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Abstract
Background: Analysis of microarray data has been used for the inference of gene-gene
interactions. If, however, the aim is the discovery of disease-related biological mechanisms, then
the criterion for defining such interactions must be specifically linked to disease.

Results: Here we present a computational methodology that jointly analyzes two sets of
microarray data, one in the presence and one in the absence of a disease, identifying gene pairs
whose correlation with disease is due to cooperative, rather than independent, contributions of
genes, using the recently developed information theoretic measure of synergy. High levels of
synergy in gene pairs indicates possible membership of the two genes in a shared pathway and leads
to a graphical representation of inferred gene-gene interactions associated with disease, in the form
of a "synergy network." We apply this technique on a set of publicly available prostate cancer
expression data and successfully validate our results, confirming that they cannot be due to pure
chance and providing a biological explanation for gene pairs with exceptionally high synergy.

Conclusion: Thus, synergy networks provide a computational methodology helpful for deriving
"disease interactomes" from biological data. When coupled with additional biological knowledge,
they can also be helpful for deciphering biological mechanisms responsible for disease.

Background
The problem addressed in this work is the inference of
gene-gene interactions that are specifically associated with
a phenotype (such as a particular cancer) from two sets of
gene expression data, one in the presence and one in the
absence of the phenotype, and without use of prior bio-
logical knowledge. This problem is fundamentally differ-
ent from that of inferring gene-gene interactions from one
set of microarray data, for which several techniques have
been proposed [1], such as those based on Bayesian net-
works [2,3], pairwise mutual information [4,5] and

graphical Gaussian models [6,7]. In our case, any interac-
tions representing general biological functions that are
unrelated to the phenotype are ignored. Coupled with
additional biological knowledge, the identification of
such phenotype-specific interactions has the potential of
shedding light on the responsible pathways. The term
"cancer interactome" has been used in the above context,
and part of the aim of this paper is to provide a novel
methodology that is helpful for the derivation of such
interactomes.
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To solve this problem, we may wish to apply a traditional
gene interaction network inference methodology, such as
Bayesian network inference, on each of the two microar-
ray data sets, for example one representing healthy sam-
ples (tissues) and another representing cancerous
samples, and then compare the two resulting networks
(the "normal" network and the one that has been
"rewired" due to the disease) in an effort to identify differ-
ences in gene membership and network topology that
may be related to the phenotype. However, each of the
two resulting networks will be affected in different ways
depending on the nature and number of the samples in
each category. Furthermore, constructing the topology of
network graphs often requires the use of heuristic or
greedy algorithms that are sensitive to the number of bio-
logical samples in each of the two sets of microarray data,
as well as noise in the expression data. Therefore, it
becomes unclear how the differences in the two networks
will identify gene interactions that are linked to disease.
Another approach [8] consists of incorporating an extra
"cancer node" to the network in addition to the "gene
nodes." This approach may yield a selection of genes
related to cancer, but the mutual interrelationships of
those genes with respect to cancer will not be revealed
from the resulting network. Instead, we wish to introduce
a novel type of graph with edges connecting pairs of genes
that interact with respect to cancer, without including a can-
cer node. Phrased differently, the missing "cancer node" is
associated with each connected gene pair (as opposed to
individual genes) in the whole graph, so that the edges of
the graph identify the gene pairs that are cooperatively
associated with cancer. This kind of three-way representa-
tion is not feasible in a graph whose nodes are genes aug-
mented by a cancer node. Thus, this methodology
provides insight that existing methods cannot provide.

Recently, microarray data have been extensively analyzed
at the level of gene modules, rather than individual genes,
using prior biological knowledge [9-14], thus facilitating
a higher-level view of the effects of diseases on gene
expression. In contrast, our technique operates at the level
of gene pairs and does not make use of prior biological
knowledge.

What is a proper quantitative criterion to determine if two
genes "interact with respect to cancer"? We could consider
some measure of correlation between their joint expres-
sion levels and cancer. However, while this approach is
proper if used for classification based on gene pairs, it is not
appropriate for our purposes, because this correlation
may be due to the independent contributions of the indi-
vidual correlations between each of these genes and can-
cer, in which case the two genes do not interact. It is
important to ensure that the correlation of a gene pair
with cancer is due to cooperative effects, as opposed to

independent contributions of the individual correlations.
Such cooperative effects suggest a functional significance.
Examples out of many possible biological reasons are the
joint presence of two transcription factors each of which
has a binding site in a promoter of an oncogene; the joint
presence of a kinase and a transcription factor that must
be activated; and the joint presence of the two elements of
a dimeric transcription factor. In each of these cases, the
two corresponding genes are strongly associated with can-
cer jointly, but not as much individually. On the other
hand, individual oncogenes may not appear in our result-
ing graph, unless they are accompanied by properly iden-
tified "partner genes" to which they link. Traditional gene
interaction network inference algorithms may then work
in a complementary fashion to help identify interactions
of the oncogenes that may not cooperative with respect to
cancer.

To address this problem, we use the information theoretic
measure of synergy [15]. The synergy of a gene pair with
respect to cancer is defined as I(G1, G2; C) - [I(G1; C) +
I(G2; C)], where I is the symbol for mutual information
[16], G1 and G2 are random variables representing the
expression levels of the two genes and C is a binary ran-
dom variable representing the presence or absence of can-
cer. It can be seen as the "whole" minus the "sum of the
parts." Intuitively speaking, if the amount of information
that a pair of genes jointly provides about cancer is higher
than what could be attributed to the additive independent
contributions of the two individual genes, then this sug-
gests that the additional information is due to some coop-
erative (direct or indirect) interaction involving these
genes within a shared pathway. This is consistent with the
definition of the word "synergy" (American Heritage Dic-
tionary) as "the interaction of two or more agents or forces
so that their combined effect is greater than the sum of
their individual effects."

