
Frontiers in Immunology | www.frontiersin.

Edited by:
Guido Moll,
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The liver is unique in both its ability to maintain immune homeostasis and in its potential for
immune tolerance following solid organ transplantation. Single-cell RNA sequencing
(scRNA seq) is a powerful approach to generate highly dimensional transcriptome data
to understand cellular phenotypes. However, when scRNA data is produced by different
groups, with different data models, different standards, and samples processed in
different ways, it can be challenging to draw meaningful conclusions from the
aggregated data. The goal of this study was to establish a method to combine ‘human
liver’ scRNA seq datasets by 1) characterizing the heterogeneity between studies and
2) using the meta-atlas to define the dominant phenotypes across immune cell
subpopulations in healthy human liver. Publicly available scRNA seq data generated
from liver samples obtained from a combined total of 17 patients and ~32,000 cells were
analyzed. Liver-specific immune cells (CD45+) were extracted from each dataset, and
immune cell subpopulations (myeloid cells, NK and T cells, plasma cells, and B cells) were
examined using dimensionality reduction (UMAP), differential gene expression, and
ingenuity pathway analysis. All datasets co-clustered, but cell proportions differed
between studies. Gene expression correlation demonstrated similarity across all
studies, and canonical pathways that differed between datasets were related to cell
stress and oxidative phosphorylation rather than immune-related function. Next, a meta-
atlas was generated via data integration and compared against PBMC data to define gene
signatures for each hepatic immune subpopulation. This analysis defined key features of
hepatic immune homeostasis, with decreased expression across immunologic pathways
and enhancement of pathways involved with cell death. This method for meta-analysis of
scRNA seq data provides a novel approach to broadly define the features of human liver
immune homeostasis. Specific pathways and cellular phenotypes described in this human
org July 2021 | Volume 12 | Article 6795211
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liver immune meta-atlas provide a critical reference point for further study of immune
mediated disease processes within the liver.
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INTRODUCTION

The liver is an immunologically complex organ with an
abundance of resident leukocytes which comprise a significant
proportion of residing nonparenchymal cells (1, 2). A unique but
poorly understood feature of the liver is its physiologic
immunotolerance, which is thought to be the result of the
organ receiving much of its dual blood supply from the portal
vein. The portal vein shuttles blood to the liver via the
enterohepatic circulation, which carries both nutritionally-
derived and bacterial antigens without causing an untoward
inflammatory response (3). Further characterization of the
unique hepatic immune microenvironment has the potential to
aid study of a spectrum of immune-mediated disease processes of
the liver including autoimmune hepatitis, cholangiopathy,
transplant rejection, and the tumor microenvironment of
intrahepatic malignancy (4).

Single cell RNA sequencing (scRNA seq) has led to rapid
advances in our understanding of cellular phenotypes of both in
situ human tissues in recent years (5, 6). Application of scRNA
seq to human liver tissue to examine both healthy and
pathogenic states at the molecular level has proven useful to
identify heterogeneity among various cell types, including
immune cell populations and epithelial progenitors (7–9).
Generation of these libraries through high-throughput
sequencing techniques such as 10x Genomics or Drop-seq
generates highly dimensional data, which is suitable to both
answer and also to rapidly generate hypotheses. Given the
relatively high cost of scRNA seq, a typical human study only
analyzes a small number of unique samples (as few as three
unique patients), despite the known genetic heterogeneity across
individuals (10, 11). In 2018, the NIH updated the policy for data
access of genomic datasets, with the goal of enhancing
researchers’ ability to perform pooled analyses or meta-
analyses on genomics data particularly in human specimens
(12). More recently, there are several NIH requests for
applications specifically targeted at secondary and integrated
analytic approaches to harness the power of these existing,
funded datasets (13).

Combining liver-specific immune cell subsets of scRNA seq
datasets yields a higher number of cell libraries across a larger
sample of patients, which is crucial when considering that
knowledge generated from these human “atlases” may be
used to understand biochemical mechanisms of disease and to
develop therapeutics for clinical use. One major drawback
of combining unique studies is that differences in technique
have been demonstrated to lead to unexpected alterations
in sequencing results (14, 15). A study by Bonnycastle et al.
used scRNA seq of human pancreatic islet cells and compared
different tissue processing techniques, including fresh, fixed,
org 2
and cryopreserved tissues. Despite processing tissue samples
from the same source, this analysis demonstrated differences
among cell type proportions recovered as well as changes in
gene expression signatures across different processing techniques
(16). Thus, combining multiple human liver scRNA datasets has
the potential to account for more biological variability across
different patients, potentially attenuating the effects of pre-
analytical variables that are not biologically meaningful.

The aim of this study was to determine if a meta-analysis of
existing normal human liver scRNA seq datasets could be
performed to generate a comprehensive human liver immune
meta-atlas for future use as a reference point for examining
immune-mediated liver diseases. In Part 1, an extensive
comparison was performed between studies in order to
establish whether generalizability across datasets would be
meaningful. In Part 2, the pooled meta-atlas was explored to
define expression profiles across four major immune
subpopulations and to provide a re-usable meta-atlas of
healthy liver immune homeostasis.
METHODS

Institutional Review Board approval was not required for this
study, as deidentified, publicly available data obtained from
human subjects was analyzed. Data is available in the public
domain as outlined below.

Systematic Review and Data Acquisition
A comprehensive review of the literature for scRNA seq studies
involving normal human liver yielded three recent publications:
1. Aizarani et al., and based on the methods used in the study, it
was referred to as “Liver Atlas, Cholangiocyte and Endothelial
enriched” (LACEe), 2. Zhao et al., referred to as “Liver CD45+
enriched” (LCD45e), and 3. MacParland et al., referred to as
“Non-biased Liver” (Lnb) (7–9). Each raw dataset was found in
the Gene Expression Omnibus, LACEe: GSE124395, LCD45e:
GSE125188, Lnb: GSE115469 (17). Datasets were imported into R
as UMI count matrices using the RStudio interface. The
workflow for isolation of our cell populations of interest from
each dataset is summarized in Figure 1. Briefly, the CD45+ cell
compartment was isolated in the LACEe and Lnb studies in order
to extract the leukocyte population and exclude hepatocytes and
other non-parenchymal cells. For LCD45e, the CD45 population
was isolated prior to sequencing, and included cells derived from
liver, spleen, and peripheral blood that had been barcoded for
source identification. In this case, only the liver cells were
extracted for analysis. Authors from each dataset were
contacted for clarification on aspects of the datasets as needed
in order to ensure the accuracy of our analysis.
July 2021 | Volume 12 | Article 679521
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Data Analysis and Visualization
The Seurat version 3.0 R toolkit (RRID: SCR_007322) was used
for all data analysis due to its ability to integrate across datasets;
the data analysis pipeline followed the tutorial outlined by the
package developers (18, 19). Single cell expression count matrices
barcodes and gene IDs from each study were downloaded from
GSE. After import of the datasets into Seurat, we filtered
barcodes for CD45+ when handling the LACEe and Lnb

