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Objectives: We aimed to investigate the expression of T cell immunoglobulin and mucin domain 3
(Tim-3) on peripheral blood cells in spontaneous intracerebral hemorrhage (ICH) patients and to analyze
its clinical significance.

Design and methods: Tim-3 expression on peripheral immunocytes from ICH patients and healthy
volunteers was measured by flow cytometry. The correlation between Tim-3 expression and the clinical indices
was estimated using linear regression.

Results: Tim-3 expressions on peripheral CD3+ T cells and CD8+ T cells in ICH patients are significantly
downregulated, while Tim-3 expressions on CD14+ monocytes and CD16+CD56+ NK cells are increased.
Furthermore, Tim-3 expression on peripheral CD8+ T cells was negatively correlated with the inflammatory
response, the disease severity and the outcome of ICH patients. However, there was no relationship between
Tim-3 expression and blood glucose concentration.
Conclusions: Altered expression of Tim-3 might play an important role in the pathogenesis of ICH, demon-
strating that Tim-3 might be a novel candidate molecule for prognosis evaluation of ICH patients.
© 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Introduction

Spontaneous intracerebral hemorrhage (ICH; nontraumatic and
without any underlying lesion) is the most devastating type of stroke
with limited effective therapies. It is characterized by spontaneous
bleeding in the parenchymal tissue of the brain and is associated
with a very high mortality and substantial morbidity [1]. Approxi-
mately 2 million cases of ICH occur worldwide each year [2], and pa-
tients with ICH have nearly twice the risk of being severely disabled
when compared to patients with ischemic stroke [3]. Treatment for
ICH is primarily supportive, and the clinical outcome is poor with po-
tential huge burden for the caretakers. Better understanding of the
pathogenesis of ICH-induced brain injury would contribute to im-
prove the clinical outcome of ICH.

Increasing evidences from preclinical and clinical studies have de-
scribed that an intense local inflammatory response surrounding the
hemorrhage occurs soon after ICH and peaks several days later and
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have indicated that these inflammatory mechanisms contribute sub-
stantially to cell damage and edema formation caused by cerebral
bleeding [4,5]. Napoli et al. reported that higher C-reactive protein
(CRP), one of acute inflammatory markers, is associated with in-
creased mortality in sICH patients and improved mortality prediction
when added to the ICH score [6]. The inflammation cascades follow-
ing ICH comprise both cellular components and molecular compo-
nents [4]. Blood-derived leukocytes, macrophages, and resident
microglia, that are activated and accumulate within the brain after
ICH, are the major inflammatory cells. Animal models of ICH provide
substantial evidences for the presence of leukocyte infiltration into
the hematoma with the breakdown of the blood–brain-barrier
(BBB) [7,8]. Clinical studies also support the role of leukocytes in
ICH. Early studies by Molle [9] and Lee et al. [10] showed that leuko-
cyte counts in cerebrospinal fluid were frequently elevated after ICH.
Moreover, patients with ICH also have higher peripheral leukocyte
counts [11], which were reported to be one of the independent pre-
dictors of neurologic deterioration in ICH [12]. Loftspring et al. [13]
quantitatively detected the frequency of infiltrating leukocytes that
enter the brain after ICH by using flow cytometry and found that,
at 4 days ICH mice brain presented with a 3.4-fold increase in
CD45hiGR-1+ cells (mostly are neutrophils) and 1.7-fold increase in
d by Elsevier Inc. All rights reserved.
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CD4+ T cells, compared with control mice, indicating that both innate
and adaptive immune cells play roles in the development of brain
injury after ICH.

Notably, immunoregulatory molecules are crucial for modulating
the activation, proliferation and function of immunocytes in both
physiological and pathological conditions, including in ICH. Toll-like
receptor (TLR4), identified as an receptor for the recognition of
pathogen-associated molecular patterns by immune cells, was found
to be involved in the pathogenesis of ICH [14]. TLR4-deficient mice
had markedly decreased perihematomal inflammation, associated
with reduced recruitment of neutrophils and monocytes and im-
proved functional outcome by day 3 after ICH. These results indicate
that immunoregulatory molecules might be important mediators of
immune damage ensuing ICH.