We define two genes to be "synergistically linked with
respect to a phenotype" if their corresponding synergy is
positive. These links can be depicted as edges in a graph
representing a "synergy network," in which nodes are
genes, depicting potential gene-gene interactions associ-
ated with a phenotype. In this paper, we include in the
synergy network those edges corresponding to statistically
significant synergies. When coupled with biological
knowledge, this graph provides clues helpful for decipher-
ing pathways responsible for the phenotype.

In previous work [15,17,18] these quantities were defined
only for bilevel gene expression data, i.e., assuming genes
are either "on" or "off," using arbitrary thresholds to bina-
rize expression values inferred from microarrays. Here we
introduce a novel dendrogram-based computational
methodology generalizing these definitions by applying
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them directly to the continuous expression levels, allow-
ing identification of high-synergy gene pairs. We apply
this methodology on publicly available prostate cancer
microarray data [19]. One of our main conclusions from
the analysis of these data is that RBP1 (cellular retinol-
binding protein-1, also known as CRBP-1) is synergisti-
cally linked with respect to prostate cancer with many
other "partner" genes, many of which are ribosomal
genes. Our results are also supportive of the hypothesis
that prostate cancer is linked with cellular damage from
oxidative stress combined with the inhibition of the apop-
totic mechanisms normally resulting from such damage.

Results
Illustrating examples
To clarify how the synergy can be measured from a set of
continuous expression values, we consider some hypo-
thetical extreme examples of two-dimensional gene
expression scatter plots (Figure 1). The expression level of
each of two "oncogenes" (Figure 1A) is sufficient by itself
to distinguish health from cancer. On the other hand, the
expression level of each of two genes may be totally uncor-
related with cancer (and therefore these genes would not
be present in the output of any "gene ranking" computa-
tional method), and yet the pair of these two expression
levels is also sufficient to distinguish health from cancer
(Figure 1B), because cancer occurs when the two genes are
either both "on" or both "off." It is also possible that the
expression levels of two genes are totally uncorrelated
with cancer, and so is the pair of the two (Figure 1C).

The amount of information that the expression level(s) of
one or more genes provide about cancer can be quantified
from the set of gene expression data using information
theoretic tools [16]. For example, if G designates the
expression levels of a gene and C designates the presence
or absence of cancer, then the uncertainty of cancer given
these two expression levels is equal [17] to the conditional
entropy H(C|G), and the amount of information that the
gene provides about cancer is equal to the mutual infor-
mation I(G; C). These quantities are directly generalized if
we replace the expression G of a single gene with the set of
expression levels of all members of a gene set. The amount
of information about cancer that is due to the purely coop-
erative effects among all the members of a gene set can also
be quantified using information theoretic tools [15,18],
specifically the synergy of a gene pair with respect to can-
cer previously defined as I(G1, G2; C) - [I(G1; C) + I(G2;
C)]. It is possible for synergy to be negative (redundancy),
as well as positive. Intuitively, we see that the synergy of
the hypothetical genes in Figure 1A is negative, because of
the underlying redundancy (each gene is sufficient by
itself to determine if there is cancer), while the synergy of
the genes in Figure 1B is positive, because the combina-
tion of the two genes is required for such determination.

If we are interested in classification of cancer based on a
gene pair, then we wish to select the two genes that mini-
mize the conditional entropy H(C|G1, G2), or, equiva-
lently, maximize the mutual information I(G1, G2; C). If,
however, we wish to infer biomolecular interactions
related to cancer, then the "figure of merit" should be the
synergy I(G1, G2; C) - [I(G1; C) + I(G2; C)]. These are two
different tasks, and in this paper we focus on the latter.

Evaluation of synergy from expression data
If the expression levels have been binarized so that each of
the genes is in one of two expression states (0: "off" and 1:
"on"), then the evaluation of the uncertainty in the form
of conditional entropy is straightforward [17]. For exam-
ple, each pair of genes has only four expression states (00,
01, 10, 11), and we can collect statistics by counting how
many times each of these four states is encountered in
health and in disease. Information theoretic quantities
such as entropy and mutual information can then be eval-
uated from the probabilistic model that results from the
relative frequencies (see Methods). Figures 1D, 1E, 1F
illustrate the concept of binarized expression data from
the corresponding scatter plots of Figures 1A, 1B, 1C,
respectively. The resulting synergies can easily be evalu-
ated as -1, +1, 0, respectively.

Binarization of expression data imposes a constraint that
limits the usefulness of these techniques. Each gene has its
own optimum "binarization threshold" to distinguish
when it is "on" or "off," which is not clearly defined, and
even if it was, significant information will still be lost by
not accounting for the precise intermediate expression
levels. We addressed these shortcomings by generalizing
the above methodology to directly obtain measures of
entropy, mutual information, and synergy from continu-
ous gene expression data without any binarization, as
explained below.

It is intuitively clear that the uncertainty will be low if the
joint expression levels can be partitioned into clusters of
samples with similar joint expression levels, so that each
of the resulting clusters is "homogeneous," i.e., it contains
predominantly healthy or predominantly diseased sam-
ples. This is the case in the two-dimensional scatter plots
in Figure 1A and Figure 1B (but not in Figure 1C) as well
as the one-dimensional projections for each of the two
genes in Figure 1A (but not in Figure 1B and Figure 1C).

