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A B S T R A C T

1′-Acetoxychavicol acetate (ACA) eliminates breast cancer cells via the HER2/MAPK/ERK1/2 and
PI3K/AKT pathways, and it also directly influences endocrine resistance by both enhancing pro-
apoptotic signals and suppressing pro-survival molecules. This study utilized bioinformatics to
assess ACA target genes for lapatinib-resistant breast cancer. We identified differentially
expressed genes (DEGs) using GSE16179 microarray data. DEGs from ACA-treated and lapatinib-
resistant cells were analyses using Panther DB, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses, and protein-protein interaction (PPI) network analysis.
Genomic mutations, expression levels, prognostic significance, and ROC analysis were examined
in selected genes. We used AutoDock Vina to conduct ACA molecular docking with potential
target genes. In the PPI network analysis, BCL2, CXCR2, and CDC42 were the three highest-
scoring genes. Genetic modification analysis identified PLAU and SSTR3 as the genes most
frequently altered in breast cancer samples. The RTK-Ras pathway is likely to be affected by
changes in BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET genes. Patients with
breast cancer who had lower levels of BCL2, SSTR3, PLAU, ICAM1, IGF1R, and MET had worse
overall survival compared to other groups. ACA exhibited moderate binding affinity to BCL2,
SSTR3, PLAU, ICAM1, IGF1R, and MET. Overall, ACA might counteract breast cancer resistance
to lapatinib by targeting BCL2, SSTR3, PLAU, ICAM1, IGF1R, and MET. Further in vitro studies
involving gene silencing could provide more detailed insights into the mechanism by which ACA
combats lapatinib resistance.

1. Introduction

Breast cancer remains a serious health concern, with resistance to targeted therapies presenting a substantial barrier to therapeutic
success [1]. Lapatinib, a tyrosine kinase inhibitor, has shown effectiveness in human epidermal growth factor receptor 2 (HER2)--
positive breast cancer [2]. Nevertheless, the emergence of resistance hinders its therapeutic benefits. Researchers have proposed
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various resistance mechanisms to lapatinib, including mutation of the HER2 tyrosine kinase domain, a key target of lapatinib, and the
activation of ligand-independent signaling pathways [3,4]. The interplay between HER2 and estrogen receptor (ER) pathways can
activate ligand-independent signaling, affecting apoptotic and survival signaling pathways through several alternative mechanisms [4,
5]. Additionally, treatment with trastuzumab or a combination of chemotherapeutic drugs can excerbate lapatinib resistance, further
increasing side effects to patients [6].
Despite combining lapatinib with other chemotherapeutic medicines to address limitations, resistance phenomena persist [7].

Resistance to lapatinib may significantly impact therapy outcomes for individuals with HER2-positive breast cancer [8]. Combination
chemotherapy and natural agents have been extensively studied for their potential to enhance therapeutic efficacy and reduce side
effects in cancer treatment. Understanding the mechanism of lapatinib resistance is crucial for developing strategies to address it and
improve patient outcomes.
1’-Acetoxychavicol acetate (ACA) (Fig. 1a) is a natural compound derived from ginger (Zingiber officinale) [9]. It has been

demonstrated potential anti-cancer properties in various studies [10–14]. ACA has shown significant promise in combating breast
cancer by inhibiting cancer cell proliferation, inducing apoptosis, and suppressingmigration. Toxicity studies in nudemice have shown
that intravenous administration of ACA significantly reduces tumor volume, with a favorable safety profile and no observed side effects
[15]. Furthermore, ACA exhibited cytotoxic effects across almost all subtypes of breast cancer cells, including ER+, HER2+, and
triple-negative breast cancer (TNBC). ACA also reduces human epidermal growth factor receptors (EGFR) signaling and enhances
gefitinib’s efficacy in lung cancer [16]. Interactions with EGFR and ER are among the mechanism by which breast cancer cells may
develop resistance to chemotherapeutic agents [17]. By targeting the ligand crosstalk of HER2 signaling, we hypothesized that ACA
may overcome lapatinib resistance in breast cancer cells.
In this context, investigating novel strategies to overcome lapatinib resistance is essential. This study focuses on using computa-

tional analysis to identify possible target genes of ACA to understand its role in overcoming lapatinib resistance in breast cancer. Our
research utilizes computational methods to elucidate the molecular pathways that make ACA a promising therapeutic agent for
overcoming resistance mechanisms in breast cancer, providing valuable insights for future experiment and improving treatment
options.

