OPEN ACCESS

Biomedical Informatics,

Columbia University, New York,

NY USA

Correspondence to

Dr George Hripcsak,
Department of Biomedical
Informatics, Columbia
University Medical Center, 622
West 168th Street, VC5,

New York, NY 10027, USA;
hripcsak@columbia.edu

Received 5 June 2012
Accepted 11 August 2012
Published Online First

6 September 2012

Next-generation phenotyping of electronic

health records
George Hripcsak, David J Albers

ABSTRACT

The national adoption of electronic health records (EHR)
promises to make an unprecedented amount of data
available for clinical research, but the data are complex,
inaccurate, and frequently missing, and the record
reflects complex processes aside from the patient’s
physiological state. We believe that the path forward
requires studying the EHR as an object of interest in
itself, and that new models, leaming from data, and
collaboration will lead to efficient use of the valuable
information currently locked in health records.

INTRODUCTION

The national push for electronic health records
(EHR)" will make an unprecedented amount of
clinical information available for research; approxi-
mately one billion patient visits may be documen-
ted per year in the USA. These data may lead to
discoveries that improve understanding of biology;,
aid the diagnosis and treatment of disease, and
permit the inclusion of more diverse populations
and rare diseases. EHR can be used in much the
same way that paper records have been used, with
manual extraction and interpretation of clinical
information. The big promise, however, lies in
large-scale use, automatically feeding clinical
research, quality improvement, public health, etc.
Such uses require high-quality data, which are
often lacking in EHR. In this paper, we investigate
a path forward for exploiting EHR data.

CHALLENGES
Unfortunately, the EHR carries many challenges.”

Completeness

The data are largely missing in several ways. Data
are occasionally missing by mistake, in the sense
that data that would normally be expected to be
recorded are lacking. Data are often missing in the
sense that patients move among institutions for
their care so that individual institutional databases
contain only part of their care, and health infor-
mation exchange is insufficiently pervasive to
address the issue; the result is data fragmentation
for research and discontinuity of clinical care. Data
are also missing in the sense that they are only
recorded during healthcare episodes, which usually
correspond to illness. In addition, much informa-
tion is implicit, under the assumption that the
human reader will infer the missing information
(eg, pertinent negative findings). The result is a
time series that is very far from the rigorous data
collection normally employed in formal experi-
ments. Referring to the statistical taxonomy of
missingness,® health record data are certainly not
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missing at random, and might facetiously even be
referred to as ‘almost completely missing’.

Accuracy

The data are frequently inaccurate,” resulting in a
loss of predictive power.” Errors can occur any-
where in the process from observing the patient,
to conceptualizing the results, to recording them
in the record, and recording is influenced by billing
requirements and avoidance of liability. Whereas
some errors may be treated as random, many
errors—such as influence from billing—are system-
atic. In addition, there is often mismatch between
the nominal definition of a concept and the intent
of the author. For example, PERRLA is an acronym
commonly used in the eye examination that
stands for ‘pupils equal, round, and reactive to
light and accommodation’. It is unclear, however,
how often clinicians actually test for each of the
properties. In the CUMC database, 2% of patients
who were missing one eye were documented in a
narrative note as being PERRLA—an impossibility
because two eyes are required to have equal
pupils—and another 8% of those patients were
documented as being PERRLA on the left or on the
right, which is a misuse of the term. A researcher
looking for subjects whose pupils were equal or
accommodated normally could not rely on a nota-
tion of PERRLA in the chart.

Complexity

Healthcare is highly complex. It includes a mixture
of many continuous variables and a large number
of discrete concepts. For example, at CUMC, there
are 136 035 different concepts that may be stored
in the database. There is an enormous amount of
work being done to create knowledge structures to
define the data, including formal definitions, classi-
fication hierarchies, and inter-concept relationships
(eg, clinical element model).® Maintaining such a
structure will remain a challenge, however. There
may also be local variation both in structure” and
in definition and use,® and even within an institu-
tion definitions vary over time. Much of the most
important data in the record—such as symptoms
and thought processes—are stored as narrative
notes, which require natural language processing’
to generate a computable form. Temporal attri-
butes are highly complex, with time scales from
seconds to years and with different levels of
uncertainty.'?

Bias

The above challenges, including systematic errors,
can result in significant bias when health record
data are used naively for clinical research. For

117



example, in one EHR study of community-acquired pneumo-
nia,'" patients who came to the emergency department and
died quickly did not have many symptoms entered into the
EHR. As a result, an attempt to repeat Fine’s pneumonia
study'? using EHR data showed that the apparently healthiest
patients died at a higher rate than sicker patients. Ultimately,
healthcare data reflect a complex set of processes'® (figure 1),
with many feedback loops. For example, physicians request
tests relevant to the patient’s current condition, and testing
guides the diagnosis, which determines the treatment and
future testing. Such feedback loops produce non-linear recording
effects that do not reflect the underlying physiology that
researchers may be attempting to study. Put another way, EHR
data are not merely research data with noise and missing values.
The extent and bias of the noise and missingness are sufficient
to require fundamentally different methods to analyse the data.