Tim-3, a member of T cell immunoglobulin and mucin domain
family, was firstly identified as a specific cell surface marker on
Th1 cells, but not on Th2 cells [15,16]. Further studies also described
the abundant expression of Tim-3 on CD8+ T cells, monocytes/
macrophages, mast cells, NK cells and dendritic cells [17–19]. A
huge amount of data has disclosed the complicated functions of
Tim-3 on different types of immune cells in the underlying physiolog-
ical or pathological milieu [20]. Animal and clinical studies also
proved that Tim-3 is involved in the pathogenesis of various kinds
of diseases (e.g. tumor, viral infection, atherosclerosis, diabetes, and
autoimmune diseases) by modulating the intensity and duration of
innate and/or adaptive immune response [21,22]. More recently our
research and that of several other groups suggested that Tim-3
might play a role in the inflammatory reaction in nervous system
diseases. Zhang et al. [23] found that time course of Tim-3(+) cell
accumulation correlated positively with disease progression of exper-
imental autoimmune neuritis. Our previous findings showed that Tim-3
expression was upregulated in peripheral blood monocytes (PBMCs) of
ischemic stroke patients and correlated with abnormal lipid levels [24].
However, there is still no report about the roles of Tim-3 in the path-
ogenesis of ICH. Here, we found the different alterations of Tim-3
expression on PBMC subsets in ICH patients and, more importantly,
there was significant correlation between Tim-3 expression on
CD8+ T cells and the inflammatory response, the Glasgow coma scale
score and the outcome of the patients. This work gives new insights
into the inflammatory mechanisms of ICH and might provide a novel
candidate molecule for prognosis evaluation and clinical treatment of
ICH patients.

Materials and methods

Patients

We prospectively recruited all consenting patients admitted to
Laiwu Steel Group Hospital (Laiwu, Shandong, China) with a diagno-
sis of ICH within 24 h after stroke onset between September 2010 and
December 2011. Spontaneous ICH (sICH) was defined as sudden and
spontaneous bleeding within the brain parenchyma confirmed by
head CT scan, with or without intraventricular extension. Patients
with hemorrhage secondary to trauma, intracranial tumor, hemato-
logical malignancy, and thrombolysis, or an underlying structural ab-
normality had been excluded by four senior neuroradiologists. To
avoid other confounding factors, we excluded the patients with
acute or chronic infections (≤2 months before sICH), those with au-
toimmune diseases or any other concurrent morbidities.

All patients were examined on hospital arrival. The Glasgow coma
scale score (GCS), used to assess initial neurological deficit, was de-
termined [25]. The related clinical data were collected: demographic
data, blood pressure, and CT scan findings. The neuroradiologists,
blinded to the clinical information, defined the site of ICH (basal
ganglia, thalamic, lobar or other), volume of hematoma, and the pres-
ence of intraventricular hemorrhage. The baseline characteristics and
potential clinical factors associated with 30-day mortality of the ICH
patients were listed in Table 1. On arrival to the hospital, patients
who died of ICH are younger (P b 0.05) and had lower Glasgow
coma scale scores (P b 0.05), higher BG (P b 0.05), and higher WBC
count (P b 0.05).

The control group consisted of 32 healthy volunteers fromMedical
Examination Center of Qilu Hospital, Jinan, Shandong. Exclusion
criteria for controls were identical to those of ICH patients. The
study was approved by the medical ethics committee of Shandong
University, and an informed consent was acquired from each subject.

Measurement of blood markers

Blood glucose (BG) was determined by the Roche Diagnostics assay,
HITACHI7600 automatic analyzer according to its protocol.White blood
cell (WBC) counts were performed with flow cytometry.

