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RESEARCH
Plasma Proteomes Can Be Reidentifiable and
Potentially Contain Personally Sensitive and
Incidental Findings
Philipp E. Geyer1,2,3,* , Sebastian Porsdam Mann4,5 , Peter V. Treit1 , and
Matthias Mann1,2,*
The goal of clinical proteomics is to identify, quantify, and
characterize proteins in body fluids or tissue to assist
diagnosis, prognosis, and treatment of patients. In this
way, it is similar to more mature omics technologies, such
as genomics, that are increasingly applied in biomedicine.
We argue that, similar to those fields, proteomics also
faces ethical issues related to the kinds of information that
is inherently obtained through sample measurement,
although their acquisition was not the primary purpose.
Specifically, we demonstrate the potential to identify in-
dividuals both by their characteristic, individual-specific
protein levels and by variant peptides reporting on cod-
ing single nucleotide polymorphisms. Furthermore, it is in
the nature of blood plasma proteomics profiling that it
broadly reports on the health status of an individual—
beyond the disease under investigation. Finally, we show
that private and potentially sensitive information, such as
ethnicity and pregnancy status, can increasingly be
derived from proteomics data. Although this is potentially
valuable not only to the individual, but also for biomedical
research, it raises ethical questions similar to the inci-
dental findings obtained through other omics technolo-
gies. We here introduce the necessity of—and argue for
the desirability for—ethical and human-rights-related is-
sues to be discussed within the proteomics community.
Those thoughts are more fully developed in our accom-
panying manuscript. Appreciation and discussion of
ethical aspects of proteomic research will allow for
deeper, better-informed, more diverse, and, most impor-
tantly, wiser guidelines for clinical proteomics.

Omics technologies can characterize biological materials,
leading to a wealth of information useful for addressing a
broad range of scientific and medical questions. Genomics
has benefited from rapid technological progress over many
decades, and large-scale DNA analysis now increases our
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knowledge of genetic diversity and the relation of genes to
various phenotypical and disease-relevant traits (1). Genomic
data are usually acquired in a broad and untargeted manner.
Typically, many genes are assayed simultaneously. Some of
these could contain individually identifiable and sensitive in-
formation, raising several ethical questions. The relatively
long-lasting and widespread application of genomics in
research and medicine has led to numerous and sometimes
acrimonious debates concerning what to do with such infor-
mation, which in turn has resulted in guidelines and frame-
works (2–4). However, analogous discussions have not yet
been fielded in proteomics or metabolomics. Partly this is
because the ability to analyze a large number of human
samples at great proteomic depth is a comparatively new and
resource-intensive development, which as of this writing still
requires highly specialized technology.
In contemporary medical practice, the majority of diagnostic

decisions are based on tests quantifying biological parameters,
generally referred to as “biomarkers” (5). The foremost bodily
fluids used for this purpose are the blood (whole, plasma, or
serum), urine, and cerebrospinal fluid (CSF). Of the various
classes of clinically measured parameters such as cells, elec-
trolytes, DNA, RNA, and small molecules, most tests target
proteins (6). Thousands of these proteins circulate throughout
the body and their levels report on a wide variety of systemic
diseases, organ damage, and general health status (7–9).
From an analytical biochemistry perspective, the biomarker

discovery task has traditionally consisted of accurately
measuring the level of one or a few proteins in disease and
control cohorts and then developing a robust clinical test—
typically involving an antibody against a specific protein.
Considering the fundamental role of laboratory tests, it is
remarkable that most biomarkers were discovered more than
20 years ago and often lack specificity or sensitivity and that
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Categories of Proteomics Data With Ethical Implications
only a very small number of the more than 14,000 human
diseases have corresponding tests (10).
Proteins control and execute the vast majority of biological