If the expression data are binarized, then each joint
expression state automatically defines a "cluster" of co-
located samples, as in Figures 1D, 1E and 1F, in which
case evaluation of all information theoretic quantities are
straightforward, as explained earlier. For example, the
average uncertainty of predicting whether or not a sample
is cancerous is equal to the average entropy of the joint
Page 3 of 16
(page number not for citation purposes)



BMC Systems Biology 2008, 2:10 http://www.biomedcentral.com/1752-0509/2/10

Page 4 of 16
(page number not for citation purposes)

Examples of scatter plots from the gene expression levels of two hypothetical genes illustrating the concept of synergyFigure 1
Examples of scatter plots from the gene expression levels of two hypothetical genes illustrating the concept of 
synergy. There is an equal number of red and green dots representing cancerous and healthy samples, respectively, therefore 
H(C) = 1 and the synergy is bounded by -1 and +1, where C is the symbol for the presence of cancer (see Methods). Also 
shown are the projections of the scatter plots to each of the two axes, thus allowing visualization of the relationship of each 
gene to cancer. Panels d, e, f show scatter plots of binarized expression levels corresponding to panels a, b, c, respectively, 
depicting circles for the multiple point at the vertices. (A) Each of the two genes ("oncogenes" in this case) is by itself sufficient 
to determine the presence or absence of cancer and there is negative synergy (redundancy). (B) In combination, the two genes 
are sufficient to determine the presence or absence of cancer, but each of them individually is uncorrelated with cancer and 
the synergy is positive. (C) Both genes, including their combination, are uncorrelated with cancer, and the synergy is approxi-
mately zero. (D) Illustration for the scatter plot from the binarized expression levels in panel a. The synergy is equal to -1. (E) 
Illustration for the scatter plot from the binarized expression levels of panel b. The synergy is equal to +1. (f) Illustration for 
the scatter plot from the binarized expression levels of panel c. Split bi-colored circles indicate the simultaneous presence of an 
equal number of healthy and cancerous samples. The synergy is equal to 0.
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expression states [15,17,18]. Our proposed computa-
tional methodology that directly uses continuous expres-
sion values generalizes this concept in a consistent
("backwards compatible") manner, because the average
uncertainty of cluster-classifying whether or not a sample
is cancerous is equal to the average entropy of the clusters
partitioning the set of joint gene expression data (see
Methods). Figure 2 shows dendrograms resulting from
clustering for the corresponding cases in Figure 1. For each
dendrogram, a horizontal line whose distance from the
leaves of the tree is meant to represent a threshold of bio-
logical significance, defines a partition of the samples into
a number of clusters, each of which has associated binary
entropy related to the homogeneity of its class labels. The
average of these individual cluster entropies, weighted by
the relative membership of each cluster, defines the con-
ditional entropy of cancer given the choice of gene(s), out
of which measures of mutual information and synergy
can directly be evaluated (see Methods).

In summary, we first introduce a methodology for esti-
mating the uncertainty (conditional entropy) of predict-
ing whether a sample is affected by a disease given the
continuous expression levels of few particular genes in a
number of diseased and healthy samples. For example,
estimation from a number of samples of the conditional
entropy H(C|G1, G2) where C is a binary random variable
and G1, G2 are continuous random variables is a problem
that has not been addressed before. The synergy between
two genes can then be directly evaluated using this meas-
ure.

To confirm the validity of our methodology we applied
our results on a simulated expression data set (Additional
File 1) in which several gene pairs were assumed to be
jointly associated with cancer (traditional synthetic net-
work methods in which genes are assumed to be regulated
by other genes are not applicable in this context). Our
results confirm that the synergy methodology accurately
deciphers these associations. For comparison, we also
apply a traditional gene interaction inference method in
various ways on these data to illustrate why such methods
cannot be used to infer interaction with respect to cancer, as
explained earlier.

Application to prostate cancer gene expression dataset
We did an exhaustive search through all gene pairs in a
publicly available prostate cancer data set, identifying the
gene pairs with highest synergy and validated our results
by confirming that their P values are extremely small and
hypothesized on their biological interpretation. We
applied our methodology on publicly available prostate
cancer expression data [19] from 102 prostate samples, 50
of which were deemed to be healthy and 52 of them can-
cerous using RMA-normalized values (see Methods).

We first ranked all genes in terms of their conditional
entropy H(C|Gi). The ten lowest scoring genes are shown
in Table 1. These are the genes that are individually most
correlated with cancer, because the same genes would
equivalently have been found as highest scoring in terms
of the mutual information I(Gi; C). Nearly all genes in the
list are well-known biomarkers of prostate cancer, such as
HPN [20]ERG[21], AMACR [22], FOLH1 [23], TACSTD1
[24] and AGR2 [25], thus validating the dendrogram-
based technique for estimating entropy.

Using exhaustive search, we then also ranked all gene
pairs in terms of their synergy I(Gi, Gj; C) - [I(Gi; C) + I(Gj;
C)] (the 20 highest scoring pairs are shown in Table 2).
The P value entries are explained in Methods. Notably, the
top-ranked genes in individual gene ranking (Table 1) are
different from those in the highest-synergy gene pairs
(Table 2), consistent with the expectation that pairs of
synergistically linked genes with respect to cancer are not
necessarily individual cancer biomarkers. Figure 3 shows
the corresponding scatter plot and dendrogram of the
highest-synergy gene pair (RBP1 and EEF1B2).