Blood sampling and detection of Tim-3 expression on circulating
immunocytes by flow cytometry

Blood samples were routinely taken from the antecubital vein
from normal volunteers and ICH patients within 24 h since sponta-
neous hemorrhage onset. Flow cytometry was used to determine
Tim-3 expression on peripheral blood immunocytes. One hundred
microliters of whole blood was incubated at 4 °C in a dark room with
monoclonal antibodies, FITC-conjugated anti-human CD4 (clone:
OKT4; eBioscience, San Diego, CA), PEcy5-conjugated anti-human
CD3e (clone: UCHT1; eBioscience, San Diego, CA), PE-conjugated
anti-Tim-3 (clone: RMT3-23; R&D, Minneapolis, MN), FITC-conjugated
anti-CD16/56 (Serotec, Oxford, UK) and FITC-conjugated anti-CD14
(Jingmei Bio Tec, Shanghai, China). Thirty minutes later, stained blood
sampleswere subjected to RBC lysis using a FACS lysis solution (BD Bio-
sciences, San Jose, CA). Cells were washed oncewith a phosphate buffer
solution (PBS) and were detected using a Beckman Coulter flow
cytometer (Fullerton, CA, USA), and the data were analyzed using the
Cell Quest program.

Outcome measures

The prognosis of ICH patients was estimated using Glasgow out-
come scale (GOS) at 30 days. A good functional outcome was defined
as GOS score 3 to 5 and a poor functional outcomewas defined as GOS
score 1 to 2.

Statistical analysis

All data were analyzed using the GraphPad Prism 5 (GraphPad
Software Inc., San Diego, CA). The Student's t test and Mann–Whitney
nonparametric U test were used for comparison between groups.
Pearson correlation analysis was performed between the Tim-3
expression and blood glucose and white blood cell counts. P values
were considered significant at P b 0.05.

Results

Dysregulated Tim3 expression on peripheral immunocytes in ICH
patients

We first analyzed Tim3 expression on peripheral CD3+ T cells,
CD4+ T cells, CD8+ T cells, CD14+ monocytes, and CD16+CD56+

NK cells in ICH patients and age- and sex-matched healthy controls.
Flow cytometric analysis showed that Tim-3 expression on CD3+ T
cells in patients with ICH was significantly lower than that of healthy
controls (Fig. 1A,F, percentage of Tim3+CD3+ T cells, ICH vs healthy,
mean ± SD 4.5% ± 0.88% vs 6.4% ± 0.62%, P b 0.05), while Tim-3
expression on CD14+ monocytes (Fig. 1D,I) and CD16+CD56+ NK



Table 1
Baseline characteristics and potential clinical factors associated with 30-day mortality.

Characteristics 30-d mortality

Total cohort
n = 25

Alive
n = 15

Death
n = 10

P

Age, years (SD) 59.6 (11.8) 63.9(9.4) 55.6(12.5) 0.0389a

Male, n (%) 11 (47.8) 5 (45.5) 6 (54.5) 0.0941b

GCS score, median (IQR) 8 (3–12) 11 (8–14) 3 (3–4) 0.00017a

GCS score, n (%) 0.0016b

13–15 6(21.7) 6(38.5) 0(0)
9–12 7(30.4) 6(46.2) 1(10)
3–8 12(47.8) 3(15.4) 9(90)

Biochemistry and vital signs on hospital arrival
BG, mmol/L median (IQR) 5.7(5.0–11.5) 6.3(5.3–8.5) 12.15(5.5–13.3) 0.0463a

WBC, ×109 median (IQR) 9.6 (7.8–11.3) 8.7 (6.7–9.6) 12.3 (10.4–16.6) 0.0221a

SBP, mm Hg (SD) 170 (23) 167(23) 173(28) 0.3a

DBP, mm Hg (SD) 103(14) 102(16) 104(13) 0.36a

Radiological variables
sICH localization, n (%) 0.2512b

Basal ganglia 15(60) 11(73.3) 4(40)
Thalamic 4(16) 1(6.7) 3(30)
Lobar 3(12) 1(6.7) 2(20)
Other 3(12) 2(13.4) 1(10)