2. Methods

2.1. Data mining

Microarray data from GSE16179 were used, including the BT474 cell line, which is HER2-positive and sensitive to lapatinib, and
BT474-J4, a cell line that has acquired to be resistant to lapatinib [18]. GEO2R, a web-based software program that uses R as its
programming language, was used to analyze the data. differentially expressed genes (DEGs) in breast cancer with lapatinib resistance
were identified (classified as upregulated if log fold change >1 and p-value <0.05). Protein target prediction for ACA was obtained
from multiple databases, such as TargetNet [19], SwisTargetPrediction [20], and HitPick [21]. Human proteins (Homo sapiens) that
were nonduplicative across these databases were considered protein targets for predicting ACA and used in subsequent studies.
To identify proteins predicted to be targets of ACA and those encoded by the DEGs, we used Venny 2.1. A protein classification

analysis was performed on the overlapping genes using Panther DB (https://www.pantherdb.org/). The data were then analyzed
through the construction of a protein-protein interaction (PPI) network.

2.2. Constructing the gene ontology and PPI network

We computed and visually represented the PPI using the Cytoscape and STRING-DB v12.0 tools (https://string-db.org/), respec-
tively [22]. Maximal Clique Centrality (MCC) scores was used to determine the top 20 hub genes in Cyto-Hubba (further mentioned as
potential therapeutic targets of ACA (PTCA)). We performed gene ontology (GO) analysis, which encompasses biochemical, cellular
components, and molecular functions, as well as KEGG enrichment on significant genes with a p-value less than 0.05. GO and KEGG
pathway enrichment data were collected using DAVID 2021 and the WEB-based GEne SeT AnaLysis Toolkit [23].

2.3. Genetic changes in PTCA analysis

Genomic alterations related to PTCA were examined using cBioPortal on query genes from 26 breast cancer studies. The analysis
was conducted on breast cancer studies with the most genetic mutations, focusing on oncoprinting, copy number variations, genomic
pathways, and mutual exclusivity (p-values <0.05) [24]. The dataset was analyzed using ANOVA with Tukey’s post hoc test, while
copy number variations were analyzed using a Student’s t-test.

2.4. Analysis of gene expression

Using the TCGA dataset, we compared tumor and normal tissues to analyze the expression patterns of BCL2, CXCR2, CDC42,
SSTR3, PLAU, ICAM1, IGF1R, and MET using Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia2.cancer-pku.cn).
Tissues from breast cancer patients in Stages I–IV were also employed for gene expression analysis. The criterion for the level of
statistical significance was set at p < 0.01 using the default option.
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2.5. Prognostic implications

The website https://kmplot.comwas utilized to evaluate prognostic values for BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R,
and MET. Multiple parameters (p < 0.05) were selected, including HER2 positive status and overall survival (OS) [24].

Fig. 1. (a) Structure of 1′-acetoxychavicol acetate (ACA). (b) Venn diagram of protein target prediction of ACA. (c) Protein class of overlapped
genes. (d) Gene ontology (GO) analysis of overlapped genes using WebGestalt. (e) Network interaction using STRING. (f) Top-20 genes as potential
therapeutic targets of ACA (PTCA).

Table 1
Gene ontology and pathway enrichment analysis.

Term P-
value

Genes

Biological Process
GO:0007186~G-protein coupled receptor signaling pathway 3.8E-

8
CHRM3, HTR1E, PTGER3, CXCR4, HTR4, HTR5A, PIK3CG, HCRTR2, BRS3,
HRH1, MTNR1B, TBXA2R, ADORA1, PDE3A, AGTR2, PTGDR, TGM2

GO:0007165~signal transduction 4.9E-
5

GABRA2, CHRM3, ROCK1, STAT1, PDE2A, GABRG2, IGF1R, GLRA1, PLAU,
ADORA3, AKT2, ADORA1, PDE3A, CD38, MET

GO:0007268~chemical synaptic transmission 4.8E-
10

GABRA2, GLRA1, CHRM3, HRH1, HTR7, HTR1E, MTNR1B, HRH2, HTR4,
HTR5A, GABRG2, HCRTR2

GO:0007187~G-protein coupled receptor signaling pathway,
coupled to cyclic nucleotide second messenger

7.9E-
15

CHRM3, HRH1, HTR7, HTR1E, MTNR1B, HRH2, MC5R, HTR4, SSTR2, HTR5A,
SSTR3

GO:0009410~response to xenobiotic stimulus 1.6E-
8

P2RX7, NPC1, MAOB, SRD5A2, TBXA2R, STAT1, SRD5A1, PDE3A, BCL2, CD38,
DRD2

Molecular function
GO:0005515~protein binding 5.1E-

3
ACHE, CHRM3, NPY2R, HTR4, PIK3CG, IGF1R, ICAM1, LIPE, CA1, HTR7, PLAU,
CA2, AKT2, ADORA1, NOS1, JAK3, TGM2, PTGDR, SSTR2, CDC25C, SSTR3,
GABRG2, NPC1, MTNR1B, MAPKAPK2, SCN4A, AGTR2, MET, MAOB, ROCK1,
CXCR4, PLG, CDC42, CCNB2, GLRA1, TBXA2R, FYN, DRD2, FDFT1, GABRA2,
HTR1E, SRD5A2, STAT1, PDE2A, HCRTR2, DHODH, P2RX7, WEE1, CYP1A2,
MC5R, PDE3A, BCL2