To determine the extent to which our numerical results
could be due to pure chance we performed statistical vali-
dation experiments by repeating the identical computa-
tional procedures after permuting the gene expression
matrix (see Methods). The resulting synergy network and
a listing of the top-ranked gene pairs with their P values
are shown in Figure 4 and Table 2, respectively.

Validation with independent gene expression dataset
To confirm that our results are applicable when used on
independently obtained samples, we used a prostate can-
cer gene expression dataset containing values for 25
malignant and 8 healthy samples from a different labora-
tory [26], to which we refer as the "validation dataset." We
found that direct numerical evaluation of synergy from
the validation dataset is not meaningful, because the P
value for even the top-ranked gene pair is 0.10 (Addi-
tional File 2), indicating that results are not statistically
significant.

In our case, the figure of merit, synergy, is not measurable
by any classification performance. Rather, the high syn-
ergy of a gene pair with respect to a phenotype is due to a
Boolean logic connection between the gene pair and the
phenotype, such as "prostate cancer tends to occur only in
the simultaneous expression of gene A and lack of expres-
sion of geneB." Our approach is aimed at deriving such
logic relationships, as they are the ones that may lead to
valuable biological insights. Therefore, a qualitative vali-
dation should focus on those logic relationships. Figure 5
shows the scatter plots of the top-ranked gene pairs in
both the original and the validation dataset, chosen so
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Dendrograms for the two-dimensional scatter plots of Figure 1Figure 2
Dendrograms for the two-dimensional scatter plots of Figure 1. There is one-to-one correspondence between the six 
panels (A-F) of the two figures. Similar dendrograms for the one-dimensional (individual genes) projections of the scatter plots 
(not shown) are also needed for the evaluation of synergy. The leaves represent samples color-coded as red for cancer and 
green for health. For each dendrogram, a horizontal line defines a partition into clusters. In A and B there is perfect classifica-
tion via partition into two and four homogeneous clusters, respectively. In c there is random assignment of samples resulting in 
inhomogeneity in each cluster and inability to classify. In D, E, F, the outcomes are the same as in A, B, C, respectively, except 
that the edges of the dendrogram fully connect the root with the leaves and any distance of the horizontal from the leaves will 
produce the same partition.
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that each new gene pair does not contain any gene previ-
ously used for this purpose (because the scatter plots tend
to be the same in that case). For better illustration of the
concept, we also include for each scatter plot the separat-
ing line derived from a linear Support Vector Machine
with an error penalty parameter of 106. It is clear that the
tendency for the location of the joint expression levels is
preserved in all cases.

Discussion
The purpose of this paper is twofold. First, to disclose a
novel methodology of analyzing continuous microarray
data aimed at discovering sets of genes synergistically
associated with a phenotype such as cancer. Second, to
apply this methodology on a set of expression data iden-
tifying gene pairs whose high values of synergy cannot be
explained by pure chance, suggesting biological signifi-

cance. These tasks have been achieved, as evidenced by the
extremely low P values (Table 2) corresponding to some
of the gene pairs. As an additional indication of the bio-
logical relevance of our results, we present two examples
of scatter plots (Figure 6), in which the same sample (T39)
consistently appears to be mislabelled as cancerous, as
was the case in Figure 3A.

The next step would be to interpret the results aiming to
better understand mechanisms responsible for prostate
cancer and this requires coupling with existing biological
knowledge. For example, although we may have estab-
lished the synergistic association of a gene pair with
respect to prostate cancer, this does not necessarily mean
that the interaction of these two genes causes the cancer;
it is, however, an indication that these two genes interact,
directly or indirectly, within a shared pathway that is asso-
ciated with cancer, but the cause-versus-effect relationship
between them is unclear. Here, we mention some already
known facts involving the genes in the highest-ranking
pairs. We hope that current and future biological knowl-
edge will lead to a satisfactory biological interpretation of
these results, helpful for inferring biological mechanisms
responsible for prostate cancer.

The gene that appears in most of the high-synergy gene
pairs is RBP1 (cellular retinol-binding protein-1). It turns
out that all the gene pairs in Table 2 that include RBP1 are
governed by the same molecular logic: prostate cancer
tends to occur only when the following two events occur
simultaneously: (a) RBP1 is expressed at low levels and
(b) its partner gene is expressed at high levels. It is known

Table 1: Ranking of individual genes by entropy

Symbol Accession Number Entropy

1 HPN X07732 0.5151
2 TRGV3 M30894 0.6164
3 PDLIM5 AL049969 0.6503
4 ERG M21535 0.6640
5 AMACR AJ130733 0.6809
6 NELL2 D83018 0.6838
7 CFD M84526 0.6917
8 FOLH1 M99487 0.6969
9 TACSTD1 M93036 0.6973
10 AGR2 AF038451 0.7090