Hematoma volume, mL, median (IQR) 28(24–70) 29(24.8–70) 25(20–70) 0.4871a

IVH, n (%) 0.534b

Yes 11(44) 7(46.7) 4(40)
No 14(56) 8(53.3) 6(60)

a P values of average or median values were analyzed by a non-parametric test.
b P values of dispersion of different values were studied by Chi-square test.
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cells (Fig. 1E,J) were increased (percentage of Tim3+ CD14+ mono-
cytes, ICH vs healthy, mean ± SD 90.1% ± 1.9% vs 79.8% ± 2.6%,
P b 0.005; percentage of Tim3+ CD16+CD56+ NK cells, ICH vs
healthy, mean ± SD 78.1% ± 2.45% vs 63.0% ± 3.1%, P b 0.005).
Further analysis confirmed that Tim-3 expression on CD8+ T cells
was decreased in ICH patients compared to healthy controls
(Fig. 1C,H, percentage of Tim3+ CD8+ T cells, ICH vs healthy,
mean ± SD 11.2% ± 3.2% vs 24% ± 2.6%, P b 0.001), while Tim-3
expression on CD4+ T cells had no change (Fig. 1B,G). These data
indicated that Tim-3 expression on PBMC subsets was finely and dif-
ferentially regulated at the early phase of ICH, which might suggest
the complicated roles of Tim-3 and immunocytes in the pathogenesis
of ICH.

Association between Tim-3 expression and disease severity of ICH
patients on admission

Previous studies showed that inflammatory response contributes
substantially to brain injury after ICH. Thus, we wonder whether the al-
teration of Tim-3 expression on immunocytes might also be involved in
the pathogenesis of ICH. We analyzed the association of Tim-3 expres-
sion on CD8+ T cells, CD14+ monocytes, and CD16+CD56+ NK cells
with the Glasgow coma scale score (GCS), which is one of the indicators
for disease severity of ICH patients [26]. The statistical results revealed
that Tim-3 expression on CD8+ T cells was negatively correlated with
GCS score of ICH patients on admission (Fig. 2A, Pearson r = −0.4671,
P b 0.05). However, there were no significant associations between
Tim-3 expressions on CD14+ monocytes or CD16+CD56+ NK cells
with GCS score of ICH patients (Fig. 2B,C). These data clued that
downregulated Tim-3 expression on CD8+ T cells might be a protective
response at the early stage of ICH and affluence the severity of brain
injury.

Relationship between Tim-3 expression and the outcome of ICH patients

Considering that immune factors might be involved in deciding the
prognosis and outcome of ICH [12], we then analyzed the relationship
between Tim-3 expression and the GOS scores of ICH patients, one of
the known indicators for ICH outcome. The statistical analysis showed
that Tim-3 expression on CD8+ T cells was reversely correlated with
the GOS scores of ICH patients (Fig. 3A, Pearson r = −0.5, P b 0.05).
In contrast, there were no significant correlations between Tim-3 ex-
pressions on CD14+ monocytes or CD16+CD56+ NK cells with the
GOS scores of ICH patients (Fig. 3B,C). Thus, these data demonstrate
that altered Tim-3 expression on CD8+ T cells might be one of prognos-
tic indicators for ICH.

Significance of altered Tim-3 expression on the inflammatory response of
ICH patients

To further evaluate the significance of altered Tim-3 expression on
the inflammatory response of ICH patients, we analyzed the relation-
ship between Tim-3 expression on CD8+ T cells, CD14+ monocytes,
or CD16+CD56+ NK cells and the white blood cell count in ICH pa-
tients. As shown in Fig. 4, Tim-3 expression on CD8+ T cells was pos-
itively correlated with the WBC count of ICH patients (Fig. 4A,
Pearson r = 0.4520, P = 0.026). On the contrary, there was a nega-
tive association between Tim-3 expression on CD16+CD56+ NK
cells and white blood cell count in ICH patients (Fig. 4C, Pearson
r = −0.4149, P = 0.0245). However, no significant correlation was
found between Tim-3 expression on CD14+ monocytes and white
blood cell count in ICH patients (Fig. 4B). These results indicate that
Tim-3 expression on immunocytes in ICH patients might modulate
the ensuing inflammatory response, which in turn influences the
severity and outcome of the patients.

