological T cell

expansion event is influenced by surrounding immune

cells that produce a unique combination and

concentration of cytokines and other activating molecules

to influence T cell response and cell fate. In contrast,

CAR T cells undergo expansion both in vitro and in vivo.

The initial expansion involves isolated patient T cells

which are activated in the absence of antigen via CD3

and CD28 antibodies for a period of 2 to 3 days. During

this time, T cells are also cultured with one or more

gamma-chain cytokines such as IL-2, IL-7, IL-15 and IL-

21 to support the homeostatic proliferation of T cells.

Currently, only IL-2 has the FDA approval for the CAR T

cell therapy, although IL-7/IL-15 and IL-21 have been

studied in some clinical trials and pre-clinical studies.83,84

After transduction, commonly using retro- or lentiviral

vectors, T cells are expanded with gamma-chain cytokines

for another ~10 days to provide sufficient numbers for

infusion.1,3 In other words, in the absence of antigen, the

expansion phase is continued in vitro by controlling the

media, cell number and cytokine treatment (Figure 3).

Further variations between CAR T cell expansion and

physiological T cell expansion include the composition of

the CAR T cell being implemented. There are several

CAR T cell generations, predominantly categorized based

on the number of costimulatory domains. Second-

generation CAR T cells have CD3f with only one

costimulatory domain, while third-generation CAR T

cells are composed of CD3f with two costimulatory

domains.1 Each costimulatory domain confers different

functions to the CAR T cell and promotes different

metabolic programs.1 CD28, ICOS and OX40

costimulation results in a more pronounced glycolytic

phenotype.1 whilst CD137 (4-1BB) promotes less efficient

glycolysis while more efficiently enhancing mitochondrial

respiration and fusion.85 Furthermore, cytokines used

during ex vivo expansion impact metabolism and

mitochondrial functions. For example, IL-2 drives T cells

toward effector-like phenotypes and a metabolic program

characterized by enhanced glycolysis.86 Whilst CAR T

cells expanded under IL-15 have a higher mitochondria

mass, spare respiratory capacity (SRC) and FAO

metabolism.13 The implications of the expansion

conditions on the efficacy of miRNA action in CAR T

cells has not been thoroughly investigated; however, the

effect of these conditions on the metabolic state of the

CAR T cell should be considered when choosing miRNA

for overexpression.

It should also be noted that T cell stimulation is

sustained in CAR T cells due to CAR tonic signaling in

an antigen-independent manner.87 Continuous tonic

signaling from different costimulatory domains will

impact CAR T cell metabolism and the anti-tumor

function of CAR T cells.88 Therefore, the overexpression

of a miRNA may exhibit differing effects based on the

CAR design and have a different effect on murine or

human T cell models.

The abundance of target gene transcripts, as well as the

number of miRNA binding sites influence the

effectiveness of miRNA. It has been suggested that

miRNAs set a threshold in which, at a low level of target

transcript, miRNAs act as a “switch” to repress the gene

expression (Figure 4a). When the target gene transcript

levels are high, miRNAs act instead as a fine-tuner.89,90

Interestingly previous research has shown that when the

abundance of target gene transcripts is low, the presence

of two and seven miRNA binding sites in the 3’UTR

resulted in 2-fold and 10-fold reporter inhibition,

respectively.89 However, when target gene transcripts

levels are high, regardless of the number of

complementary binding sites, the gene repression stayed

still at 2-fold.89 Therefore, it would be expected that
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glycolytic inhibiting miRNAs would act as a fine-tuner in

TEFF cells where the glycolysis is at its highest. This might

be an advantage of using miRNAs since abolishing

glycolysis negatively affects the effector function and

tumor killing ability of T cells.66, 67

Lastly, the location of the miRNA complementary

binding sequence within the 3’UTR also influences the

inhibition of the target. It is well known that many genes

have different mRNA isoforms that vary in their 3’UTR

length. In addition, genes in cells with higher

proliferation (such as T cells during expansion) tend to

have a shorter 3’UTR due to proximal polyA site usage

caused by alternative polyadenylation (APA).91 The

3’UTR harbors regulatory sequences including miRNA

binding sites and AU-rich elements that negatively

regulate gene expression.92 Hence, a longer 3’UTR is

more likely to possess an abundance of miRNA

interacting elements (Figure 4b). The length of 3’UTRs

vary among tissues, genes in tissue such as the brain tend

to have longer 3’UTR, while genes in blood cells prefer

isoforms with shorter 3’UTR.93 It is therefore possible

that miRNA used to inhibit a gene within hepatocytes

may not be able to inhibit the same gene within T cells.