processes, and mass spectrometry (MS)-based proteomics is
the technology of choice to investigate the entirety of all
proteins in a biological system—its proteome (11, 12). MS-
based proteomics has continuously developed over the past
20 years, enabling the holistic, detailed, and quantitative
investigation of diverse biological systems. Discovery of new
and potentially better biomarkers and biomarker panels is
facilitated by these rapid developments in MS-based prote-
omics, promising widespread medical applications (6, 13).
Traditionally, proteomics biomarker studies have analyzed

small sample numbers in depth to discover one or a few po-
tential biomarkers that were then to be validated in larger
cohorts. In contrast, we have developed a “rectangular
approach for biomarker discovery,” in which all samples from
large-scale cohorts are analyzed in as much depth as possible
in discovery and validation cohorts together (6). The goal is to
derive panels of regulated proteins that contain much more
information than is reflected in the level of any single protein.
Over the last few years, we have focused on technological
developments enabling the analysis of large-scale plasma
proteomic cohorts with a robust and automated pipeline (14)
and have already analyzed clinical studies with over a thou-
sand samples (15–17).
It will soon be possible to collect large-scale and increas-

ingly comprehensive proteomics data sets, and this ability will
not long be restricted to only a few specialized laboratories.
Clinical proteomics is already benefitting from rapid advances
in information technologies, including machine learning and
big data analytics. The information that can be extracted from
such powerful data sets has myriad applications. Clearly, the
expanding data volume, scope, and quality of clinical studies
analyzed by MS-based proteomics raise ethical issues, as
they have in other fields. For instance, a plasma proteomic
measurement may be used to uniquely identify a person if
matching genomic information is available. In addition, such a
measurement may contain incidental findings—findings un-
related to the primary aim of the study or procedure, but which
may still contain information relevant to health or well-being.
This potential is well recognized in other diagnostic fields. In
a meta-analysis of tens of thousands of asymptomatic per-
sons receiving body or brain MRI revealed a potentially
serious incidental findings rate of 3.9% and another found a
median clinically significant rate of 17% (18, 19). It has been
pointed out that incidental findings, “which can occur in large
numbers from genomic sequencing, are a potential barrier to
the utility of this new technology due to their relatively high
prevalence and the lack of evidence or guidelines available to
guide their clinical interpretation” (20).
We argue that clinical proteomics, too, will soon face these

challenges. Researchers and clinicians will have to deal with
personally sensitive and incidental findings. How they should
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go about this task is a discussion that must be had. It is also a
discussion that involves applied ethics and bioethical princi-
ples—topics that the proteomics community is currently not
prepared for. As a first step in this direction and to enable our
community to begin an open discussion about proteome
ethics, we describe some ethical implications of proteomics
data. Below, we reanalyze a previous plasma proteomics
study (15) to investigate whether and to what extent ethically
relevant information can be extracted. We show that samples
can uniquely be assigned to individuals by both the individual-
specific levels of plasma proteins and their individual-specific
allele variations (coding SNPs). Furthermore, plasma pro-
teomes inherently report on a broad range of health and dis-
ease parameters such as cardiovascular and metabolic risks.
We discuss what would have to be stripped from results ob-
tained in order only to retain narrowly disease-relevant infor-
mation. While this might be necessary in certain diagnostic
settings, it also negates one of the principal attractions of
plasma proteomics. In an accompanying paper (21), we
introduce bioethical and human rights principles that instead
argue for deriving the maximum information and therefore
benefit from clinical proteomics data for research, disease
diagnosis, and general health and well-being.
EXPERIMENTAL PROCEDURES

Identification of Individual-Specific Alleles

All peptides from the variant FASTA file analysis were filtered to
generate a set of reliable peptides suitable to separate individuals. For
this purpose, we filtered the data set for peptides that were present at
least once in six out of the seven timepoints in at least one individual.We
excluded all peptides that were always or never identified as they do not
contain information that could be used to distinguish between in-
dividuals.Next,we filtered for peptides that had at least one overlapping
peptide from another allele. This resulted in 83 peptides. Peptides
containing a missed cleavage site of Arginine or Lysine will contain the
same information as their fully cleaved form. Hence, the information of
the presence of the allele was only counted once, resulting in a set of 67
peptides. This set also contains alleles that were very randomly
distributed with very high variation. The peptides with the highest vari-
ationwere excluded. If the number of the identified peptides in the study
was ten times larger than the sumof the peptides thatwere identified six
or seven times within an individual, both alleles of the same gene were
excluded, resulting in 53 peptides for the analysis.