GO:0004930~G-protein coupled receptor activity 1.2E-
6

HTR1E, CXCR4, SSTR2, HTR5A, SSTR3, HCRTR2, BRS3, HRH1, HTR7, MTNR1B,
ADORA3, MC5R, AGTR2, DRD2

GO:0042802~identical protein binding 9.6E-
3

MAOB, STAT1, PDE2A, PIK3CG, IGF1R, P2RX7, CDC42, GLRA1, BCL2, CD38,
FYN, DRD2, MET

GO:0005524~ATP binding 2.7E-
2

P2RX7, WEE1, ROCK1, AKT2, MAPKAPK2, FYN, JAK3, MET, PIK3CG, IGF1R,
TGM2

GO:0030594~neurotransmitter receptor activity 6.3E-
12

GABRA2, GLRA1, CHRM3, HRH1, HTR7, HTR1E, HRH2, HTR4, HTR5A, GABRG2

Cellular Component
GO:0005886~plasma membrane 4.1E-

14
ACHE, CHRM3, ROCK1, NPY2R, PTGER3, CXCR4, PLG, HTR4, PIK3CG, IGF1R,
BRS3, ICAM1, CDC42, GLRA1, HRH1, HTR7, TBXA2R, HRH2, PLAU, CA2,
ADORA3, AKT2, ADORA1, CD38, FYN, NOS1, DRD2, JAK3, TGM2, PTGDR,
CA12, GABRA2, HTR1E, PDE2A, SSTR2, HTR5A, SSTR3, GABRG2, HCRTR2,
P2RX7, NPC1, MTNR1B, MC5R, SCN4A, AGTR2, MET

GO:0016021~integral component of membrane 6.5E-
6

ACHE, MAOB, PTGER3, CXCR4, IGF1R, BRS3, ICAM1, GLRA1, HRH1, HTR7,
TBXA2R, HRH2, ADORA3, ADORA1, CD38, DRD2, PTGDR, FDFT1, CA12,
GABRA2, SRD5A2, SRD5A1, HTR5A, SSTR3, GABRG2, HCRTR2, DHODH,
P2RX7, NPC1, MTNR1B, PDE3A, BCL2, SCN4A, MET

GO:0005887~integral component of plasma membrane 1.3E-
16

CHRM3, NPY2R, PTGER3, HTR4, IGF1R, BRS3, ICAM1, GLRA1, HRH1, HTR7,
TBXA2R, HRH2, ADORA3, ADORA1, DRD2, GABRA2, HTR1E, SSTR2, HTR5A,
SSTR3, GABRG2, HCRTR2, P2RX7, NPC1, MTNR1B, MC5R, SCN4A, AGTR2, MET

GO:0005829~cytosol 9.6E-
2

ROCK1, STAT1, PDE2A, SSTR2, CDC25C, PIK3CG, DHODH, CDC42, DHFR,
CCNB2, LIPE, HRH1, CA1, CA2, AKT2, MAPKAPK2, PDE3A, BCL2, CA6, FYN,
NOS1, JAK3, TGM2

GO:0016020~membrane 4.2E-
3

CA12, ACHE, PTGER3, HTR4, PIK3CG, BRS3, ICAM1, IGF1R, P2RX7, CDC42,
CCNB2, GLRA1, LIPE, NPC1, PDE3A, BCL2, CD38, JAK3, MET, PTGDR, FDFT1

KEGG Pathway
hsa04080:Neuroactive ligand-receptor interaction 4.6E-

19
CHRM3, NPY2R, PTGER3, PLG, HTR4, BRS3, GLRA1, HRH1, HTR7, TBXA2R,
HRH2, ADORA3, ADORA1, DRD2, PTGDR, GABRA2, HTR1E, SSTR2, HTR5A,
SSTR3, GABRG2, HCRTR2, P2RX7, MTNR1B, MC5R, AGTR2

hsa04020:Calcium signaling pathway 1.5E-
7

CHRM3, PTGER3, CXCR4, HTR4, HTR5A, P2RX7, HRH1, HTR7, TBXA2R, HRH2,
CD38, NOS1, MET

hsa04024:cAMP signaling pathway 2.5E-
5

LIPE, HTR1E, ROCK1, AKT2, PTGER3, PDE3A, ADORA1, HTR4, SSTR2, DRD2

hsa05200:Pathways in cancer 1.2E-
2

CDC42, ROCK1, STAT1, AKT2, PTGER3, BCL2, CXCR4, JAK3, MET, IGF1R

hsa04022:cGMP-PKG signaling pathway 1.1E-
3

ROCK1, AKT2, ADORA3, PDE2A, PDE3A, ADORA1, PIK3CG
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2.6. ROC Plot