STATE OF THE ART

Fortunately, it appears that EHR do contain sufficient informa-
tion: clinicians generally use health records effectively. They
learn to navigate the complexity of the record and to fill in
implicit information. Reusing the information for research
should be possible, but having a clinician interpret the record
for every case is infeasible for large studies.

To address the challenges, the task is generally broken into
two steps. The first step, which can be called phenotyping or
feature extraction, transforms the raw EHR data into clinically
relevant features. The second step uses these features for trad-
itional research tasks—such as measuring associations for
discovery or assessing eligibility for a trial—as if a research
coordinator had manually entered and verified the features. For
the most part, the EHR challenges are addressed in the first

Figure 1 Feedback loops in the
electronic health record. The state of
the patient varies, and it determines
not only the value of the
measurements in the record, but also
the type and timing of the
measurements.

step so that large EHR databases can become large research
databases that can then undergo traditional analysis.

Studies employing large-scale EHR data have begun to
appear,"*? and most of them employ this two-step approach.
The state of the art in feature extraction is to use a heuristic,
iterative approach to generate queries that run across the entire
EHR database. For example, clinical experts may read each
record for a subset of subjects and create a curated dataset. A
knowledge engineer generates a heuristic rule that maps record
data to each variable in the study (eg, physician notes, billing
codes, and medications may all be used to infer the presence of
a disease). The rule is tested on the curated subset, and the rule
is modified iteratively until sensitivity and specificity reach
some threshold. The rule is then applied to the entire cohort.

While this avoids most case-by-case review, it still requires
feature-by-feature authoring of queries. These methods are
themselves time consuming;20 furthermore, there is much
potentially useful information that is not used, the queries
may be time consuming to maintain, and knowledge engineers
and clinical experts bring their own biases. To draw an analogy
with computational biology, imagine attempting high through-
put research in which each investigator had to spend months
verifying each of thousands of variables before collecting data.
As we move to large-scale mining of the EHR, defining the
queries has become a bottleneck. Efforts like eMERGE* are
showing significant progress in generating and sharing queries
across institutions,?? 2* but local variations remain, and defin-
ing even a small number of phenotypes can take a group of
institutions years. Despite advances in ontologies and language
processing, the process remains largely unchanged since the
earliest days,?* using detective work and alchemy to get golden
phenotypes from base data.

Electronic health record
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NEXT-GENERATION PHENOTYPING

There are several ways to improve on the current state. One
approach improves on the current phenotyping process, either
by making it more accurate or by reducing the knowledge engin-
eering effort. We refer to the latter as ‘high-throughput pheno-
typing’. The term could be applied to the current state of the
art because even a manually generated query can be run on a
large database, but we suggest reserving the term for truly high-
throughput approaches that do not require years to generate a
handful of phenotypes. A high-throughput approach should
generate thousands of phenotypes with minimal human inter-
vention such that they could be maintained over time.

To improve phenotyping substantially, we believe that there
needs to be a radical shift in approach and that the answer lies
in a familiar place for informatics: a combination of top-down
knowledge engineering and bottom-up learning from the data.
In particular, we believe that we need a better understanding of
the EHR. The EHR is not a direct reflection of the patient and
physiology, but a reflection of the recording process inherent in
healthcare with noise and feedback loops. We must study the
EHR as an object in itself, as if it were a natural system. This
better understanding will then naturally support both broad-
based outcome-oriented research and physiological research.

One component is a healthcare process model that represents
how processes occur and how data are recorded (figure 2).
Some aspects of the healthcare process model are being defined,
for example, through research related to SNOMED, Health
Level 7, and the Clinical Element Model,>>*” but they do not
directly address the recording process, so additional modeling
efforts are likely to be needed. Such efforts might group

True patient state
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Figure 2 Phenotyping and discovery. The raw electronic health record
(EHR) data are an indirect reflection of the true patient state due to the
recording process. Attempts to create phenotypes and discover
knowledge must account for the recording. The healthcare process
model represents the salient features of the recording process and
informs the phenotyping and discovery.
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variables into types and might include temporal patterns
of data capture. Given the complexity of healthcare and the
number of human and organizational influences, a top-down
model is unlikely to be sufficient. Therefore, a second compo-
nent is also needed: we must mine the EHR data to learn the
idiosyncrasies of the healthcare process and their effects on
the recording process. That is, we believe that the interactions
and dependencies are too complex to model and predict at a
detailed level (eg, intention vs definition, team interactions),
so empirical measurement of the relationships among data
elements will be essential.

A rigorous model populated with characteristics learned from
the data could improve phenotyping in several ways. For
example, it may be possible to map raw data, such as a time
series of diagnosis codes, to a probability of disease.?® If biases
can be quantified—for example, the degree to which a given
variable tends to over or underestimate a feature—then one
could avoid sources that are most biased, or one could combine
sources that have bias in opposite directions. The process of
generating a phenotype query would then become less heuristic
and more data driven.