Data Analysis

MS raw files were analyzed by MaxQuant software, version 1.6.1.9
(22), and peptide lists were searched against the human Uniprot
FASTA databases. A regular FASTA file was downloaded from the
UniProt database in May 2019 (https://www.uniprot.org/). Variant
sequence entries were downloaded in text format from the UniProt
database in May 2019 (ftp://ftp.uniprot.org/pub/databases/uniprot/
current_release/knowledgebase/taxonomic_divisions/). The Swiss-
knife PERL module (http://swissknife.sourceforge.net/docs/) with
the varsplic PERL script from ftp://ftp.ebi.ac.uk/pub/software/
uniprot/varsplic/varsplic.pl was applied to generate the variant text
formats for single sequences. The output produced includes the
sequence for the variants.

https://www.uniprot.org/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/
http://swissknife.sourceforge.net/docs/
ftp://ftp.ebi.ac.uk/pub/software/uniprot/varsplic/varsplic.pl
ftp://ftp.ebi.ac.uk/pub/software/uniprot/varsplic/varsplic.pl
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A contaminant database generated by the Andromeda search en-
gine (23) was configured with cysteine carbamidomethylation as a
fixed modification and N-terminal acetylation and methionine oxida-
tion as variable modifications. We set the false discovery rate (FDR) to
0.01 for protein and peptide levels with a minimum length of seven
amino acids for peptides, and the FDR was determined by searching a
reverse database. Enzyme specificity was set as C terminal to arginine
and lysine as expected using trypsin and LysC as proteases. A
maximum of two missed cleavages were allowed. Peptide identifica-
tion was performed with an initial precursor mass deviation up to
7 ppm and a fragment mass deviation of 20 ppm. All proteins and
peptides matching the reversed database were filtered out.

All bioinformatics analyses were performed with the Perseus soft-
ware of the MaxQuant computational platform (22, 24).

RESULTS

Individuals Can Be Identified by Protein Levels in Blood
Plasma

In clinical studies, samples are usually blinded and pseu-
donymized in order to avoid bias by the experimenter and to
protect study participants from potentially sensitive findings.
In this way, results from a sample cannot directly be tied to a
person, i.e., unusually high cholesterol levels could not be
used to deny insurance. In our previous work, we noticed that
the levels of hundreds of plasma proteins varied much more
between participants than within the same participant over
time (15). We therefore speculated that the “individual-spe-
cific” levels of many plasma proteins together could enable
association of a given plasma proteome sample to a previous
measurement on the same person. Although this would pre-
vent the pervasive problem of sample mix-up (25), it could
conceivably raise ethical issues with regard to reidentification
of participants.
To test our hypothesis, we reinvestigated a plasma prote-

omics weight loss study in which samples of 42 individuals
were obtained over 1 year (15). We defined a protein as “in-
dividual-specific” if its level in a participant was more than 1.5-
fold different from the population median for at least a quarter
of all study participants, and it had a coefficient of variation
below 20% over time. In our study, 71% of all proteins fulfilled
these criteria. When we compared the levels of individual-
specific proteins over time, we found that these intra-
individual correlations were much higher than the correlations
of the same or different time points between two different
persons (91 different correlation values; median Pearson R =
0.971 within and 0.926 between the two individuals in the
example) (Fig. 1, A and B).
Global correlation of the 294 weight loss samples resulted in