The ROC plotter (http://www.rocplot.org) was used to examine gene expression and lapatinib sensitivity of clinical trials for breast
cancer. HER2 positive status, 5-year relapse-free survival rate, overall survival, and lapatinib therapy were included as predefined
parameters. A p-value less than 0.05 was considered significant.

2.7. Molecular docking

We searched https://rcsb.org for the protein identifiers (2W3L, 3KID, 5MZA, 2OJ9, and 3DKF) corresponding to the following
proteins: BCL2, PLAU, ICAM1, IGF1R, and MET. Binding energy levels were expressed in kcal/mol. The software utilized includes
Autodock Vina 1.2.5 for molecular docking, PyMOL 2.5.7 with an Academic License for molecular visualization, LigPlot + v.2.2 with
an Academic License for ligand-protein interaction analysis, PLIP for protein-ligand interaction prediction, and Marvin JS online for
chemical structure drawing. Default setting were used in molecular docking, including grid box coordinated (x, y, z), number of point
20, spacing 0,375 Å. Grid coordinates were IGF1R (5.350; − 6.426; 20.902), BCL2 (39.471; 26.951; − 12.626), MET (17.356; 13.008;
138.984), ICAM1 (− 29.596; 88.125; − 11.25), and PLAU (− 0.828; − 33.596; − 10.66), respectively. We also identified which residues
were involved in the interaction [25,26].

3. Results

3.1. Data mining

We began by using microarray data from BT474-J4, a cell line that has become resistance to lapatinib, in GSE16179 to investigate
the genes that ACA targets to overcome lapatinib resistance in breast cancer. We identified DEGs and found that they prevented BT474
cells from becoming resistant to lapatinib. GSE16179 provided us with 7617 genes (Supplementary Table 1). ACA’s protein prediction
targets were derived from several databases, selected by genes expressed in human without duplication, yielding 565 genes
(Supplementary Table 2). A Venn diagram was to show the overlap between DEGs from GSE16179 and ACA prediction targets. The
diagram revealed 63 common DEGs (Fig. 1b and Supplementary Table 3). These 63 genes were analyzed for their classification and
network interactions.

3.2. Gene ontology and pathway analysis

As shown in Fig. 1c, we categorized the 63 obtained genes into various groups, including transmembrane signal receptors (23
genes), metabolite interconversion enzymes (20 genes), protein modifying enzymes (9 genes), protein-binding activity modulators (9
genes), transporters (6 genes), cell adhesion molecules (2 genes), RNA metabolism proteins (1 gene), and gene-specific transcriptional
regulators (1 gene). We classified the GO results into biological processes, cellular components, and molecular functions. Several DEGs
listed in Table 1 associated with various biological reactions, such as the G-protein-coupled receptor signaling pathway, signal
transduction, chemical synaptic transmission, GPCR signaling pathway, and response to xenobiotic stimuli. DEGs were found in
multiple cellular locations, including the plasma membrane, the cytosol, and the integral component membrane. According to Table 1,

Table 2
The top 20 hub genes ranked by Maximal Clique Centrality (MCC) score,
assessed using CytoHubba.

Rank Name Score

1 BCL2 824.0
2 CXCR2 797.0
3 CDC42 750.0
4 PIK3CG 481.0
5 STAT1 408.0
6 FYN 362.0
7 ICAM1 288.0
8 IGF1R 264.0
9 AKT2 243.0
10 MET 170.0
11 PLAU 144.0
12 CD38 48.0
13 JAK3 24.0
13 PLG 24.0
15 DRD2 17.0
16 AGTR2 14.0
17 NPY2R 13.0
18 SSTR2 12.0
18 SSTR3 12.0
20 MAOB 8.0
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Fig. 2. cBioPortal examination for genetic alterations and pathway of PTCA. (a) Genetic changes in 26 studies on breast cancer. (b) RTK-RAS
signaling pathway of PTCA. (c) Summary of genetic alterations in BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET in The Meta-
static Breast Cancer Project (Provisional, December 2021) samples. (d) Mutations of genes BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and
MET in breast cancer samples. Green dots represent missense mutations, yellow dots represent splice mutations, and gray dots represent truncating
mutations. (e) Copy number of alterations of BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET across breast cancer samples. 1: deep
deletion, 2: shallow deletion, 3: diploid, 4: gain, and 5: amplification.
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DEGs were involved in protein binding, GPCR activity, identical protein binding, and neurotransmitter receptor activity. The DEGs’
KEGG pathway enrichment analysis indicated their involvement in controlling interactions between neuroactive ligands and receptors,
the calcium signaling pathway, the cAMP signaling pathway, cancer pathways, and the cGMP-PKH signaling pathway (Table 1).