datasets. The LCD45e dataset included cell counts which were
exclusively from CD45+ cells, therefore this filtering was not
necessary. Spleen and peripheral blood mononuclear cells
(PBMCs) were handled by excluding the associated barcodes
and only including barcodes for the liver immune cells. To
normalize the data, UMI counts were scaled by library size and
Frontiers in Immunology | www.frontiersin.org 3
a natural log transformation; gene counts for each cell are
divided by the total UMI count of that cell, scaled by a factor
of 10,000, and then transformed via a natural log plus 1 function
(“NormalizeData”). For downstream analysis, normalized data is
additionally scaled so that the mean expression across cells is 0
and the variance is 1 (“ScaleData”). In order to reduce the
dimensionality of the data for clustering functions, Principal
Component Analysis (PCA) was utilized, and we determined the
first 30 principal components explained sufficient observed
variance (“RunPCA”). Next, to identify clusters within the
reduced dimensional space, cells were embedded in a k-nearest
neighborhood-based graph structure (“FindNeighbors”) and
were then partitioned into clusters (“FindClusters”). Finally, to
aid in visualization, Uniform Manifold Approximation and
FIGURE 1 | Combining liver-specific scRNA seq data to create a human liver immune meta-atlas. Schematic diagram summarizing the number of subjects and
major pre-analytical variables pertaining to scRNA sequencing of human liver. Post-experimental analysis performed in this study is highlighted in the shaded region.
CD45+ cells were selected from the LACEe and Lnb studies. CD45+ cells (which were already pre-selected for in the LCD45e dataset) which were of liver origin were
post-experimentally extracted as splenic and peripheral blood cells were also included in the original dataset. The scRNA seq analysis pipeline (Seurat v3 in R) was
applied, then clustering and differential expression analysis were used to assess the ability to combine scRNA seq techniques and generate datasets for tertiary
pathway analysis of immune function in the normal human liver. Created with BioRender.com.
July 2021 | Volume 12 | Article 679521
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Projection (UMAP) was run over the reduced dimensional space
(‘RunUMAP”) and identified clusters were projected on to the
UMAP plot. Accounting for noise and batch differences between
the three studies was done by using reference cells from each.
These anchors were identified (“FindIntegrationAnchors”),
which represent pairs of cells from each dataset identified and
scored based on their close proximity using k-nearest
neighborhood approach. These anchors are then used to measure
the expression difference between studies (“IntegrateData”),
which is then removed from the corresponding normalized
data. Integration is run between the normalization and scaling
steps (19).

Clustering was performed in Seurat v3. To establish reliability
of this method, the clustering algorithm was compared between
Seurat and an alternative approach using the Harmony R
package (https://github.com/immunogenomics/harmony) (20).
This package scales the data to make nearby cells more similar
when clustering is performed. Harmony is also easily
incorporated into the Seurat pipeline. Results using Harmony-
based clustering were essentially identical to Seurat. Across cell
types, 96.5% to 99.9% of cells in Seurat clusters were present in
the same Harmony clusters (Supplemental Figure 1).
Additionally, agreement was high across datasets ranging from
96.4% to 99.4%. This data confirms that our clusters are accurate
and downstream analyses should not be affected by the choice
in algorithm.

Utilizing the UMAP plot of the integrated data, we were able
to manually identify four clusters corresponding to four major
immune subpopulations by plotting expression of known
biomarkers and grouping previously identified clusters:
myeloid cells, NK&T cells, B cells, and plasma cells
(Supplemental Figure 2). CD3D was used to identify T
lymphocytes, and NK cells were identified by expression of
KLRF1 and FCGR3A. The myeloid cell lineage was identified
using FCGR3A and the specific marker, CD14. The B cell cluster
was classified using the CD19 marker, and plasma cells were
identified by SDC1 (CD138) expression (21–25). After
clustering, immune cell proportions were quantified and
characterized between datasets using a Chi-squared test
(a=0.05). Gene correlation analysis was performed between
datasets as pooled cell types and additionally with stratification
by major cell type using both standard linear regression and
rank-rank hypergeometric overlap (RRHO).

Differential Expression Analysis
DE genes were identified across immune cell subpopulations
(i.e., between a particular cell subpopulation and all other cell
subpopulations) within a dataset. Log normalized gene
expression were used, averaging over all cells in a given
subpopulation for a specific gene and taking the difference to
the same of all other cell subpopulations (“FindMarkers”), using
the Wilcoxon rank-sum test for significance. Genes that were DE
were examined both within an immune cell subpopulation and
between datasets. Similarly, DE genes were identified across
datasets (i.e., pairwise between datasets) within a particular cell
subpopulation using the same methods. To account for some
technical variation between dataset, we calculated the difference
Frontiers in Immunology | www.frontiersin.org 4
of differences of a particular subpopulation between datasets and
all other cell subpopulations between datasets. Log normalized
gene expression was used as described above taking the
difference of differences between dataset (pairwise) and cell
subpopulation (particular versus all other), using a t-test
for significance.

The candidates for immune profile of human liver across our
major cell types of interest were identified by applying differential
expression analysis across immune cell subpopulations in liver
in the combined meta-atlas compared with immune cell
subpopulations from a published dataset generated from normal
human PBMC (67,221 cells; NCBI Gene Expression
Omnibus: GSE171555).

Pathway Analysis
Gene IDs, expression fold changes and p-values generated from
differential expression analyses were imported into Ingenuity
Pathway Analysis software (IPA, Qiagen, RRID: SCR_008653).
Core expression analysis was performed which generated
canonical pathways which were upregulated or downregulated
based on these data. Gene function heatmaps were also generated
in order to provide a comprehensive expression profile.

Volcano Plots
Pairwise comparisons of genes between data sets or cell types
were conducted using Seurat “FindMarkers” function with
default Wilcoxon Rank Sum test. Volcano plots were
constructed using these results; genes were identified and
colored based on P-adjBonfcorr<0.05 and a ratio of expression
(exponentiated log fold change) ≥1.25 or ≤0.8. Additionally,
differences of differences were calculated in a similar way
comparing the differential expression between datasets and the
differential expression between immune cell subpopulations. T-
tests were performed to determine significance and genes were
colored based on the previous criteria plus P-adjBonfcorr<0.05 of
the difference of differences effect.