a matrix of 43,071 values (Fig. 1C). Pearson correlation co-
efficients of these individual-specific proteins had much
higher intraindividual correlations even over a whole year,
compared with interindividual correlations (Fig. 1B). Across
the entire study, the median intraindividual correlation was
0.974 and the interindividual correlation was 0.928.
We next tried to identify individuals solely by the Pearson

correlation coefficients of their individual-specific proteins. For
this purpose, we defined the preweight loss time point as a
reference and asked whether the others could be uniquely
related to it via their plasma proteome correlations. Out of
these 252 comparisons, all but one were assigned to the
correct individual (Error rate of 0.4%; Fig. 1D). Even in the one
misassignment (possibly caused by experimental issues;
Experimental Procedures), the correct individual was ranked
second. Moreover, highly individual-specific proteins such as
the apolipoprotein(a) can be more than 100-fold different be-
tween individuals, but very constant over time. In the case of
apolipoprotein(a), this can be explained by the genetically
determined number of so-called Kringle domains affecting the
concentration of this protein. Such proteins have a higher
value for identifying or excluding an individual. In general,
quantitative trait loci (pQTLs) link protein levels and genetic
variants and explain part of the individual-specific protein
levels in addition to lifestyle and life history (26). However,
many proteins have individual-specific levels that are modifi-
able by lifestyle changes, disease, medication, and even
preanalytical processing, adding uncertainty regarding iden-
tifiability (27–29).

Individuals Can Be Identified by Allelic Information

MS-based proteomics identifies peptides by matching
experimental to theoretical spectra calculated from protein
sequence databases. Therefore, the proteomics community
relies heavily on protein sequence data and associated met-
adata supplied by consortia such as UniProt (30). As a default
to reduce redundancy, UniProt provides all the proteins
encoded by one gene as a “canonical sequence” that is
usually the most prevalent or likely form. These can be
downloaded as FASTA files (human, May 2019). In the case of
well-studied species, UniProt provides additional information
about variant sequences, including single amino acid poly-
morphisms from nonsynonymous single nucleotide poly-
morphisms (SNPs) or polymorphisms from multinucleotide
exchange. We generated a human variant FASTA file from
UniProt enabling us to identify polymorphisms using the
Swissknife PERL module (Experimental Procedures).
In principle, the generated data could uniquely identify in-

dividuals using the combination of variant peptides in different
proteins. They could also be used to link such variants to
disease risks by connecting proteins to the UniProt–Swiss-
Prot protein knowledgebase. It currently contains a “human
polymorphisms and disease mutations index,” describing
30,706 disease variants, 40,091 polymorphisms without dis-
ease implications, and 8085 variants of uncertain medical
significance.
To assess a database search with the variant FASTA (a

sequence file derived from the database), we revisited the
weight loss study data set again. The complete study resulted
in 5888 and 6094 peptides when searching against the ca-
nonical and the variant FASTA file, respectively, containing
134 and 340 unique peptides. The unique sequences for the
Mol Cell Proteomics (2021) 20 100035 3



FIG. 1. Identifying participants in a longitudinal study by correlation of individual-specific proteins. A, correlation of individual-specific
proteins of time points 1 and 2 of individual A. B, seven longitudinal samples of two individuals, A and B, are correlated with each other (Pear-
son correlation coefficient is color-coded,with color bar below). The comparisondisplayed in (A) is highlighted by ablack frame.C, cross-correlated
individual-specific proteins of all samples of theweight loss study. The correlationmatrix shown in (B) is highlighted by a black frame (Pearson value
coded according to the same color bar). D, identification of individuals by correlating individual-specific proteins. Proteomes of the reference time
point were compared with all other time points in turn. The percentage of correctly and incorrectly assigned participants is color-coded.
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canonical FASTA might be explained by the larger search
space of the variant FASTA and a general variation due to the
MaxQuant search algorithm.
Similar to the unblinding experiment described above, we