A full review of the data mining methods appropriate to
phenotyping is beyond the scope of a perspective, but the fol-
lowing are particularly relevant. First is simply characterizing
the raw data with frequencies, co-occurrences, and—when
possible—predictive value with respect to desired phenotypes
(eg, how accurate are International Classification of Disease,
version 9 codes). Dimension reduction using algorithms like
principal component analysis (empirical orthogonal func-
tions)*’ % addresses the many disparate variables that comprise
an EHR. Instead of top-down defined phenotypes, it may be
appropriate to define latent variables that have high predictive
value using techniques such as latent Dirichlet allocation®
or other methods.®® The ability to find similar cases is often
useful to define cohorts for machine learning, and has been
done with symbolic and computational techniques.?*
Clinical databases can be stratified into more regular subsets,
producing more stable results.® Natural language processing®’
is of course essential to phenotype EHR data due to the narra-
tive content.

While time has long been a research topic in informatics,
further work may be needed. This includes temporal modeling
and abstraction*” *! (including temporal treatment of narrative
data),** as well as purely numeric approaches, including non-
linear time series analysis drawn from the physics literature.
The latter includes aggregation of short time series,*® particu-
larly as applied to health record data and modified to accom-
modate non-equally spaced time series.** Researchers have
noted that missingness itself is a useful feature in producing
phenotypes.*’

We can also improve the use of EHR data at the second step,
the discovery stage, which may include classification (eg, clin-
ical trial eligibility), prediction (eg, readmission rate), under-
standing (eg, physiology), and intervention. Sensitivity to EHR
bias may depend on the goal: prediction may be accurate even
if important confounders are not measured in the EHR, but
unmeasured confounders could mislead our understanding of
physiology.

Even if EHR bias or noise cannot be measured, it may be pos-
sible to factor it out. In one study, patient data were normal-
ized to reduce interpatient variance, improving the estimation
of the correlation among variables.*® In another, a derived prop-
erty (mutual information) was used in place of traditional para-
meters such as glucose because they had too much variation
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between patients.*” In other cases, when the biases and noise
cannot be eliminated, perhaps they can be understood. For
example, it may be useful to characterize discovered associa-
tions as being due to the healthcare process (eg, physician’s
intention) versus due to physiology.*® Although it is challen-
ging, a number of techniques may be used to infer causation,
including dynamic Bayesian networks*® Granger causality;*’
and logic-based paradigms.”® Recent work demonstrated the
control of the confounding effects of covariates” with a dem-
onstration of drugs’ effects on electrocardiogram QT intervals.

DISCUSSION

We believe that the full challenge of phenotyping is not
broadly recognized. For example, one review of mining EHRs”
discusses interoperability and privacy as key challenges, but
otherwise focuses on the promise of the data rather than the
data challenges, which are arguably more difficult to solve.

We believe that the phenotyping process needs to become
more data driven and that we need to learn more about the
recording process. We have sometimes used the phrase, ‘the
physics of the medical record’, to point out the likely direction
forward. It will require study of the EHR as if it were a natural
object worthy of study in itself, and it may be helpful to
employ the general paradigm of physics, which involves model-
ing and aggregation. It will be helpful to pull in expertise and
algorithms from many fields, including non-linear time series
analysis from physics,”® new directions in causality from phil-
osophy,”® psychology, economics, of course our usual collabora-
tors in computer science and statistics, and even new models of
research that engage the public.

Our hope is that by exploiting our ample data, we can
surpass human performance and produce even more reliable
phenotypes and accurate associations. To draw an analogy, a
CT scanner uses data that are feasible to collect—namely exter-
nal x-ray images—and deconvolves them to produce an image
that reflects clinically relevant but hidden internal anatomical
features. Similarly, we need to use data that are feasible to
collect from EHR and deconvolve them to produce clinically
relevant phenotypes that are only implicit in the raw data.
Furthermore, the advanced use of EHR data, which are becom-
ing both deep in content and broad in coverage of the nation’s
population, may open new ways to look at clinical research,
studying detailed physiology (including fine laboratory mea-
surements) over large populations, in what might be called
population physiology.*’ To draw one more analogy from
physics, we can move from studying weather—individual phe-
notypes—to studying climate—properties of phenotypes over
populations and time.

Systematic changes in the adoption and use of EHR, such as
those promoted by the HITECH incentive program (meaning-
ful use),! will probably have large effects on how EHR data get
used in research. For example, structured data entry for mean-
ingful use, quality measurement, or value-based purchasing
should improve the volume and quality of data available to
research. Variables that have been notoriously difficult to
collect, such as smoking history, may become more broadly
available. On the other hand, forced data entry can introduce
biases that are difficult to detect or correct. Health information
exchange, which pulls together not only multiple EHR but also
new data sources such as pharmacy fill data, should reduce
data fragmentation, although researchers will need to contend
with heterogeneous data definitions and data entry cultures.
Therefore, even in a new era of the increased use of EHR, a
deep understanding of EHR data will be critical.
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Furthermore, this must not be a one-way street; improved
understanding of the EHR must be fed back to improve the
EHR. For example, better understanding of missing data, inac-
curacies, and biases could lead to improved user interfaces, data
definitions, and even workflows. The long-term vision of an
EHR platform that supports clinical care, research, and public
health will only be achieved with better understanding and
true innovation.
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