Table 2: Ranking of gene pairs by synergy

Symbol 1 Accession 1 Symbol 2 Accession 2 Synergy P value

1 RBP1 M11433 EEF1B2 X60489 0.4025 < 1E-15
2 RBP1 M11433 FTL M10119 0.3653 < 1E-15
3 RBP1 M11433 HLA-DPB1 M83664 0.3493 < 1E-15
4 PTGDS M98539 YWHAQ X56468 0.3408 < 1E-15
5 RBP1 M11433 UQCRH Y00764 0.3348 < 1E-15
6 RBP1 M11433 UBC AB009010 0.3331 < 1E-15
7 RBP1 M11433 SNRPB AL049650 0.3287 < 1E-15
8 RBP1 M11433 ZNF146 AJ011806 0.3271 < 1E-15
9 RBP1 M11433 EEF1D Z21507 0.3239 < 1E-15
10 PTGDS M98539 SLC25A6 J03592 0.3202 4.00E-15
11 RBP1 M11433 SLC25A6 J03592 0.3202 5.00E-15
12 RBP1 M11433 RPS15 J02984 0.3199 7.00E-15
13 RBP1 M11433 RPL5 U14966 0.3177 9.60E-14
14 RBP1 M11433 HLA-DRB5 M32578 0.3169 2.47E-13
15 RBP1 M11433 KPNA4 AB002533 0.3138 6.97E-12
16 RBP1 M11433 GAPDH M33197 0.3138 7.30E-12
17 RBP1 M11433 MCL1 L08246 0.3137 7.60E-12
18 RBP1 M11433 RPS19 M81757 0.3133 1.10E-11
19 RBP1 M11433 PCBP2 X78136 0.3090 5.94E-10
20 RBP1 M11433 NCL M60858 0.3081 1.25E-09
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that RBP1 is downregulated in several cancers, and an
explanation has been proposed based on the fact that
RBP1 inhibits the PI3K/Akt survival pathway [27], there-
fore downregulation of RBP1 promotes derepression of
PI3K/Akt signalling and inhibits apoptosis of malignant
cells. It has also been found that hypermethylation of
RBP1 is common in several tumors and cancer cell lines
[28], which may partly explain its downregulation.

Another central gene with multiple partner genes (Figure
4) is PTGDS (prostaglandin D2 synthase, also known as L-
PGDS). Interestingly, PTGDS has also been linked to
apoptosis concomitant with downregulation of PI3K [29].
We found that a synergistic gene pair that includes PTGDS
obeys the same "molecular logic" as RBP1, i.e. prostate
cancer occurs in the simultaneous low expression of
PTGDS and high expression of the partner gene.

There are several synergistic "partner genes" for RBP1 or
PTGDS some of which (such as SLC25A6) serve as partner
genes to both (Table 2). The top-ranked gene pair consists
of RBP1 and EEF1B2 (eukaryotic elongation factor 1-beta,
also referred to as eEF1Bα).

Many of the highest-ranking synergistic partner genes for
RBP1 and PTGDS (Table 2) are associated, directly or indi-
rectly, with oxidative stress, including EEF1B2 [30]; FTL
[31] (ferritin, light polypeptide); HLA-DPB1 [32] (major
histocompatibility complex, class II, DP beta 1), YWHAQ
[33] (tyrosine 3-monooxygenase/tryptophan 5-monooxy-
genase activation protein, theta polypeptide- also known
as 14-3-3), UQCRH (ubiquinol-cytochrome c reductase
hinge protein), known to be involved in oxidative phos-
phorylation, and UBC [34] (UbiquitinC). Furthermore,
SLC25A6 (solute carrier family 25 – mitochondrial carrier;
adenine nucleotide translocator – member 6) is also
known to be involved in oxidative phosphorylation.

Taken together the above observations are consistent with
the previous [17] speculation that these microarray data
indicate that prostate cancer is often associated with cellu-
lar damage caused by oxidative stress combined with inhi-
bition of the apoptotic mechanisms that are normally
triggered by the damage. They are also consistent with
other recent results [35] linking prostate cancer with oxi-
dative stress.

Another observation is that many of the genes serving as
synergistic partners to RBP1 (Figure 4) are ribosomal,

Highest-synergy pair of genesFigure 3
Highest-synergy pair of genes. Genes RBP1 and EEF1B2 in combination appear to predict prostate cancer in ways that can-
not be attributed to the additive individual contributions of the genes (see P values in Table 2). (A) Scatter plot for the two 
genes. Red and green dots represent 52 cancerous and 50 healthy samples, respectively. The red dot indicated by the arrow 
represents sample T39, which appears to have been mislabelled as cancerous, a possibility also supported by scatter plots 
involving totally different genes (Figure 6). (B) Dendrogram for the corresponding two-dimensional scatter plot indicating a 
partition with good classification performance.
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including genes directly encoding for ribosomal proteins
as well as translation elongation and initiation factors.
The mRNAs of most such genes share a 5'-terminal oli-
gopyrimidine tract (TOP) used for translational control. It
has been proposed that oncogenic transformation by Akt
involves intervention in translational controls through

the mTOR pathway, which activates the kinase S6K and
controls the translation of 5'TOP mRNAs [36,37]. The
mRNAs of ribosomal genes including elongation and ini-
tiation factors are often up-regulated in expression pro-
files from diverse tumors and clustered together [38].
Furthermore, the variation in expression of these ribos-

Synergy networkFigure 4
Synergy network. The network can be seen as a first effort to depict the "prostate cancer interactome" based on the ana-
lyzed expression dataset that included 50 healthy and 52 cancerous samples. Each edge depicts inferred gene-gene interactions 
associated with prostate cancer. Each node of the graph represents a gene. Gene pairs whose synergy has P < 0.05 under per-
mutation B (see text) are indicated by the edges of the graph.
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Scatter plots of top-ranked gene pairs invalidation data setFigure 5
Scatter plots of top-ranked gene pairs invalidation data set. On the left is the original data set, and on the right is the 
validation data set of the top-ranked gene pairs, restricted to those with unique members, in terms of synergy. A separating 
line was computed for each plot using a Support Vector Machine with a linear kernel and an error penalty parameter of 106.