aimed to extract a panel of peptides from the variant FASTA
file experiment, which would allow us to gain additional con-
fidence in the identification of individuals. Peptides were only
considered if at least two alleles represented by one peptide
for each allele were identified for a protein, resulting in 83
peptides. Additionally, we combined information concerning
allele-specific peptides with missed cleavages with the fully
cleaved peptide. We further applied a filter step to exclude
peptides with very strong variation in their identification
(Experimental Procedures).
This resulted in a set of 53 peptides of which the allele

pattern can be seen across the 42 individuals and the seven
time points of the weight loss study (Fig. 2A; supplemental
Table S1). Next, we identified the study participants by a
simple calculation of matching present and absent variant
peptides, utilizing the allele information contained in their
proteome. Figure 2B shows the comparison of each sample to
all time point (TP) 1 samples. The median number of matches
between two samples within the same individual was 46 and
37 between different individuals. One individual strongly
separated from the rest of the population with a median of
only 33 matches to the other individuals (blue vertical line in
the heat map, Fig. 2B). The correct samples were identified in
89% of all comparisons (Fig. 2C). In 4998 of 5166 pairwise
comparisons matching was correct (1.5% error rate).
The semistochastic sampling of peptides—especially in

data-dependent acquisition (dda)—results in missing values of
peptides, which decrease the probability of correctly rei-
dentifying an individual. It follows that both data-independent
4 Mol Cell Proteomics (2021) 20 100035
acquisition (dia) and greater data completeness (for instance,
in tissue measurements) would result in higher certainty. Note
that our calculations are only a proof-of-principle at this point
and more advanced experiments including larger and more
representative populations have to be done. These issues are
and the influence of laboratory errors, which are a frequent
issue in DNA technology in forensic science, will have to be
taken into account to calculate the true likelihood of reidenti-
fying an individual by variant peptides (31, 32).

Untargeted Plasma Proteomics Delivers Incidental
Diagnostic Findings

As clinical proteomics generates a broad overview of pro-
tein levels in a sample, it typically reports on many more
conditions than the one under investigation, making “inci-
dental findings” an inherent feature of the technology. If they
are related to diseases, this may be sensitive information that
raises ethical issues. When dealing with incidental findings, a
clear line needs to be drawn between the medical benefits that
can be obtained through their return and the principle of
respecting an individual’s capacity to choose for themselves
whether they wish to have information returned or not. The
latter is obtained by informed consent prior to participation in
a study or a medical test.
Even short 20 min MS-based proteomics measurements

quantify about 50 proteins that were approved by the U.S.
Food and Drug Administration (FDA) as biomarkers, resulting
in a multilayer reflection of the human health state (14). These
MS-quantified markers include C-reactive protein (CRP),
which reports primarily on inflammation and is one of the most
frequently requested protein measurements in clinical prac-
tice. The coregulated protein serum amyloid alpha 1 (SAA1)
shows highly similar fold changes upon infection and is



FIG. 2. Allele information in the plasma proteome. A, the grayscale indicates which peptides were detected across the seven time points
(TP) for the 42 individuals in the weight loss study of the 53 variants considered. B, heat map for the number of matching present or absent
variant peptides between individuals at the first time point (TP 1) and all individuals on the other time points. The red diagonal lines reflect the
high number of matches of the same individual in adjacent time points. C, proportion of correctly identified individuals in the 252 comparisons.
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likewise covered (Fig. 3A), resulting in a more inclusive
reflection of an individual’s inflammation status than the
routine assessment of CRP alone. While an infection is usually
short-term and benign, other MS-identifiable proteins may
indicate life-threatening diseases, such as the cancer marker
MUC16.
The health consequences of diabetes, one of the leading