Correlation Analysis
Expression levels were averaged over cells and plotted pairwise
between datasets. Scatter plots were fit with linear and quadratic
regression models to show potential relationships. Additionally,
genes were ranked based on their differential expression between
cell types and these rankings were compared between datasets.
Correlation between the rankings was assessed multiple ways.
First via scatter plots and Spearman’s correlation coefficient.
Second using Rank-Rank Hypergeometric Overlap from the
RRHO package in R and constructing heatmaps showing
regions of significant overlap between the ranked lists (26).

Heatmaps
The top DE genes between cell types were identified and
combined between each dataset. Raw expression values for
these genes were then normalized by subtracting the mean
expression and dividing by the standard deviation of a given
gene over all cells. Heatmaps were constructed based on these
values; identified genes are shown as rows while cells are shown
as columns. Cells are grouped based on cell type while genes are
July 2021 | Volume 12 | Article 679521
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grouped based on the cell type differential expression from which
they were identified. Outputs from heatmap analyses were used
in the creation of an online interactive tool of the combined
human liver meta-atlas (27).

Chord Plots
Results from the pathway analysis were used to select cell
functions that were relevant to the immune subpopulations.
Cell functions and genes were linked to represent the presence
of a connection between the two, yes/no. From there, plots were
constructed (Circlize “chordDiagram”) by connecting selected
cell functions to the genes that were identified performing them,
grouping by cell function.
RESULTS

Part 1: Approach to Meta-Analysis of Liver
Immune scRNASeq Data
To begin, immune-specific subsets of human liver tissue were
identified and extracted from three unique studies: “LACEe”,
“Lnb” and “LCD45e” (Figure 1) (7–9). Techniques used for the
RNA sequencing of individual datasets are summarized in
Table 1. The combined dataset included single-cell RNA
sequencing of 17 normal human liver samples with
approximately 32,000 hepatic CD45+ cells.

Clustering analysis was performed on all three datasets
individually to detect differences in global cellular phenotypes
(Figures 2A–C). Projection of all three datasets to the same
UMAP coordinates revealed a homogeneous interdigitation of
each cluster, however the LCD45e subset comprised the majority
of cells (~24,000 cells compared to ~4,000 cells in each of the other
Frontiers in Immunology | www.frontiersin.org 5
two studies; Figure 2D). Pairwise gene expression correlation
analysis was performed which revealed that the LACEe dataset had
less concordance with both the Lnb (R=0.81; Figure 2E), and
LCD45e datasets (R=0.79; Figure 2F). Lnb and LCD45e, both
obtained using the 10x platform, demonstrated a more idealized
relationship (R=0.95; Figure 2G).

Characterization of the Frequency and
Proportion of Immune Cell Subpopulations
Between Liver scRNA Seq Datasets
Next, leukocyte subpopulations were identified based on
expression of major cell-specific lineage marker genes and
compared between the individual datasets (Supplemental
Figure 2). Clusters were then designated as NK and T cells
(combined), myeloid cells, B cells and plasma cells, representing
the four major groups of interest for our study.

When compared between all three datasets there were
differences in proportions of each immune cell subpopulation
(X2 test, p<0.01 for each cell type; Figure 2I). Pairwise analysis
between datasets also revealed differences in cell-type
composition, and only two conditions did not reach statistical
significance: comparison of LCD45e and Lnb in plasma cells (X2

test, p=0.16) and comparison of Lnb and LACEe in B cells (X2 test,
p=0.08), which may be a consequence of B cells and plasma cells
representing the smallest populations of cells between datasets.
This observed scarcity of liver resident B cells and plasma cells is
consistent previous reports of liver immune cell composition (2).
Despite some differences in cell-type recovery, the ranking of
abundance of each cell type was preserved between datasets, such
that NK and T cells were the most numerous (ranging from 51%-
69% of cells), followed by myeloid cells (18%-32%), plasma cells
(4%-14%), and then B cells (2%-7%; Figure 2H).
TABLE 1 | Comparison of methods from three peer-reviewed single cell RNA sequencing studies of the liver.

LACEe Lnb LCD45e

Samples 9 liver resection pts mCRC ICC 5 caudate lobes of DBD Ltxp donors 3 adult Ltxp donors blood, spleen, liver
Perfusate HEPES HTK solution, then HBS + EGTA Not addressed
Cell fractionation PHHs and NPCs isolated, mixed then FACS None Cell filtration, centrifugation and Ficol
Removal of non-viable cells Gradient centrifugation Trypan blue exclusion eFluor 450 exclusion
Preservation method Mix of cryopreserved and fresh Fresh Fresh
Cell enrichment Yes - FACS None Yes - FACS
Enrichment for Lymphocytes No No Yes - marker CD45
Enrichment for LSECs Yes - marker CLEC4G No No
Enrichment for MaVECs Yes - marker CD34, PECAM No No
Enrichment for Cholangiocytes Yes - marker EPCAM No No
Removal of low-quality cells Yes - excluded >2% KCNQ1OT1 transcripts Removed >50% mitochondrial content No
Number of cells scRNA seq 10,372 8,444 70,706
scRNA seq technique mCEL-Seq2 10x 10x
Identification of cell types RaceID3 (mintotal = 1000, minexpr = 2,

minnumber = 10, outminc = 2, cln = 15)
Not addressed Seurat v3

Samples across patients Co-clustered Co-clustered Co-clustered
Different preps for patients Co-clustered Not applicable Not applicable
Cell doublets Not addressed Not removed Removed
J

LACEe, Aizarani et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors.
Lnb, MacParland et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations.
LCD45e, Zhao et al. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human.
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Comparative Analysis of Leukocyte
Subpopulations Between Datasets
Reveals Concordance, Despite
Differences in Liver Tissue Handling
and Sequencing Techniques
A deeper analysis of gene expression profiles within immune cell
subpopulation was conducted to identify differences in cellular
phenotypes. Analysis of housekeeping genes was conducted, as
an internal control of biological noise, thus serving as a marker of
technical noise between datasets (28). Expression analysis was
performed on an established set of human housekeeping genes
across immune cell subpopulations and between datasets using
log normalized expression values (Supplemental Figure 3).
Despite a relatively good agreement between means,
comparison with one-way ANOVA identified differences in
housekeeping gene expression (p<0.01). Pairwise analysis also
showed significant differences in expression levels, which is likely
the result of the large number of cells included and is thus a
highly powered test.
Frontiers in Immunology | www.frontiersin.org 6
Differences in gene expression profiles across immune cell
subpopulations are anticipated due to their distinct biological
functions. The number of differentially expressed (DE) genes was
quantified between individual immune cell subpopulations
(Supplemental Figure 4). Volcano plots were used to illustrate
meaningfully DE genes, which were plotted as blue dots and
indicate a fold-change ratio in expression of either <0.8 or >1.25
and Bonferroni corrected p-value<0.05. Non-DE genes were
plotted as red dots. B cells had the fewest DE genes between all
datasets, whereas cells of the myeloid lineage had the most DE
genes. No individual dataset was an outlier with respect to the
quantification of differential expression, but the LCD45e dataset
had the highest number of DE genes in B cells and myeloid cells,
and the lowest number in plasma cells and NK and T cells.