STRATEGIES TO OVEREXPRESS miRNA IN CAR

T CELLS

The primary miRNA (pri-miRNA) sequence along with

flanking can be expressed under RNA polymerase II

promoters to produce mature miRNAs.19,20 Following

transcription, pri-miRNA is cleaved by Drosha to

produce a ~85 bp stem-loop structure known as the pre-

miRNA. A subset of intronic miRNAs produces pre-

miRNA during RNA splicing which is independent from

Figure 3. Physiological T cell activation and expansion is distinct from CAR T cell culture. The mitochondria within na€ıve T cells utilizes a OXPHOS

and FAO which is reprogrammed when T cells are activated through antigen presentation and a diverse range of cytokines. Following activation

effector T cells possess fragmented mitochondria with a glycolytic metabolism to facilitate effector function. Contraction (the green line) of these

effector T cells into a memory population once again reprograms the mitochondria toward OXPHOS and FAO. In contrast CAR T cells are

activated through CD3 and CD28 antibody stimulation in the presence of one or more cytokines. Furthermore, CAR T cell expansion is

maintained, without allowing the natural contraction of the population (the red line). The figure was created with Biorender.com.

432

miRNA, metabolism and CAR T cells SMAH Rad et al.



Drosha.94 The DNA sequence necessary for optimal

Drosha cleavage contains pri-miRNA and a flanking

region, which vary in size depending on the miRNA.95

The overexpression of miRNA within CAR T cells can

be achieved through a variety of strategies. The use of

dual transduction to express a miRNA and a CAR within

a T cell involves the use of two separate viral vectors, one

containing the CAR and a reporter gene such as green

fluorescent protein (GFP), whilst the other contains the

miRNA and a second reporter gene such as red

fluorescent protein.96 This approach is costly, time

consuming and, due to the use of multiple reporters to

identify successful dual-transduced T cells, limits the

available fluorescent channels for phenotypic analysis by

flow cytometry.97 Due to these disadvantages, we will

focus on alternative approaches which involve the

selected miRNA and CAR being encoded within a single

DNA cassette.

As detailed in Figure 5, these strategies involve the use

of either a single or dual promoter construct within a

lenti/retroviral or transposon gene transfer system. The

main advantage of single promoter constructs is the

reduced size of the overall cassette, which increases the

efficiency of gene transfer.98 Additional promoters within

viral vectors decreases the viral titration and therefore

efficacy.97

miRNA can be positioned upstream or downstream of

the CAR coding sequence. However, placing a miRNA at

5’ of the mRNA diminishes the expression of coding

gene, as pri-miRNA cleavages by Drosha in the nucleus

removes the 5’mC from mRNA necessary from mRNA

exportation to cytoplasm.99 It has been shown that

placing the internal ribosome entry site (IRES) sequence

upstream of the coding region (Figure 5a) leads to

optimal production of miRNA and translation of the

coding gene.100 However, some reports still showed

sporadic reporter gene expression in this design.99

Alternatively, intronic miRNA can be used to preserve

the 5’UTR after miRNA excision (Figure 5b). Several

known single or cluster intronic miRNAs are included in

our identified miRNAs. Using intronic miRNAs yields a

high level of mature miRNA and coding protein.101

However, miR26b and miR208a may induce lower exon

ligation leading to a low protein level of coding genes.101

Lastly, positioning miRNA at the 3’ end of mRNA

(Figure 5c) also produces a sufficient level of both coding

gene and miRNA simultaneously.99

Bidirectional promoters may be used to express

miRNAs and a CAR with a single, compact promoter

(Figure 5d). Recently, we and others have shown that

several commonly used human and viral promoters have

bidirectional activities in human cell lines.102,103 Synthetic

bidirectional promoters also can be used by fusing two

minimal promoters back-to-back, or by duplicating

TATA and other core elements in the reverse direction.104

This might be useful when one direction is more robust

and therefore allows a control over the expression level of

miRNA or CAR.