3.3. Network interaction and top genes

The PPI network complexity comprised of 63 genes with a confidence level of 0.4. The network included 63 nodes and 121 edges,
with an average node degree of 3.84 and a local clustering coefficient of 0.649. The PPI enrichment p-value, less than 1.0e-16 (Fig. 1C),
highlighted the complex structure of the networks and the significance of protein interactions. Combating lapatinib resistance via ACA
may involve numerous PPI network proteins that participate in specific molecular pathways. We selected hub genes using the MCC
score to determine the most crucial PPI network protein, as MCC captures essential proteins in the top ranked list, regardless of their
degree. BCL2, CXCR4, CDC42, PIK3CG, STAT1, FYN, ICAM1, IGF1R, AKT2, MET, PLAU, CD38, JAK, PLG, DRD2, AGTR2, NPY2R,
SSTR2, SSTR3, and MAOB are the 20 genes with the highest scores (Table 2).

Fig. 2. (continued).
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3.4. Genetic alteration in BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET

We examined the mutations, structural variations, amplifications, deep deletions, and numerous modifications of the top 20 genes
using cBioPortal. The Metastatic Breast Cancer Project (Provisional, December 2021) exhibited the most genomic changes and was
examined using Oncoprint (Fig. 2a). cBioPortal was utilized in multiple breast cancer studies to assess genetic alterations in eight
specific genes, namely BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET. The genes BCL2, CXCR2, and CDC42 were
chosen based on their top scores, while SSTR3, PLAU, ICAM1, IGF1R, and MET were selected based on KEGG pathway enrichment
analysis findings, which indicated their regulatory role in ligand-receptor interaction. Pathway enrichment analysis of individual
genes linked RTK-Ras to genetic alterations in BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET (Fig. 2b).
The Metastatic Breast Cancer Project demonstrated the most significant genetic changes compared to other breast cancer studies,

and these changes were further analyzed using Oncoprint. Genetic mutations in the specified target genes were as follows: 10 % for
BCL2, 18 % for CXCR2, 31 % for CDC42, 36 % for SSTR3, 34 % for PLAU, 32 % for ICAM1, 17 % for IGF1R, and 10% for MET (Fig. 2c).
Additionally, most of the gene modifications were amplification, as shown in Fig. 2e. An investigation of mutual exclusivity revealed
substantial co-occurrence of certain gene pairs (SSTR3-ICAM1; CXCR2-ICAM1; CXCR2-PLAU, CXCR2-SSTR3, and PLAU-IGF1R) in
breast cancer research conducted by the Metastatic Breast Cancer Project (Table 3) with a p-value of less than 0.05. The findings
highlighted the important roles of ICAM1, SSTR3, CXCR2, and PLAU in ACA therapy. Subsequent examinations of copy number
modifications yielded noteworthy findings.

3.5. Gene expression of BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET in breast cancer samples

Breast cancer tissues have much higher PLAU and MET levels than normal tissues (Fig. 3a). Using GEPIA, we investigated the
relationship between mRNA levels of BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, MET, and tumour stages in breast cancer.
We found that CXCR2, SSTR3, and CDC42 levels remained constant throughout. In stage IV, BCL2 and IGF1R levels decreased,
remained stable in stages I–III, and increased in stage X. ICAM1 and MET levels declined in stage X after being stable in stages I–IV.

3.6. Prognostic value

We examined how mRNA levels of BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET could predict overall survival
(OS) and found a stronger survival association in breast cancer compared to other groups (p < 0.05) (Fig. 3c). Individuals with breast
cancer who had low levels of CXCR2, SSTR3, ICAM1, and MET mRNA had longer overall survival rates. Analyzed data indicate that
breast cancer patients with low BCL2, CDC42, PLAU, and IGF1R mRNA levels had substantially worse overall survival compared to
other groups.

3.7. The ROC Plot demonstrates the substantial prognostic capability of IGF1R expression

Based on transcriptome data from breast cancer patients, gene expression levels were correlated with lapatinib response by relapse-
free survival (RFS) and pathological complete response (PCR). AUC values of 0.712 were strongly linked with IGF1R expression
(Fig. 3d). Other gene expression levels did not correlate wirh RFS in lapatinib-treated patients. CXCR2, PLAU, and IGF1R expression
levels had high predictive power using the PCR parameter, with AUC values of 0.692, 0.714, and 0.726 (Fig. 3e).