Due to heterogeneous gene expression between leukocyte
subpopulations (Supplemental Figure 4) and differences in
cell proportions (Figures 2H, I), both of which could
potentially bias dataset correlation analysis, pairwise expression
correlation between datasets was performed and stratified
by leukocyte subpopulation (Supplemental Figures 5A–D and
A

D E

F I

G

B C H

FIGURE 2 | Data visualization with clustering and gene expression correlation between datasets. (A–C) UMAP plots of individual studies. (D) Plot showing co-
clustering of three single cell datasets. (E–G) Gene expression correlation plots with solid lines showing linear and quadratic regressions. Dashed line representing
idealized relationship. (H) Bar graph representation of immune cell proportions of each individual dataset. (I) X2 comparison showing significant differences in
proportions of immune cell subpopulations. With pairwise analysis, most chi-squared values reached statistical significance except for plasma cells in LCD45e versus
Lnb and for B Cells in Lnb versus LACEe (indicated by blue rectangles).
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Supplemental Figure 6). Comparison of Lnb and LCD45e

showed a more idealized relationship (R=0.93-0.96
depending on leukocyte subpopulation, Supplemental
Figures 5A.vi.-D.vi), while LACEe correlated less with the
other two studies (Supplemental Figures 5A.iv,v-D.iv,v). The
pattern of gene expression correlation was also analyzed using
Rank-Rank Hypergeometric Overlap (RRHO) heatmaps
(Supplemental Figures 5A–D, panels i-iii) (29). This
technique uses heatmaps to indicate the degree of ranked
differential expression agreement, where yellow indicates
strong statistical overlap and blue represents no statistical
overlap between corresponding axes. These panels represent
overlap of differential expression in ranked form such that the
bottom left of the panel represents the most upregulated genes,
and genes in the upper right portion of the panel represent the
downregulated genes (thus a higher rank corresponds to
downregulation). When comparing NK and T cell expression
patterns in LACEe versus Lnb, there are two heatmap regions with
a high degree of statistical overlap (Supplemental Figure 5A).
Examination of the remaining two pairwise comparisons in NK
and T cells from different datasets, the overlap among the more
highly expressed genes is evident, but genes at lower expression
levels have less overlap. Plasma cells and B cells also exhibit RRHO
agreement between studies. For myeloid cells, LACEe and Lnb have
better RRHO for the most highly expressed genes, whereas Lnb and
LCD45e have better agreement in genes expressed at lower levels.
There is a bimodal agreement between LACEe and LCD45e

(Supplemental Figure 5B).

Differential Gene Expression in Leukocyte
Subpopulations Highlights the Degree of
Agreement Between Datasets
The RRHO analysis demonstrated that there was relatively
strong correlation with genes at the highest levels of
expression. To begin to identify the dominant phenotype for
each leukocyte subpopulation, the top 100 most abundant
transcripts were identified for each cell type in Lnb which was
the dataset with the most agreement with the other two datasets
based on correlation (Figures 2E–G). A comparison was
performed to determine if the same genes were present as the
top 100 most abundant transcripts for each immune cell
subpopulation of the other two studies. Depending on
leukocyte subpopulation, LCD45e had between 87 and 94 out
of 100 ‘top genes’ in agreement. Alternately, LACEe had rather
poor agreement with top matching genes for each leukocyte
subpopulation (Supplemental Figure 7).

Analysis was then performed between datasets in order to
quantify how many genes were DE in each immune cell
subpopulation (Figure 3B). In this analysis, DE genes with a
fold change ratio <0.8 or >1.25 and a Bonferroni corrected
p-value <0.05 are represented in volcano plots and compare
individual gene expression level within an immune cell
subpopulation, between datasets (16). Some comparisons
yielded a high number of DE genes between datasets (e.g.,
3526 genes when comparing LCD45e and LACEe in myeloid
cells). In contrast, when comparing the Lnb dataset to the LCD45e
Frontiers in Immunology | www.frontiersin.org 7
dataset among the B cell population, there were only 767 DE
genes and the myeloid cell population between these two datasets
had 924 DE genes, again demonstrating fewer expression
differences between Lnb and LCD45e relative to LACEe.

To better characterize the heterogeneity in gene expression,
the difference of differences (DoD) was calculated between
datasets (pairwise) and stratified by leukocyte subpopulation
(particular versus all other). This metric involved calculating a
gene’s expression difference between the cell subpopulation of
interest and all other cell types and then comparing that
difference to the difference seen in another dataset
(Figure 3A). For example, a B cell in the LACEe dataset has a
difference of expression of the gene CD25 compared to all other
cell types (represented as D1), the difference in CD25 expression
between B cells and other cell types in Lnb is D2. Subtracting D2
from D1 yields the DoD, (Figure 3) which we used to
approximate the proportion of DE genes where expression
alteration could be explained by changes relative to other
immune cell subpopulations (DoD significance defined as: DE
with a fold change ratio <0.8 or >1.25 with P-adjBonfcorr<0.05 and
DoD P-adjBonfcorr<0.05). We also anticipate that due to
comparison between datasets and across differing technical
platforms (10x Genomics versus mCel-seq) that there will be
differences in the depth of sequencing, a phenomenon which has
been known to affect differential expression analysis when
comparing scRNA seq datasets (30). Given this, we propose
that our DoD analysis “explains”, or at least accounts for, some of
the differential expression. Figure 3C lists the number of DE and
DoD genes for each analysis as well as a percent total. The last
column in the table shows the proportion of DE genes that also
had a significant DoD (the ratio of the two previous columns).
Notably in comparing myeloid cells between LACEe and Lnb,
there are a high number of DE genes, but only 34% of these are
also DoD genes. This suggests that nearly 70% of the observed
differences of myeloid cells between these two datasets can be
accounted for by comparing to the average expression level in the
remaining cells of each rather than representing a unique feature
of the myeloid population.