R
B
P
1

EEF1B2

5

6

7

8

4 6 8

Y
W
H
A
Q

PTGDS

4

6

8

9 10 11 12 13

C
O
X
7A
1

NME2

5

6

7

8

6 7 8 9 10

P
T
N

1514_g_at

4

6

8

6 8 10 12

Cancer
Health

R
B
P
1

EEF1B2

8

9

10

10.5 11.0 11.5

C
O
X
7A
1

NME2

9

10

11

12

11.5 12.0 12.5

P
T
N

1514_g_at

8

9

10

11

12 14

Y
W
H
A
Q

PTGDS

10.5

11.0

11.5

12 13 14



BMC Systems Biology 2008, 2:10 http://www.biomedcentral.com/1752-0509/2/10
omal genes was found significantly correlated with varia-
tion in the cell doubling time, supporting the notion that
the genes in this cluster were regulated in relation to cell
proliferation rate or growth rate [38].

The high synergy between RBP1 and the ribosomal genes
is largely reflected by the fact that there are a number of
samples that are healthy despite the fact that RBP1 is
underexpressed. These are the samples for which the
ribosomal genes are underexpressed, for example those
corresponding to the lowest nine green dots in the RBP1/
EEF1B2 scatter plot (Figure 3A). We speculate that mRNA
underexpression of the cluster of ribosomal genes protects
the organism from cancer by inhibiting cell proliferation
even if the cell has been damaged, apoptosis is inhibited
and the Akt survival pathway is activated as a result of
RBP1 underexpression.

In addition to RBP1 and PTGDS, several other genes
appear in central positions in Figure 4, some of which are
already known to participate in pathways jointly involv-
ing prostate cancer and oxidative stress, such as PTN (also
known as HARP) [39] and CLU [40]. Knowledge of their
"interacting partner" genes, as provided by the synergy
network, can help identify the precise nature of these
pathways.

Conclusion
The unique feature and strength of using synergy networks
resulting from gene expression analysis is that it focuses
on finding genes that are cooperatively correlated with dis-
ease, rather than just correlated with disease, and there-
fore it can be helpful for the inference of pathways
responsible for disease. Furthermore, identification of
gene pairs that are synergistically associated with disease
has obvious applications in combinatorial approaches for
treatment, as single targets would, but the very definition
of synergy, not be sufficient. In this paper we have intro-
duced a methodology estimating synergy directly from
continuous expression data for tens of thousands of
genes, with sufficiently low computational complexity
allowing exhaustive search of all gene pairs (see Meth-
ods). Our technique is also extendable to include any
types of biomarkers, including alternatively spliced iso-
forms and protein expression or post-translation modifi-
cation data, shedding further light on putative responsible
pathways.

Synergy networks are complementary to, and different
from, traditional gene interaction networks. The success
of our results cannot be measured by prediction accuracy,
because the aim is not classification. Instead, we seek to
find gene pairs whose combined information correlates
with a phenotype better than the sum of either gene indi-
vidually. Furthermore, traditional gene interaction algo-

Illustration of consistency among synergistic pairsFigure 6
Illustration of consistency among synergistic pairs. The same sample (T39) consistently appears mislabelled, as was the 
case in Figure 3A, as cancerous on multiple scatter plots involving different genes. Shown are two additional examples, out of 
many, thus supporting the relevance of our results. All shown gene pairs in the scatter plots also appear in the pairwise synergy 
graph (Figure 4).
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rithms operate without any reference to cancer, and they
can be useful for identifying interactions involving known
oncogenes, which by themselves are unrelated to cancer
and our technique would not identify. Each approach
provides valuable information that the other cannot pro-
vide.

Our proposed methodology requires access to a set of
gene expression data that is rich not only for diseased but
also for currently rare healthy (control) samples to ensure
the statistical significance of the results. Using such rich
and balanced datasets, the same methodology can be gen-
eralized to discover synergistic triplets of genes using the
definition of multivariate synergy [15], which will provide
additional and more significant information helpful for
pathway inference, as it will suggest that all three genes in
the triplet will be members of a shared pathway. Such col-
lection of high-quality standardized gene expression data
is not expensive compared with other efforts such as
sequencing, and we hope that it becomes incorporated in
some of the existing or future cancer initiatives.

Methods
Entropy of a clustering partition
Given a cluster of samples, each of which is assigned one
of two possible class labels referred to by the symbol C, in
our case health (C = 0) versus a particular cancer (C = 1),
we define the entropy of the cluster as h(Q) = -Qlog2 Q -
(1-Q) log2(1-Q), where Q is the relative frequency of can-
cerous samples in the cluster. Given a partition of the full
set of samples into a number of disjoint clusters, we
define the entropy of the partition as the average of the
entropies of all clusters, weighted by the relative member-
ship of each cluster. For example, assume that there are
totally K0 healthy samples and K1 cancerous samples with
K0 + K1 = K and that one of the clusters contains N0 healthy
samples and N1 cancerous samples. It follows that the rel-
ative membership of the cluster is P = (N0 + N1)/K and the
entropy of the cluster is h(Q) where Q = N1/(N0 + N1).
Therefore, the entropy of the partition will be equal to the
sum ∑Ph(Q) over all clusters.