3.8. Molecular docking

Molecular docking studies for ACA with BCL2, PLAU, ICAM1, IGF1R, and MET were performed (Fig. 4). BCL2, SSTR3, PLAU,
ICAM1, IGF1R, and MET were selected based on the outcomes of the earlier step. The docking score of ICAM1 with ACA was the only
one stronger than that of its native ligand compared to other proteins. Indeed, the other protein and ACA had comparable docking
score with their native ligands (Table 4). An RMSD <2 indicated the validity of the docking method (Table 5). The docking results
showed that ACA could bind to BCL2, SSTR3, PLAU, ICAM1, IGF1R, andMET, indicating potential for further exploration to determine
the binding properties and molecular interaction. The amino acid interaction and detailed ligand interaction should be further
explored to establish a comprehensive result.

Table 3
The mutual exclusivity analysis.

A B Log2 Odds Ratio p-Value Tendency

SSTR3 ICAM1 >3 <0.001 Co-occurrence
CXCR2 ICAM1 >3 <0.001 Co-occurrence
CXCR2 PLAU >3 <0.001 Co-occurrence
CXCR2 SSTR3 >3 <0.001 Co-occurrence
PLAU IGF1R 2.404 0.008 Co-occurrence

F. Wulandari et al. Heliyon 10 (2024) e40769 

8 



(caption on next page)

F. Wulandari et al. Heliyon 10 (2024) e40769 

9 



4. Discussion

Bioinformatics was applied to explore ACA targets and pathways for lapatinib-resistant breast cancer. GO analysis showed that
plasma membrane DEGs are involved in GPCR signaling pathway and signal transduction biological responses. Furthermore, DEGs are
involved in the molecular process of protein binding. KEGG pathway analysis revealed the presence of neuroactive ligand-receptor
interactions and pathways associated with cancer [27]. The cancer pathways include the cAMP, cGMP-PKG signaling pathways,
and calcium [28]. The receptors and ligands on the plasma membrane that link to signaling pathways both within and outside of cells
comprise the neuroactive ligand-receptor interaction signaling pathway. Therefore, disrupting the connection between the ligand and
the receptor could be an effective strategy to treat lapatinib-resistant cancer. In breast cancer, ACA affects proliferation, migration, and
metastasis, disrupting the progression of carcinogenesis [9–13,16,29]. The role of ACA in lapatinib-resistant breast cancer cells is not
yet fully understood.
Upon analyzing the protein-protein interaction network, it was found that the genes BCL2, CXCR2, and CDC42 had the highest

Fig. 3. Analysis of BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET expression in breast cancer. (a) mRNA expression BCL2, CXCR2,
CDC42, SSTR3, PLAU, ICAM1, IGF1R, and MET in normal and breast cancer tissues. (Normal = 291, Tumor = 1085, and p < 0.01). (b) The mRNA
levels and tumor stages in breast cancer patients (p < 0.01). (c) Survival prediction of BCL2, CXCR2, CDC42, SSTR3, PLAU, ICAM1, IGF1R, and
MET, as analyzed by KMPlotter.

Fig. 4. Molecular docking interactions between the BCL2, PLAU, ICAM1, IGF1R, and MET, their native ligands, and ACA.

Table 4
The molecular docking data of BCL2, PLAU, ICAM1, IGF1R, and MET RET, ErbB4, FGFR2, their respective natural ligands, and ACA.

No Protein PDB ID Docking Score (kcal/mol)

Native Ligand ACA

1 IGF1R 2OJ9 ¡8.373 ¡7.775
2 BCL2 2WL3 ¡1.853 ¡1.841
3 MET 3DKF ¡8.956 ¡8.358
4 PLAU 3KID ¡5.125 ¡5.06
5 ICAM1 5MZA ¡2.277 ¡3.134
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degree scores. BCL2, CXCR2, and CDC42. SSTR3, PLAU, and ICAM1 were the genes that changed the most in breast cancer samples,
most of which were over-expressed. Analysis using cBioPortal showed that ICAM1, SSTR3, CXCR2, PLAU, and IGF1R exhibited high
co-occurrence in mutual exclusivity. Our pathway enrichment study found a link between RTK-Ras and changes in the genes for
CDC42, BCL2, SSTR3, PLAU, ICAM1, IGF1R, and MET. Our GEPIA analysis revealed significantly higher expression levels of PLAU and
CDC42 in tumor tissues compared to normal tissues. Patients exhibiting low levels of CXCR2, ICAM2, SSTR3, and MET showed a
notably increased overall survival rate. IGF1R expression levels demonstrated significant prognostic power relationships, with AUC
values of 0.712. The eight proteins play a vital role in breast cancer carcinogenesis, with IGF1R, MET, and ICAM-1 being particularly
significant. The data suggest that those genes have a crucial role in ACA therapy.
The RTK-Ras pathway is essential for breast cancer resistance [30]. It regulate major signaling pathways including MAPK,