Dominant Gene Expression Profiles for
Immune Cell Subpopulations Are
Concordant Between Datasets
Once DE genes were identified, the most significantly DE genes
were chosen among each dataset to determine if an integrated
dataset could identify dominant gene expression signatures
associated with each immune cell subpopulation within human
liver. The topmost DE genes for each leukocyte subpopulation in
each individual dataset were identified. All three datasets’
candidate genes were combined to create a master list of top DE
genes for each immune cell subpopulation (Figure 4D).
Expression levels were plotted as a heatmap for each individual
cell and organized by immune cell subpopulation (Figures 4A–C).
Some heterogeneity was expected within cell type, as the myeloid
and NK and T cell populations represent a variety of unique
subsets. Despite this, the heatmaps demonstrate that candidate
genes listed are indeed DE in the immune subpopulation of
July 2021 | Volume 12 | Article 679521
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interest when compared with all other subpopulations and
represent reproducible markers between each dataset, regardless
of processing technique. The expression patterns outlined in the
heatmaps have excellent agreement across studies, confirming that
these datasets could be integrated to produce a meta-atlas of
human liver immune function.

Differential Gene Expression Profiles
Between Datasets Reveals Pathways
Affected by Tissue Processing and
Establishes That Immunologic Pathways
Are Preserved
After identification of all the genes that had a statistically
significant differential expression (log fold change <0.8 or >1.25
and adjusted p<0.05 as shown in volcano plots from Figure 3B)
among the three datasets, a canonical pathway analysis was
performed using the Ingenuity Pathway Analysis software (IPA,
Frontiers in Immunology | www.frontiersin.org 8
Qiagen, RRID: SCR_008653). The association study was
performed for each leukocyte subpopulation: NK & T cells, B
cell, plasma cell and myeloid cells. Input of the DE gene name,
average log fold change and p values provided an output of
canonical pathways which were ranked on their likelihood to be
altered between pairwise datasets. The probability that a signaling
pathway was affected by differences between datasets was
represented as a -log(P value) and a cutoff of 7.0 was set in
order to establish those canonical pathways which were most
different. Disease-specific pathways of no relevance to immune-
specific subpopulations were excluded (e.g., Atherosclerosis
Signaling, Bladder Cancer Signaling) as they were extraneous to
this analysis.

Across immune cell subpopulations, there was general
agreement between the canonical pathways affected based on
the pairwise dataset comparison and therefore NK & T cell
subsets and B cell subsets are shown as examples (Figures 5A–F
A B

C

FIGURE 3 | Differential gene expression analysis between datasets. (A) Schematic diagram for identification of a differentially expressed (DE) gene. The blue cells
represent different expression levels for a gene in each leukocyte subpopulation (e.g., expression in B cells) and the purple cells represent the expression levels of
that same gene, but in all other cell subpopulations. Differential expression only takes levels from the B cell into account. We also examine the Difference of
Differences (DoD) which takes the difference in expression between B cells and all other cell types for dataset #1 and subtracts it from the differences in expressed
between B cells and all other cell types for dataset #2 which may help categorize the differential expression that is accounted for by technical differences between
studies (such as sequencing depth) rather than biologically relevant changes. (B) Volcano plots showing the number of DE genes (blue dots) and DoD genes (green
dots) for each dataset condition as pairwise comparisons between studies and stratified by cell type. (C) Lists of differential gene expression numbers, DoD genes
and then the percent of DoD genes out of the number of DE genes.
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respectively) as myeloid and plasma cells demonstrated the same
pathways which were affected, albeit to varying degrees.

The analysis of DE genes in NK and T cells for LACEe vs Lnb

pair identified three pathways: EIF2 signaling (-log(P value)=14.7,
20 DE genes involved), oxidative phosphorylation (-log
(P value)=8.8, 11 DE genes involved), and regulation of eIF4
and 70S6K signaling (-log(P value)=7, 11 DE genes involved;
Figure 5A). B cell DE genes between LACEe vs Lnb, showed a
similar result with the addition of mTOR signaling. Of note, many
of the genes that led to the presumptive alterations of these
pathways were ribosomal proteins with the exception of the
oxidative phosphorylation canonical pathway, where genes
affected were NADH dehydrogenase subunits, cytochrome c
oxidase subunits and ATP synthase subunit F0 subunit 6.

The LCD45e versus LACEe pairwise comparison of canonical
pathways was reminiscent of the altered pathways seen in the
LACEe versus Lnb differential comparison. The expression
Frontiers in Immunology | www.frontiersin.org 9
analysis between Lnb and LCD45e, which was the pairwise
comparison with the best transcriptome concordance and the
fewest DE genes, actually had the highest number of altered
canonical pathways (Figures 5C, F). Even though several
canonical pathways were identified as altered between these
two datasets (Lnb vs LCD45e) many of the DE genes that made
up the pathway differences were repeated. For instance, ALB or
the protein albumin was counted as being a DE molecule in six
out of the eight canonical signaling pathways. Likewise, genes
such as APOA1, APOA2, ORM1, ORM2 and SERPINA1
contributed to the majority of canonical pathway alterations.
In fact, most of the molecules identified were redundant
downstream effectors of the pathways and thus do not
necessarily reflect true perturbations of the signaling pathway
between datasets.

In characterizing the canonical pathways that differed
between datasets, the major differences were noted among
A

D

B

C

FIGURE 4 | Heatmap representation of dominant differentially expressed genes between each immune cell subpopulation in each dataset. (A) Heatmap of the most
DE genes across leukocyte subpopulation plotted using cells from the LACEe dataset. (B) Heatmap of the most DE genes across immune cell subpopulation plotted
using cells from the Lnb dataset. (C) Heatmap of the most DE genes across leukocyte subpopulation plotted using cells from the LCD45e dataset. For all heatmaps,
z-scores are shown representing standardized, log normalized expression across cells for a given gene. (D) Table of the list of genes used for heatmap analysis for
each leukocyte subpopulation. Immune cell subpopulations are grouped from left to right: NK&T, myeloid cells, plasma cells then B cells and the gene lists going
from top to bottom are ranked in the same order. The same gene lists were used to analyze cells from each of the three datasets.
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pathways which involved protein synthesis, cell death and
apoptosis signaling. Signaling pathways related to immunologic
functions, which are the functions that are of relevance to this
study were largely preserved. For example, the T cell receptor
signaling pathway, CD28 signaling in T helper cells and IL-6
signaling pathways all had 2 or fewer genes which contributed to
differences noted which supports the idea that these pathways
were largely comparable between studies and that proceeding
with a combined meta-dataset is feasible.

Part 2: Key Features of the Integrated
Liver Immune Meta-Atlas
Given that gene expression correlation was high between datasets
and differential gene expression was relatively low, with
Frontiers in Immunology | www.frontiersin.org 10
conservation of phenotypically relevant genes and signaling
pathways, we established meta-signatures for each immune cell
subpopulation. Genes which were DE from one leukocyte
subpopulation versus corresponding cells from a PBMC
dataset, were identified. This is in contrast with the prior
analysis, which used genes DE between datasets. These
candidate genes comprising a list of 449 to 573 total genes
depending on leukocyte subpopulation were generated and run
through the Ingenuity Pathway Analysis Software (Qiagen,
RRID: SCR_008653). The output of this software identified a
series of genes with linked cellular functions to determine which
canonical pathways were affected.