Association of Tim-3 expression with blood glucose level

Owing to the importance of hyperglycemia both as an outcome
determinant of ICH [27] and as a known regulator of inflammation
[28], we then analyzed the association of altered Tim-3 expression
of ICH patients with blood glucose level. The statistical analysis re-
vealed that there were no significant correlations between blood glu-
cose level and Tim-3 expression on CD8+ T cells, CD14+ monocytes,



Fig. 1. Dysregulated Tim3 expression on peripheral immunocytes in ICH patients. A–E show the percentage of Tim-3+ CD3+ T cells (A), Tim-3+ CD4+ T cells (B), Tim-3+ CD8+ T cells (C),
Tim-3+ CD14+ monocytes (D), and Tim-3+ CD16+CD56+ NK cells (E) respectively. F–J show the representative plots of Tim-3 expression on CD3+ T cells (F), CD4+ T cells (G), CD8+ T
cells (H), CD14+ monocytes (I), and CD16+CD56+ NK cells (J) respectively. Each dot represents one subject. Horizontal bars indicate the median Tim-3 percentage. P values are shown.
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Fig. 2. Association between Tim-3 expression and the disease severity of ICH patients on admission. The statistical analysis showed the relationship between GCS score and Tim-3
expression on CD8+ T cells (A), CD14+ monocytes (B), and CD16+CD56+ NK cells (C). Each dot represents a subject. P values are shown.
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or CD16+CD56+ NK cells of ICH patients (Fig. 5). These results indi-
cate that Tim-3 expression on immunocytes in ICH patients might
be modulated in a glucose-independent manner.

Discussion

Both clinical and animal models of ICH proved that inflammatory
response induces secondary brain injury leading to neuronal death,
edema, and neurological disability [4,5], but the exact molecular
mechanisms involved in this process are still not fully understood.
Here, we carried out a pilot study about the potential role of Tim-3,
a novel immunoregulatory molecule, in ICH. We found that Tim-3 ex-
pressions on peripheral CD8+ T cells, CD14+ monocytes, and
CD16+CD56+ NK cells were significantly altered in ICH patients. Par-
ticularly, Tim-3 expression on CD8+ T cells has close relationships
with the inflammatory response, the disease severity and the outcome
of ICH patients.

Innate immunocytes play important roles in inflammatory central
nervous system (CNS) disorders, including ICH [29]. In the present
study, we found that Tim-3 expressions in ICH patients were elevated
on peripheral CD14+ monocytes and CD16+CD56+ NK cells (Fig. 1).
Numerous studies have elucidated the regulatory roles of Tim-3,
expressed on innate immune cells. Tim-3 expression on macrophages
and dendritic cells promoted tissue inflammation by activating NF-κB
and enhancing TNFα secretion [30]. Reported data about Tim-3 on NK
cells are paradoxical. Gleason et al. demonstrated that Tim3 func-
tioned as a receptor on NK cells to enhance IFN-γ production. Oppo-
sitely, our previous study showed that elevated Tim-3 expression on
NK cells in chronic hepatitis B patients suppressed its cytotoxicity
and IFN-γ secretion [31]. Unfortunately, we did not find any signifi-
cant association of Tim-3 expression on peripheral CD14+ monocytes
or CD16+CD56+ NK cells with the disease severity or the outcome of
ICH patients (Fig. 2). It needs further investigation about the expres-
sion pattern of Tim-3 on infiltrating leukocytes in the brains of ICH
patients and its dynamic change at the different stages of ICH.
Fig. 3. Relationship between Tim-3 expression and the outcome of ICH patients. The statistic
cells (A), CD14+ monocytes (B), and CD16+CD56+ NK cells (C). Each dot represents a sub
Tim-3 also exerts key regulatory roles on adaptive immune cells and
then participates in the pathogenesis of related inflammatory diseases.
Interaction of Tim-3 and its ligand induced apoptosis of Th1 cells and
inhibited Th1-mediated immunity [32]. Similarly, Tim-3 expression
was related with the exhaustion of CD8+ T cells and ameliorated
anti-tumor or anti-virus immunity [33]. Flow cytometry results showed
that Tim-3 expressions on both CD3+ and CD8+ T cells wereweakened
in ICH patients (Fig. 1). More importantly, the statistical results revealed
that the Tim-3 expression on CD8+ T cells was negatively correlated
with GCS score on arrival (Fig. 2), 30-day GOS score (Fig. 3), and the
white blood cell count (Fig. 5) of ICH patients. Similarly, Ndhlovu et al.
[34] reported that patientswithHTLV-1 associatedmyelopathy/tropical
spastic paraparesis also had a systemic down-regulation of Tim-3 ex-
pression on virus-specific CD8+ T cells. Moreover, Tim3− CD8+ T cells
showed highly active phenotype and might exert regulatory roles. Re-
cently, the roles of CD8+ T cells in inflammatory CNS disorders have
attracted particular attentions [35]. In autoimmune and infectious CNS
diseases, brain-infiltrating CD8+ T cells exerted not only detrimental
proinflammatory and killing functions but also regulatory function by
direct killing of activated CD4+ T cells or by secretion of immunosup-
pressive cytokines such as IL-10 and transforming growth factor-β
[36]. Inmicewith coronavirus-induced acute encephalitis, IL-10+ regu-
latory CD8+ T cells minimized immunopathological change and were
more highly activated [37]. Our results and these reported data imply
that the downregulated Tim-3 expression on CD8+ T cells might be
probably a protective response in ICH patients and be helpful for pa-
tients' recovery. However, the exact roles of CD8+ T cells and the effect
of Tim-3 on CD8+ T cells in ICH are still needed to be further explored.