Conditional entropy
Assume that each choice of n genes defines a partition of
the samples according to a clustering algorithm applied
on the expression levels of these genes in all the samples.
Given such a choice of genes with expression levels
denoted by the symbols G1,...,Gn, the conditional entropy
of the class label C is equal to the entropy of the resulting
partition, i.e., H(C|G1,...,Gn) = ∑Ph(Q), and measures the
average uncertainty of predicting if a sample is cancerous
if we know the cluster in which the sample is located. In
the special case that the expression levels Gi are binary so
that each gene is either "off" (Gi = 0) or "on" (Gi = 1), then
this methodology becomes identical to evaluating the

same conditional entropy from the probabilistic model
resulting from relative frequencies after counting the
number of healthy and cancerous samples in each of the
2n possible expression states [15,17,18].

Mutual information
The mutual information I(G1,...,Gn; C) is a nonnegative
quantity measuring the information that the n genes pro-
vide about cancer and is equal to H(C) - H(C|G1,...,Gn),
where H(C) is equal to h(K1/K), in our case K1 = 50 and K
= 102, so H(C) = 0.9997. We further normalized mutual
information and conditional entropy by dividing by H(C)
so that in their normalized form I*(G1,...,Gn; C) = 1 -
H*(C|G1,...,Gn), so that the maximum normalized possi-
ble mutual information in the values of Table 1 is equal to
one.

Synergy
When n = 2, the synergy [15]Syn(G1, G2; C) measures the
amount of information about cancer that is due to purely
cooperative effects between G1 and G2 and is equal to
Syn(G1, G2; C) = I(G1, G2; C) - [I(G1; C) + I(G2; C)], which
is also equal to H(C|G1) + H(C|G2) - H(C|G1, G2) - H(C).
We further normalized the synergy, as we did for the
mutual information, by dividing by H(C), so that, in its
normalized form, the maximum synergy in the values of
Table 2 is equal to 1.

Evaluation of conditional entropy
Given a choice of n genes we wish to numerically estimate
the corresponding conditional entropy ∑Ph(Q), to which
for simplicity we will refer in this paragraph using the
symbol H, from the continuous expression levels of these
genes. We used the UPGMA clustering algorithm [41]
applied on the genes' RMA-normalized joint expression
levels. Corresponding dendrograms can be plotted with
the root at the top and the leaves in a horizontal line at
height 0. Each horizontal line (Figure 3) at distance D
from the leaves defines a partition into clusters for which
a value H can be computed. The value of H will change
discontinuously with D as pairs of clusters are merged
into single clusters each time the horizontal line crosses
the intermediate nodes of the dendrogram by moving
higher. This discontinuity is undesirable, particularly
because the formula for evaluating synergy involves three
independent calculations of mutual information (one for
the pair of genes and two for each gene alone) thus occa-
sionally amplifying inaccuracies due to borderline effects
at the discontinuity points. Furthermore, evaluating H at
a specific value of D does not account for potentially inter-
esting partitioning detail that may occur within the sub-
clusters below the horizontal line at D. To remedy these
problems, we used a measure of the conditional entropy
that averages H by integrating it from 0 up to a cut-off
value D* and dividing by D*. The value of D* can be con-
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sidered to be a "threshold of biological significance,"
because clusters with inter-cluster distances above D* are
not merged. We used a value of D* = 1.5 on the RMA-nor-
malized data (which are already log-normalized). We
found that, when using this averaged value of H as figure
of merit to be minimized over the choices of gene sets,
there is not much sensitivity on the choice of D* in terms
of the relative comparison of values of entropy or synergy
associated with gene sets. For example, comparing the top
100 most synergistic pairs for D* = 1.5 to the top 100 pairs
for D* = 1.25 and D* = 1.75, we found that there were 83
pairs in common for D* = 1.5 and D* = 1.25, and 76 pairs
in common for D* = 1.5 and D* = 1.75. Furthermore,
regardless of the choice of D*, this measure is still back-
wards compatible with the evaluation of the conditional
entropy in binary expression data [15,17,18], in which
case H is independent of D*, as illustrated in Figures 1D,
1E, 1F. To further estimate the sensitivity to the choice of
the parameter, we compared the top 100 pairs with the
top 100 pairs for D* = 1.5 The results for D* = 1.0, 1.25,
1.75 and 2.0 were 62%, 83%, 76% and 54%, respectively.
Therefore, there is a reasonably wide range of the values of
D* yielding consistent results. This sensitivity should not
be expected to be very wide, as the biological meaning of
the parameter is meant to be the threshold of biological
significance, so that each cluster is interpreted as a biolog-
ical event.

Distance measure
When calculating the UPGMA dendrograms, we use the
Chebyshev distance measure (i.e., the maximum distance
in any single dimension), because synergy evaluation
requires that entropy values computed over different
numbers of dimensions (genes) be included in the same
formula. As dimensions are added, Chebyshev distances
remain limited by the maximum distance between the
expression levels of two genes and therefore we can con-
veniently use the same value of D* for all dimensions; in
contrast Euclidean distances steadily increase as more
dimensions are added, making comparisons to different
dimensions problematic. From a biological viewpoint,
this choice assumes that the "threshold of biological sig-
nificance" in the joint gene expression space of a synergis-
tic set of genes is the same as the threshold for individual
member genes. In other words, if the joint expression of
two genes is causing a phenotype exclusively as a result of
their synergistic interaction, then it is sufficient for one of
them to exceed the threshold of biological significance for
the pair of genes to cease causing the phenotype. When
using the above-defined numerical measure of condi-
tional entropy and the Chebyshev distance measure, we
always found in our results that H(C|G1, G2) ≤
min{H(C|G1), H(C|G2)}, consistent with information-
theoretic facts [16]. This was not always the case when we

used other distance measures, such as the Euclidean dis-
tance.