Pathway analysis output generated characterizations of
various cellular biochemical functions. Functions were sub-
A

E

D

B

FC

FIGURE 5 | Characterization of differentially expressed genes points to signaling pathways that differ between datasets. (A) Pathway analysis of NK and T cells
based on differential expression between the LACEe and Lnb datasets. (B) Identification of canonical pathways altered between LCD45e and LACEe. (C) Pathway
analysis of NK and T cells based on differential expression between Lnb and LCD45e in NK and T cells. (D–F) B cell pathway analysis as in A-C. The same
comparisons were made for myeloid cells and plasma cells and were largely similar to what is shown for the immune subpopulations represented in this figure.
Bars represent -log(P values) of each canonical pathway’s likelihood of being altered between comparisons and was obtained with Ingenuity Pathway Analysis
Software (Qiagen).
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divided into types including Systemic Autoimmune Syndrome,
Signal Transduction, Proliferation, Neoplasia, Inflammation,
Infection, Differentiation, Chronic Inflammatory Disorder, Cell
Viability, Cell Death, Cell Proliferation, Cell Movement, Binding,
and Activation. Z-score values of whether expression was
upregulated or downregulated were used to establish a
functionality signature for each cell type. Specifically, these
pathway analysis data were then transferred for further tertiary
analysis in R using the Circlize package to produce meta-
signatures as chord plots which relate specific cell functions to
individual genes having differential expression. In order to
reduce complexity of the figures, redundant cell functions and
functions related to disease states noted to be irrelevant to
immune subpopulations were excluded. The resulting chord
diagrams link genes associated with specific cellular functions,
Frontiers in Immunology | www.frontiersin.org 11
allowing for visualization of the immune phenotype for each
leukocyte subpopulation (Figure 6).

NK and T cells represented the largest proportion of cells in
our study but had the smallest number of DE genes identified by
our analysis, with plasma cells having the most genes. For this
immune cell subpopulation, 16 genes were identified as being
DE, representing 8 major immunologically relevant diseases and
functions (Figure 6A). Of the DE genes in NK and T cells, C-C
motif chemokine ligand 4 (CCL4L1/CCL4L2), C-C motif
chemokine ligand 3 like 3 (CCL3L3) X-C motif chemokine
ligand 1 (XCL1), ALOX5AP (involved in leukotriene synthesis)
were chemokines and immune modulators noted to be
upregulated. Among the most downregulated genes in the NK
and T cell subpopulation were LIME1 and TRBV20-1 which
are both involved in T cell receptor (TCR) activation signaling.
A

D

B

C

FIGURE 6 | Gene meta-signatures reveal the expression landscape of immune homeostasis in the human liver immune meta-atlas. (A–D) Chord plots representing
8-14 immune cell-specific diseases or functions (Systemic Autoimmune Syndrome, Signal Transduction, Proliferation, Neoplasia, Inflammation, Infection,
Differentiation, Chronic Inflammatory Disorder, Cell Viability, Cell Death, Cell Proliferation, Cell Movement, Binding, Activation) with links to the respective genes which
have been identified as DE between the liver leukocyte subpopulation listed versus the corresponding PBMC leukocyte subpopulation.
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The myeloid lineage was marked by a gene expression signature
involving 22 genes across the relevant diseases and functions
(Figure 6B). Upregulation of the following DE genes was shown:
NOP53 ribosome biogenesis factor (involved in apoptosis and
cell cycle signaling), Y box binding protein 1 (YBX1, a
transcriptional regulator), and TLE5 (transcriptional regulator)
among others. The most notably downregulated DE genes
were the pro-inflammatory cytokine of the TNF family,
TNFSF13, FOS proto-oncogene, CSF3R (GM-CSF receptor
controlling proliferation and differentiation of granulocytes;
all p values < 0.001).

Plasma cells with 45 DE genes shown in the chord diagram
demonstrated upregulation of the histone proteins implicated in
transcriptional repression (H2BC8 and HDAC3) as well as TLE5,
which is implicated in transcriptional regulation and repression
(all p values < 0.001). The most downregulated genes were
immunoglobulin subunit genes from both heavy and light
chains: IGHV4-39, IGHV3-11, IGHV3-49, IGHV1-69, IGKV1-
16, IGLV2-8, IGLV6-57 (p values < 0.001; Figure 6C). Lastly, the
B cell meta-signature was comprised of 54 DE genes
(Figure 6D). Upregulation was seen in the chemokine CCL4,
SEM1 (part of 26S proteasome complex), NSD3 (transcriptional
repression), and BIRC3 (inhibition of apoptosis, all p values <
0.001) . Genes which were downregulated included
immunoglobulin genes: IGKV3-20, IGKV3-15, IGKV1-40,
IGHV3-23, IGHV3-30, IGLV1-51, as well as HLA-DRB5
(involved with antigen presentation, all p values < 0.001). A
detailed report of genes implicated in leukocyte subpopulation
homeostasis including log fold change values is summarized in
Supplemental Table 1.

Identification of the most significantly DE genes pointed to a
phenotype of decreased immune cell functioning in human liver
immune cell subpopulations versus corresponding peripheral
immune cell subpopulations. To explore this further, signaling
pathways and functions were characterized using Ingenuity
Pathway Analysis (IPA). Histograms were generated for each
immune cell subpopulation using the differential expression
between PBMC and the human liver meta-atlas in order to
characterize which canonical pathways were highly altered
between compartments. The significance of the perturbation is
charted as -log(P-value) and a cutoff of 2.4 was used in order to
identify the most significantly altered pathways. The direction of
the perturbation was estimated by a Z-score, which was
generated as an output of IPA, and upregulated pathways are
color coded as orange, downregulated pathways are blue, and
grey pathways correspond to those where the directionality could
not be predicted. Heatmaps were also generated which
corresponded to specific immune cell functions: Infectious
disease, Cell Trafficking, Inflammatory Response, Cell-Cell
Interaction, Hematologic development and function, and Cell
Death and Survival (Figure 7).

NK and T cells had upregulation of Myc-Mediated Apoptosis
Signaling, Death Receptor Signaling, Tumoricidal Function of
Hepatic Natural Killer Cells, Inhibition of ARE-Mediated mRNA
Degradation Pathway and TNFR1 signaling in the liver
Frontiers in Immunology | www.frontiersin.org 12
compartment relative to PBMCs. Downregulation was
demonstrated in the Spliceosomal Cycle. Heatmaps further
highlighted immune functions such as infectious disease-
related activity, cell trafficking, inflammatory response and cell-
cell interactions were largely downregulated, whereas cell death
and apoptosis functions were upregulated (Figure 7A). In the
myeloid cell subpopulation, upregulated canonical pathways
were Inhibition of ARE-Mediated mRNA Degradation
Pathway, Aryl Hydrocarbon Receptor Signaling, Protein Kinase
A Signaling, Cyclins and Cell Cycle Regulation, and Wnt/beta-
catenin Signaling. Downregulated pathways were Necroptosis
Signaling and ERK/MAPK Signaling. Phenotypic patterns of
diminished immune cell functioning, and enhanced cell death
were seen in this population as well (Figure 7B).