Dual-promoter constructs have been used widely to

express two GOI where both promoters are constitutive

(Figure 5e, f) or inducible (Figure 5g, h). In a

constitutive manner, we have compared the function of

EF1 (driving CAR and GFP) and hPGK (driving miR429)

in both uni- or reverse directions in the lentiviral system.

Although both orientation CAR and GFP expression were

similar, the level of mature miR429 was slightly higher in

the reverse orientation (Unpublished data Rad SMAH

and McLellan AD 2020).

For a controlled expression, inducible promoters can be

utilized either through drug or auto-inducible promoters.

Target level

Repressive activity

APA from distal polyA site

APA from proximal polyA site

AAAA 3´CDS5´mC

AAAA 3´CDS5´mC

DNA

Protein
level

(a) (b)

Figure 4. (a) miRNAs are more potent in repressing genes when the target gene is expressed below the miRNA threshold. (b) miRNA binding

sites may be lost due to alternative polyadenylation (APA) mechanisms. This attenuation of miRNA sites can affect the protein expression of the

target gene. Potential alternative poly-A sites of 36 candidate genes using 3’ end sequencing data114 may be predicted by APAatlas93 (Supporting

Information 3). Therefore, the selection of miRNAs with several binding sites for expression within CAR T cells, is crucial to circumvent the

possible remove of target regions by alternative poly adenylation sites.
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The tetracycline inducible system is one of the tightest

rheostats for controlling gene expression in mammals

(Figure 5g). This system is composed of two elements, the

TCE (tet-responsive) promoter and the rtTA (reverse

tetracycline-controlled trans-activator). In the presence of

tetracycline or doxycycline, conformational changes in

rtTA make it able to bind and drive the transcription

from the TCE promoter. Recently, our group developed a

Tet-On system for CAR T cell applications. We showed

that introducing a G72V mutation in rtTA (G72V-rtTA)

described previously for yeast,105 significantly enhanced

the Tet-On system function in large gene cassettes

containing a CAR.106 Such a system might be beneficial

when the expression of a miRNA needs to be regulated

during T cell differentiation. For instance, let-7 has an

increased expression within TN and TM cells whilst is

downregulated in TEFF cells. The downregulation of let-7

during expansion is necessary for TM development.75,76,80

There have been several auto-inducible promoters

investigated in T cells with potential use in CAR T cell

therapy. Nuclear factor of activated T-cells (NFAT),

nuclear receptor subfamily 4 group A member 1 (NR4A1)

and CD69 promoters are the leading examples of auto-

inducible promoters.107 The activity of these promoters

depends on the activation status of T cells; ON when T

cells are engaged with antigen and activated, OFF when T

cells are in resting condition. These promoters are ideal

when the expression of GOI or miRNA is needed only

during activated T cells (Figure 5h).

Finally, a cocktail of miRNAs can be used to inhibit

the expression of several genes by using natural or

artificial polycistronic miRNAs (Figure 5i–l). Because

miRNA families tend to have shared seed sequences and

common targets, mature miRNA sequences could replace

the natural miRNAs. It should be noted that these

replacements should not change the nucleotide

compositions critical for the miRNA maturation process.