The changes of Tim-3 expression on immunocytes were induced
by different inflammatory milieus. Thus, we preliminarily analyzed
the potential mechanisms for altered Tim-3 expression in ICH pa-
tients. As shown in Table 1, blood glucose level in ICH patients was
significantly higher than that of healthy controls, which is consistent
with the reported data that hyperglycemia is one of risk factors for
poor outcome of ICH [27,38]. More importantly, both clinical and
al results showed the association between GOS score and Tim-3 expression on CD8+ T
ject. P values are shown.
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Fig. 4. Significance of altered Tim-3 expression on the inflammatory response of ICH patients. The statistical results showed the association between white blood cell count and
Tim-3 expression on CD8+ T cells (A), CD14+ monocytes (B), and CD16+CD56+ NK cells (C). Each dot represents a subject. r correlative coefficient and P values are shown.

Fig. 5. Association of Tim-3 expression with blood glucose level. The statistical results showed the association between blood glucose level and Tim-3 expression on CD8+ T cells
(A), CD14+ monocytes (B), and CD16+CD56+ NK cells (C). Each dot represents a subject. r correlative coefficient and P values are shown.
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experimental data showed that acute or chronic hyperglycemia alters
many cellular signaling pathways and is involved in the inflammatory
processes [28]. Gonzalez et al. [39] showed that high glucose concentra-
tions induce TNF-a production through the down-regulation of CD33.
However, we found no significant association between blood glucose
concentration and Tim-3 expression onCD8+T cells, CD14+monocytes
or CD16+CD56+NK cells in ICH patients. Till now, there are few reports
about the underlying mechanisms leading to altered Tim-3 expression
in pathological conditions. IL-12 and IL-4 were reported to be responsi-
ble for regulating Tim-3 expression in non-Hodgkin lymphoma [40] and
in pregnancy [41] respectively. It is worthy to further study the role of
other potential factors (e.g. cytokine profiles) in regulating Tim-3 ex-
pression in ICH patients.

Taken together, we report that an altered expression in the acute
phase of human intracerebral hemorrhage and a significant correla-
tion between Tim-3 expression on CD8+ T cells and the inflammatory
response, the disease severity and the outcome of ICH patients, indi-
cate that Tim-3 expression might become a novel candidate molecule
for prognosis evaluation and clinical treatment of ICH patients.
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