Plasma cells had upregulation of the PD-1/PD-L1 Cancer
Immunotherapy Pathway and downregulation of a substantial
number of canonical pathways. Heatmaps showed that
phenotypically these cells were largely in a state of depressed
functioning relative to the peripheral blood immune
compartment (Figure 7C). Human liver B cells, comprising
the smallest immune cell subpopulation, showed upregulation
of ERK/MAPK Signaling, PI3K/AKT Signaling, mTOR
Signaling, TWEAK Signaling and MSP-RON Signaling in
Macrophages Pathway. Downregulation was demonstrated in
the Spliceosomal Cycle, Sumoylation Pathway, Senescence
Pathway, MSP-RON Signaling in Cancer Cells Pathway, EIF2
Signaling, P13K Signaling in B Lymphocytes, Th1 Pathway and
Protein Kinase A Signaling. Heatmap analysis showed a mixture
of upregulated and downregulated functions. Infectious disease
and hematologic development related functions were again
depressed, but cell trafficking and inflammatory responses had
a modest upregulation in liver relative to PBMC. Cell death
functions were again enhanced. Overall, these results indicated
that liver immune homeostasis points to a general phenotype of
depressed immune and pro-inflammatory functions via the
aforementioned pathways and a possible increase in cell death
and apoptotic events.
DISCUSSION

In this study, meta-analysis of three high-quality scRNA seq
studies enabled deep characterization of liver immune cell
function and features related to physiologic immunotolerance
and immune homeostasis. Focused examination of immune cell
types, proportions, and gene expression profiles of revealed that
significant differences exist between datasets created from
‘normal human liver’ samples. Despite these differences, the
overall ranking of abundance of immune subsets was
preserved, with NK and T cells dominating and plasma and B
cells being relatively rare. Further analysis of gene expression
profiles involving the most DE genes in the integrated dataset
provided the opportunity to minimize the effect of technical
‘noise’ and establish the gene expression signature of human liver
immune milieu. These results point to reduced expression of
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immune related functions and enhanced expression of cell death-
related pathways. This human liver meta-atlas has the potential
to serve as a key reference point for future studies using scRNA
seq designed to characterize immune-based pathologies within
the liver, such as liver allograft rejection, autoimmune disease,
and the tumor microenvironment in primary liver malignancies.

To establish validity of performing a meta-analysis of an
integrated dataset using scRNA seq data generated in three
distinct labs with different tissue handling, processing, and
sequencing techniques, visualization of the integrated data with
co-clustering of cell populations was performed (Figure 2). This
approach was based on the work of Bonnycastle et al., who
specifically studied the impact of tissue processing and handling
on the integrity of scRNASeq data (16). In our analysis, immune
cell proportions and expression profiles differed somewhat
Frontiers in Immunology | www.frontiersin.org 13
between datasets, with highest correlation between the Lnb and
LCD45e studies (Supplemental Figure 5). This is not
particularly surprising, as these two datasets used the same 10x
Genomics technique for the scRNA seq. It is important to note
that extraction of the CD45+ population and combination with
other non-liver derived CD45+ cells did not appear to impact the
integrity of the data, as was the case with the LCD45e. While
various scRNA seq techniques have the potential to introduce
noise and bias into the transcriptome data, the Seurat pipeline
has been designed to correct for some of these differences by re-
aligning cell clusters based on nearest neighbor correction and
allowing for integrated downstream analyses (18, 19). This would
suggest that differences we observed in expression analyses could
be the result of pre-analytical variables such as tissue processing.
We further characterize noise with the quantification of an
A
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C

FIGURE 7 | Detailed pathway analysis of human liver immune meta-atlas shows selective upregulation of death-related transcripts and downregulation of immune-
related cell functions. (A) Pathway analysis of NK and T cells based on differential expression between human liver meta-atlas versus normal human PBMC.
Histograms showing -log(P-value) corresponding to the significance of the involved signaling pathway. Orange corresponds to upregulated pathways, blue shows
downregulated pathways and gray corresponds to unknown directionality based on Ingenuity Knowledge Base. Heatmaps showing perturbations in specific
functions of NK and T cells in the human liver relative to PBMC. (B) Myeloid Cell pathway analysis showing canonical pathway functioning in human liver relative to
human PBMCs. Heatmaps of specific functions within Myeloid cells relative to PBMCs. (C) Canonical pathway functioning Plasma Cells of the human liver relative to
PBMC with associated heatmap of specific functions. (D) B Cell pathway analysis with histograms showing canonical pathways and heatmaps highlighting specific
cellular functions in liver relative to PBMC.
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established set of human housekeeping genes (28). There were
differences noted in expression of human housekeeping genes
within an immune cell subpopulation between datasets, however,
mean expression values were not substantially altered and
differences noted here are likely the result of large sample sizes.
A potential explanation for differences in cellular proportions
may be related to sample size effect as well. The LACEe dataset
encompasses the largest sample of human tissues, derived from
nine total liver specimens, which likely introduces a higher
degree of biological variation than Lnb and LCD45e which have
five and three liver donors, respectively. The clinical scenario also
differs between LACEe, which was created using partial
hepatectomy specimens from patients with liver malignancy,
and the other two studies, which involve specimens derived from
adult brain-dead organ donors. Despite attempts at correction,
there were differences noted in gene expression analysis, yet
immune subpopulations still co-clustered with good
interdigitation between datasets and DE analysis showed good
agreement with heatmaps (Figures 2, 4). As such, we proceeded
with deeper immune profiling using the integrated dataset.

Differences in tissue handling and processing has been shown
to prompt transcriptional changes within the cell (15, 16, 31). A
major novelty of our study is the in-depth characterization of
differential expression between datasets with identification of
relevant canonical pathways affected. Our results indicate that
pathways involved in oxidative phosphorylation and cell stress
were primarily affected and that immunologically relevant
pathways were largely preserved. We suspect that non-immune
function related changes may be the consequence of pre-
analytical tissue processing. Known pre-analytical variables
related to each technique used for the generation of each
dataset are summarized in Table 1. Unknown variables of
potential importance could include the time interval of
‘Pringle’ clamp time during resection or from the moment
of tissue resection to cell processing and sequencing, which
could lead to significant ischemic insults and thus impact
transcription profiles. In ischemic injury of rodent and human
cortex, insult has been demonstrated to promote pro-
inflammatory gene expression alterations (32, 33). The fact
that these ischemia-induced pro-inflammatory changes are not
demonstrated in this study shows that either ‘Pringle’ time in
liver specimens captured in these datasets were either not
significant enough to cause ischemia, or that liver ischemia
does not produce as profound an inflammatory response as
cortical ischemia. Overall, the observation that immune pathway
profiles for each subpopulation were relatively conserved
supports the use of this novel meta-analysis approach to
examine existing datasets in order to understand immune
homeostasis in human livers.