PI3K/Akt, and JAK/STAT, which drive cancer stemness, angiogenesis, and metastasis [31,32]. In breast cancer, several RTKs were
significantly overexpressed, including vascular endothelial growth factor receptors (VEGFRs) [33], epidermal growth factor receptors
(EGFRs) [34], insulin-like growth factor receptors (IGFRs) [35], platelet-derived growth factor receptors (PDGFRs) [36], and fibroblast
growth factor receptors (FGFRs) [37]. Kinase and Ras/PI3K/Akt pathways are also crucial in controlling proliferation, differentiation,
and survival [38]. Ras mutations with oncogenic properties are linked to promoting resistance to cancer drugs, specifically in breast
cancer [31]. When the RTK-Ras pathway is activated in breast cancer, therapies targeting the HER2 receptor, such as trastuzumab and
lapatinib, may not be as effective. Various mechanisms have been identified to explain why some cells become resistant to RTK in-
hibitors. These include changes in RTKs and their affected cells, as well as the increased activity of additional RTKs [32,39].
Lapatinib-resistant breast cancer cells have been found to overexpress the IGF1R receptor. This receptor shares downstream signaling
pathways with HER2 in breast cancer, such as PI3K/Akt/mTOR and MAPK [35]. Interaction between IGF1R and HER2 may lead to
continuous HER2 activation even while trastuzumab is present, causing resistance [35,40]. IGF1R signaling may affect the expression
of proteins related to drug resistance, including MDR1, MRP3, and BCRP, which play a role in chemotherapeutic resistance [41,42].
IGF1R overexpression has been reported as an alternative mechanism for HER2-positive breast cancer cells to evade resistance,
particularly in the context of targeted therapy [43]. Moreover, resistance in breast cancer has been linked to other RTK members, such
as EGFR, AXL, VEGFR, and c- Met [43,44]. c-Met overexpression in HER2+ breast cancer cells is associated with trastuzumab resis-
tance [45]. Studies have shown that small-molecule inhibitors targeting c-Met may improve the efficacy of EGFR inhibitors [46]. MET,
which encodes c-Met in HER2-overexpressing breast cancer cells, has been shown to contribute to trastuzumab resistance [47]. The
interaction between c-Met and MET may result in prolonged HER2 phosphorylation in the presence of trastuzumab, leading to
resistance. Additionally, ICAM-1 acts as an adapter protein that interacts with c-MET, enhancing its activity. Phosphorylation of
ICAM-1 by c-Met creates a positive feedback loop that enhances SRC activity and promotes cancer progression. Several studies have
reported that targeting ICAM-1 could be beneficially to enhance the efficacy of chemotherapy and improve patient outcomes by
reducing metastasis and angiogenesis [48,49]. Utilizing a multi-targeted therapeutic approach that simultaneously targets multiple
pathways may be the most effective option for overcoming resistance in breast cancer.
Marketed cancer drugs, such as trastuzumab and lapatinib, are essential HER2-targeted breast cancer treatments, . However, some

cancer may not respond to or develop resistance to these drugs. In patients with HER2-positive cancer, lapatinib is often less effective
because it blocks the HER2 receptor [50], which in turn inhibits the tyrosine kinase domain in the cytoplasm. Researchers have
identified BCL2 as relevant to these events because it governs cell viability by blocking apoptosis [51]. Breast cancer resistance to
lapatinib is a multifaceted issue that includes changes in apoptotic signaling pathways and the development of novel driver mutations.
Changes in BCL2 family members, specifically MCL-1 and BAX, have been seen in cases of lapatinib resistance, suggesting that they
may play a role in this resistance [51,52]. Studies have linked CXCR2, a chemokine receptor, to a worse prognosis in breast cancer
patients [53]. CXCR2 may contribute to lapatinib resistance by influencing the tumor microenvironment or innate host immunity [54,
55]. MET and PLAU are key players in the HGF/MET signaling pathway, and have been linked to lapatinib resistance [56]. MET
overexpression is observed in lapatinib-resistant breast cancer cells, suggesting a role in resistance [46]. IGF1R plays a crucial role in
cell survival, proliferation, and angiogenesis as a receptor tyrosine kinase. Reports of IGF1R overexpression in breast cancer cells
resistant to lapatinib suggest that IGF1R may play a role in lapatinib resistance [43]. ICAM1, a cell adhesion molecule, is associated
with resistance to cancer treatments such as lapatinib [48,57]. ICAM1 may contribute to lapatinib resistance by influencing the tumor
microenvironment or innate host immunity. SSTR3 is a somatostatin receptor associated with resistance to breast cancer treatments,
such as lapatinib. SSTR3 may contribute to lapatinib resistance by influencing the tumor microenvironment or innate host immunity
[58]. CDC42 is a small GTPase involved in cell migration, adhesion, and cytoskeleton rearrangement. May contribute to lapatinib
resistance by influencing the tumor microenvironment or innate host immunity [59,60]. Our results from molecular docking analysis
revealed a comparative affinity of ACA and native ligands of BCL2, CXCR2, MET, PLAU, IGF1R, ICAM2, SSTR3, and CDC42. We