Further sequence optimization may be applied to achieve

a desirable level of mature miRNAs.101

Interestingly, the degree of processing individual

miRNAs within the cluster might be distinct, which gives

the advantage of a less inhibitory effect on sensitive

targets. For instance, in the miR19-72 cluster (Figure 5i),

miR17, miR19a and miR20a have a higher level of

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j) (k) (l)

Figure 5. Strategies to express miRNA in CAR T cells. One single promoter drives both miRNA and CAR genes in a, b, c & d strategies. (a) A

promoter derives miRNA and green fluorescent protein (GFP)-P2A-CAR coding sequence and internal ribosome entry site (IRES) sequence enhance

the translation, (b) Intronic miRNAs use alternative splicing for maturation result in 5’UTR of mRNA vital for preserved translation, (c) placing

miRNA downstream of CAR sequence, (d) bidirectional promoters to express miRNA and GFP-P2A-CAR with a single promoter. Alternatively,

miRNAs and GFP-P2A-CAR can be expressed separately using two promoters in (e) uni-directional or (f) reverse-orientation fashion. Controlled

miRNA expression using (g) Tet-On system with G72V-rtTA or (h) an auto-inducible promoter. Clusters of natural miRNAs to express (i) six

miRNAs, (j) three miRNAs, or (k) two miRNAs. (l) Structure of artificial polycistronic miR31 by joining several repeats of pri-miR31 sequences.
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mature miRNA than miR18a, miR19b and miR92a.108

Examples of natural miRNA clusters with potential

application in CAR T cells are shown in Figure 5i–k.
Multimeric miRNA systems have been used to inhibit

HIV-1 and HCV replication by replacing the miRNA

sequence with small interfering RNAs (siRNA) sequences

in the miR17-92 backbone.109,110 A more significant

intrinsic inhibitory activity with multimeric miRNA was

achieved compared with conventional short hairpin

(shRNA) design.109 Artificial polycistronic miRNAs by

joining several repeats of a single pri-miRNA sequence

and is another way to get a ubiquitous inhibition effect

on all targets (Figure 5l).110

CONCLUSION

Metabolism impacts on T cell function and

differentiation. Promoting T cell metabolism toward

OXPHOS/FAO and mitochondrial fusion has been shown

to improve the TM differentiation and anti-cancer effects

of CAR T cell therapy. However, complete inhibition of

gene expression or activity can compromise the effector

function of T cells. In this regard, miRNA-mediated gene

downregulation offers an alternative strategy to boost

metabolically reprogramming of CAR T cells toward a

fitter mitochondria and metabolism. However, our

understanding of the function of miRNAs in T cell

metabolism remains minimal and therefore, there is need

for identification and characterization of miRNA

functions in both T cells and CAR T cells. In this study,

we identified potential miRNAs that target the genes

involved in glycolytic metabolism and mitochondrial

fission. We focused our analysis on miRNAs that are

conserved and experimentally validated. However,

miRNA acts in a cell and tissue specific manner, therefore

the tissue or cells used in their validation must be

considered. In addition, the differences between CAR T

cells and native T cells adds to the complexity of the

miRNA functions. The location of the miRNA

complementary sequence in 3’UTR is another

consideration and target sequences in proximal regions

are less likely to be affected by APA. Moreover, multiple

miRNAs expressed in a clustered manner against

either a common target or differing targets may be

beneficial to enhance the effect of miRNA-mediated gene

modulation. Costimulatory molecules and culture

condition also impact the CAR T cell metabolism; hence

it is necessary to validate candidate miRNA function in

the conditions relevant to their final application.

Therefore, in the search for candidate miRNA or

combination of miRNA candidates, we suggest that

several miRNA candidates should be investigated in the

context of CAR T cells.

METHODS

Potential miRNAs were identified using three bioinformatics
software and verified published data. TargetScan7.2111 was used
to predict miRNAs with a high binding probability to target
genes, filtering conserved miRNA with a seed match 7mer-m8
and context++ score percentile 80%. Verified miRNAs were
identified using high-throughput techniques by DIANA-
microT-CDS at threshold 0.7112 and TarBase v.8 filtered for
Homo sapiens, negative regulation, validated as positive and,
direct validation.113 Experimentally published miRNAs with
references are provided in Supporting Information 1.

The polyA sites for each gene were collected from 3’ end
sequencing data available in PolyASite2.0114 containing the
location of the polyA site (chromosome, position and strand).
Sites supported by more than one 3’ end sequencing protocol
are shown in bold.
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