DNA microarray data set and normalization
Raw probe data (CEL files) for a set [19] of Affymetrix
Human Genome U95Av2 microarray assays were
obtained from the Broad Institute's website. The set con-
sists of 102 assays: 52 prostate tumor samples and 50 non-
tumor prostate samples. The microarray chip had probe
sets for 12,625 features, which were normalized and sum-
marized using the Robust Multi-array Average (RMA)
method [42] on perfect match probes only. The imple-
mentation of RMA used was from Bioconductor 1.8 using
default settings.

Statistical analysis of validation experiments
We implemented two types of permutation on the gene
expression matrix, whose rows correspond to the genes
and columns correspond to the samples with the first 50
columns containing the healthy samples and the remain-
ing 52 columns containing the cancerous samples: Under
"permutation A" the columns are randomly shuffled so
that the class labels (health versus cancer) of the samples
are permuted. Thus, the expression profiles of the samples
become uncorrelated with the class label, while the integ-
rity of the gene interrelationships in individual samples is
retained. Under "permutation B" each gene's expression
values are independently shuffled twice, once within the
healthy samples and once within the cancerous samples,
so that the individual genes' association with the class dif-
ference is retained (for example oncogenes remain "onco-
genes"), but the integrity of the gene interrelationships in
individual samples is destroyed. It is not clear which of
the two types is preferable for our purposes, since our def-
inition of synergy makes use of both marginal as well as
joint correlations; therefore we performed both of them.

Our first aim was to obtain an estimate of the statistical
significance of the highest-synergy pair of the actual
expression data compared with the highest-synergy pairs
resulting from the permutation experiments. For this pur-
pose, we did 100 permutation experiments of each type,
saving the corresponding 100 highest synergies after doing
exhaustive search in each permutation experiment. Using
the set of these 100 highest-synergy scores, we obtained
the maximum likelihood estimates of the location param-
eter and the scale parameter of the Gumbel (type-I
extreme value) distribution, resulting in a cumulative den-
sity function F. The Gumbel distribution [43] is the limit-
ing distribution of the maximum of a large number of
random observations from the same arbitrary distribu-
tion. The Pvalue of the maximum synergy x0 found in the

actual data (defined, in this case, as the estimated proba-
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bility of obtaining maximum synergy at least as high as x0

by pure chance when the null model includes the highest

synergy values among  = ~80 million gene

pairs for each permutation experiment) was then evalu-
ated as 1-F(x0). For our highest-synergy pair (RBP1 with

EEF1B2) we found P < 10-15 for both permutations A and
B.

To examine the effectiveness of estimating the Gumbel
distribution using 100 permutations, we ran the following
simulation experiment. We used the estimated Gumbel
parameters (0.02536117 and 0.2314731) to simulate sets
of 100 random numbers. For each set, we estimated the
Gumbel distribution parameters based on the random
drawn values. The process was then repeated 5,000 times.
We compared the cumulative distribution function (CDF)
according to the true simulation setup and those accord-
ing to the sample estimates based on only 100 random
values, demonstrating that the tail probability from the
estimated distribution was very close to the true value.
Specifically, the estimated parameters from 100 values
(randomly drawn from the Gumbel distribution) were
unbiased and with reasonable precision: The means were
0.02536843 and 0.2314643, while the corresponding
"standard errors" were 0.002286060 and 0.002688641.
Therefore, 100 simulations are sufficient to estimate the
distribution.

Our second aim was to define a cut-off threshold of statis-
tical significance for the gene pairs to be included in the
synergy network. In that case, we cannot make use of the
Gumbel distribution, because it only applies on the high-
est values. Furthermore, due to the large number N of
gene pairs, it is important to adjust for multiple compari-
sons. A widely used procedure to adjust individual tests'
significance controls the false discovery rate (FDR) [44],
which is the expected proportion of falsely rejected
hypotheses among all rejected.

Using K = 108 synergy scores randomly sampled from the
permuted data, we computed for each synergy score on a
gene pair Pvalues adjusted for FDR. Let Si be the synergy

score of gene pair i, and  be the synergy score for per-

muted sampled pair k (k = 1,...,K). For the FDR-adjusted P

value, we first sorted the synergy scores, so that S1 ≥ S2 ≥...≥
SN. The raw P value was then estimated [45] as

and the FDR-adjusted P value is

One can then control the FDR at arbitrary level α by sub-

jecting  to threshold α. Using α = 0.05, we found
2,719 significant gene pairs under permutation A and 473
significant gene pairs under permutation B. The synergy
graph containing those 473 gene pairs is shown in Figure
4, while the 20 top-ranked gene pairs are listed in Table 2.

Implementation and complexity
We implemented an algorithm that, using exhaustive
search, simultaneously computes the UPGMA clustering
and the conditional entropy for each individual gene, as
well as for each gene pair, from which we evaluated the
synergy of each gene pair. We then ranked gene pairs in
terms of conditional entropy and synergy. The search
space was partitioned and run on a 200-node computing
cluster, and the running time of the entire process
(processing ~80 million gene pairs) was approximately
one hour.

Availability
Software for evaluating entropy and synergy in MATLAB is
available in Additional File 3.
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