Immunotolerance is a unique feature of hepatic homeostasis
and is thought to be a consequence of the constant stream of
antigens being delivered to the liver from the gut. This involves
regulation of both the adaptive and innate immune systems to
prevent an uncontrolled inflammatory cascade in response to
foreign antigens in the portal circulation (1, 34). One potential
theory is that effector T-cells are regularly destroyed in the liver.
Frontiers in Immunology | www.frontiersin.org 14
Animal studies have suggested that hepatic immune regulation is
mediated by the milieu of anti-inflammatory cytokines and
inhibitory regulators such as IL-10 and TGF- ß, leading to
inhibition of effector T cell function and expansion of the Treg
population (35). Comparison of hepatic immune cell gene
expression patterns to a different immune compartment enabled
identification of a liver-specific signature of immune homeostasis.
Indeed, this analysis revealed that NK, T cell, and myeloid
subpopulations had enhanced cell death functions and depressed
immune-related functioning (Figure 7). Similarly, plasma and B
cells both showed downregulation of immunoglobulin genes and
exhibited downregulation of immune functional pathways.

There are limitations to this study. Further differences in scRNA
seq technique (comparing 10x Genomics to mCel-seq) likely
introduces a differing amount of bias into the sequencing datasets.
In addition, because this study explored pre-existing datasets, there
was no ability to control for patient-specific parameters in this study
design such as inclusion/exclusion based on liver function studies or
other potentially relevant clinical factors including duration and
storage of samples prior to processing. Despite this, combining
scRNA seq and other genomics datasets for the characterization of
normal physiology and disease processes will become a more
prevalent practice and further efforts should be made to
standardize the processes of pre-analytical processing variables as
well as to enhance the integration abilities during data analysis.

In conclusion, our results present an integrated dataset of
scRNA seq results of the liver immune environment from
~32,000 cells across 17 human livers, making it the largest
human liver meta-atlas available. Key immune subset
expression profiles that describe the landscape of liver immune
homeostasis were defined and can be explored in real-time on
our interactive website (27). These results can be incorporated
into future RNA sequencing studies and have implications for
understanding mechanism of disease and identifying new
therapeutic targets in immunologic diseases of the liver
including allograft rejection and immune tolerance.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author. An online “point-and-
click” resource for interacting with the meta-atlas which is
available on our lab website: https://usctransplantlab.shinyapps.
io/meta_rna_seq/.
ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.
July 2021 | Volume 12 | Article 679521

https://usctransplantlab.shinyapps.io/meta_rna_seq/
https://usctransplantlab.shinyapps.io/meta_rna_seq/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rocque et al. Meta-Atlas of Liver scRNA Seq
AUTHOR CONTRIBUTIONS

BR contributed to study design, acquiring data, analyzing data,
and writing the manuscript. AB contributed to study design and
writing the manuscript. PS was responsible for acquiring initial
datasets and performed computational analyses and data
integration. CG contributed to study design, analyzing data,
statistical analyses and aided with writing the manuscript. DH
helped with study design and writing the manuscript. Y-HL
provided resources for data analysis and contributed to study
design. NU provided insights for study design and contributed to
verification of data analysis techniques. JL and OA helped with
the initial study design. JE conceived the original idea, supervised
the project and contributed to study design and data analysis.
All authors contributed to the article and approved the
submitted version.
Frontiers in Immunology | www.frontiersin.org 15
ACKNOWLEDGMENTS

We thank the Eli and Edythe Broad Center for Regenerative
Medicine at the University of Southern California, Keck School
of Medicine for providing the Broad Clinical Research
Fellowship which was awarded to Dr. Rocque for 2020-2021.
We also thank the USC Libraries Bioinformatics core for
providing software licensing and resources.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
679521/full#supplementary-material
REFERENCES
1. Freitas-Lopes M, Mafra K, David B, Carvalho-Gontijo R, Menezes G.

Differential Location and Distribution of Hepatic Immune Cells. Cells
(2017) 6:48. doi: 10.3390/cells6040048

2. Racanelli V, Rehermann B. The Liver as an Immunological Organ.Hepatology
(2006) 43:S54–S62. doi: 10.1002/hep.21060

3. Zheng M, Tian Z. Liver-Mediated Adaptive Immune Tolerance. Front
Immunol (2019) 10:2525:1–12. doi: 10.3389/fimmu.2019.02525

4. Wang Y, Zhang C. The Roles of Liver-Resident Lymphocytes in Liver
Diseases. Front Immunol (2019) 10:1582. doi: 10.3389/fimmu.2019.01582

5. Chen G, Ning B, Shi T. Single-Cell RNA-Seq Technologies and Related
Computational Data Analysis. Front Genet (2019) 10:317. doi: 10.3389/
fgene.2019.00317

6. Hwang B, Lee JH, Bang D. Single-Cell RNA Sequencing Technologies and
Bioinformatics Pipelines. Exp Mol Med (2018) 50:1–14. doi: 10.1038/s12276-
018-0071-8

7. MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, et al. Single
Cell RNA Sequencing of Human Liver Reveals Distinct Intrahepatic
Macrophage Populations. Nat Commun (2018) 9(4383):1–21. doi: 10.1038/
s41467-018-06318-7

8. Zhao J, Zhang S, Liu Y, He X, Qu M, Xu G, et al. Single-Cell RNA Sequencing
Reveals the Heterogeneity of Liver-Resident Immune Cells in Human. Cell
Discov (2020) 6(22):1–19. doi: 10.1038/s41421-020-0157-z

9. Aizarani N, Saviano A, Sagar, Mailly L, Durand S, Herman JS, Pessaux P, et al.
A Human Liver Cell Atlas Reveals Heterogeneity and Epithelial Progenitors.
Nature (2019) 572(7768):199–204. doi: 10.1038/s41586-019-1373-2

10. Lappalainen T, Sammeth M, Friedländer MR, T Hoen PAC, Monlong J, Rivas
MA, et al. ‘Transcriptome and Genome Sequencing Uncovers Functional
Variation in Humans. Nature (2013) 501:506–11. doi: 10.1038/nature12531
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