Table 5
The RMSD scores of BCL2, PLAU, ICAM1, IGF1R, and MET RET, ErbB4, FGFR2, their respective natural ligands, and ACA.

No Protein PDB ID RMSD

Native Ligand ACA

1 IGF1R 2OJ9 1.406 1.655
2 BCL2 2WL3 1.466 1.314
3 MET 3DKF 1.407 1.853
4 PLAU 3KID 1.104 1.058
5 ICAM1 5MZA 1.856 1.911
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anticipate that ACA may play a role in combating lapatinib resistance through RTK-Ras signaling pathway and alter the ligand in-
teractions of those protein targets. Utilizing a multi-targeted therapeutic approach that concurrently targets multiple pathways may be
the most effective strategy for overcoming lapatinib resistance in breast cancer patients.
Several previous preclinical studies on ACA have revealed that this compound exhibits mechanisms of action and potential ther-

apeutic applications against various cancer types, but fewer studies reported on its selectivity and optimum concentration [16]. ACA
induces apoptosis in cancer cells by inhibiting the NF-κB signaling pathway, which is crucial for cell survival and proliferation. The
compound also activates caspases, leading to DNA fragmentation and cell death. In the term of cell cycle, ACA has been shown to arrest
at the G2/M phase, preventing their division and proliferating. ACA also inhibits angiogenesis, which is the formation of new blood
vessels that supply nutrients to growing tumors [9–12,29]. The compound has also been found to enhance the efficacy of other
anticancer drugs when used in combination therapy, including transtuzumab, cisplatin, and doxorubicin [11,16]. While ACA has
demonstrated synergistic effects when combined with other anticancer agents, such as cisplatin or recombinant human alpha feto-
protein, these combinations are still under investigation [61–63]. Other studies on acute and sub-acute toxicity in rats have shown that
ACA is non-toxic at low doses, with no lethality or behavioral changes observed. Researchers have studied ACA as a regulator of
RTK/ERKMAPK signaling. ACA has been also used in conjunction with other anticancer drugs. In MDA-MB-231, 4T1, andMCF7 breast
cancer cells, ACA enhanced the cytotoxic effects of cisplatin and doxorubicin. Several studies have reported that the clinical devel-
opment of ACA has been hindered by its poor in vivo solubility, degradation of biological activity upon exposure to an aqueous
environment, and non-specific targeting of tumor cells. To improve the solubility and bioavailability of ACA, researchers have
developed nanostructured lipid carriers (NLCs) for targeted delivery [13]. These NLCs enhance the specificity and efficacy of ACA,
reducing systemic side effects and improving therapeutic outcome. Several studies on ACA have been conducted and this study
provided a preliminary data to further explore in laboratorium.
One drawback of this work is that the researchers indirectly conducted data mining on lapatinib-resistant BT474-J4 cells. Although

the data mining approach effectively demonstrated the resistance phenomenon of lapatinib, the fact that the microarray data origi-
nated from a single cell line is an additional limitation. As a result, it is critical to assess microarray data from various HER2+ breast
cancer cell types and further investigate at the protein level. The researchers employed a bioinformatics strategy to determine the most
likely ACA target genes. An in vitro study is urgently needed to corroborate the bioinformatics findings based on mRNA-level mea-
surements. This approach could accelerate the search for molecular targets and methods by which ACA might be used to treat breast
cancer cells that do not respond to lapatinib. Future studies should validate these results using both in vitro and in vivo protein levels
assessments and clinical trials.

5. Conclusions

Gene expression, survival prediction, and genetic modifications siggest that ACA may target BCL2, PLAU, ICAM1, IGF1R, and MET
to overcome lapatinib resistance in breast cancer. Furthermore, molecular docking analysis showed that ACA counteracts lapatinib
resistance by blocking ICAM1 signaling in breast cancer cells. BCL2, SSTR3, PLAU, IGF1R, and MET docked similarly to ACA and their
natural ligands. This research requires further in vitro, in vivo, and clinical trials to confirm its findings.
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