causes of death worldwide, can be minimized if the disease is
diagnosed early and managed properly (33). In clinical prac-
tice, diagnosis of diabetes involves measuring HbA1c, the
glycated form of hemoglobin. The concentration-dependent
Maillard reaction of sugars with the amine groups of pro-
teins is responsible for this glycation. In addition to hemo-
globin, all other blood proteins and in particular the long-term
circulating high-abundant ones are also glycated. In our
experience, hundreds of glycated peptides are easily detect-
able in all plasma proteome profiling experiments (14, 16, 34).
Their levels are an indicator of prediabetic or diabetic status,
which is particularly relevant as up to a third of the population
that has these conditions are not aware of it.
Apart from acute disease, proteomics covers proteins

connected to the risk of a future disease. The lipid homeo-
stasis system is covered by more than 20 factors (16), several
of which—including apolipoprotein A1 (APOA1), apolipopro-
tein B (APOB), and apolipoprotein(a) (LPA)—are important
predictors of cardiovascular diseases (35). MS-derived APOB
intensities correlate to LDL-levels as shown in a data set of
142 samples in our weight loss study (Fig. 3B). This indicates
that these apolipoproteins can be used to determine risk of
cardiovascular diseases similarly to cholesterol, for which they
are carriers. It is well known that decreasing high cholesterol
levels by lifestyle changes or medication is beneficial for
health outcomes (15, 35). Thus, an apolipoprotein panel
derived from plasma proteomics likely provides at least the
level of actionable health information than a routine choles-
terol test. Furthermore, as individuals may respond quite
differently to various treatments as shown in the regulation of
APOB levels upon weight reduction (Fig. 3C), proteomics may
provide more individualized and detailed information. This is
an example where the risk is known and treatment options to
significantly reduce future medical conditions may be signifi-
cantly improved by proteomics.
MS-based proteomics can also report on risks for which no

treatment option is currently available, making them “non-
actionable.” For instance, the three APOE alleles—APOE2,
APOE3, and APOE4, can be differentiated by sequence spe-
cific peptides. Knowledge concerning the status of the APOE4
allele (7.5–15.6% of the population), which strongly increases
risk of Alzheimer’s disease, is medically unactionable infor-
mation as there is currently no available treatment (36). Return
of such severe unactionable information could leave some
individuals with psychological trauma, frustrate others, and
might potentially negatively influence future personal de-
cisions in a negative manner. The APOE2 allele (6.7–10.0% of
the population) increases cholesterol levels and cardiovascu-
lar pathologies (36). In contrast to APOE4, this knowledge is
actionable and could lead to the decision to take cholesterol
lowering medication or dietary interventions to decrease
Mol Cell Proteomics (2021) 20 100035 5



FIG. 3. Disease diagnostics and disease risk assessment relevant proteins. A, comparison of the plasma proteomes of one individual,
indicating an infection at time point 4 (TP 4). B, correlation of LDL levels and proteomic measurements of APOB. C, hierarchical clustering
illustrating individual-specific responses of APOB levels to weight loss and weight maintenance over seven time points (1–7). D), intensities of
the quantified APOE4 allele determining peptide across individuals.
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cardiovascular disease risk. There are therefore much more
persuasive reasons for the return of information concerning
APOE2 status.

Untargeted Plasma Proteomics Delivers Personally
Sensitive Findings

The recognition of the equal worth and dignity of all mem-
bers of the human family as enshrined in universally adopted
and near-universally accepted normative and legal codes
globally represents the outcome of centuries of struggle for
legal and moral equality before the law and society. These
efforts aim at stopping and preventing discrimination, which
refers to unequal treatment on the basis of various morally
irrelevant attributes such as gender, race, color, or national or
ethnic origin, all of which still occur in both explicit and implicit
forms in modern society. Therefore, it is morally noteworthy
that one can distinguish the proteomes of men and women
and of reproductive status (14). Comparing the longitudinal
proteomes of women and men of our weight loss study
revealed that the levels of estrogen-regulated proteins such as
the sex hormone binding globulin (SHBG) and the pregnancy
zone protein (PZP) were significantly elevated in women
(Fig. 4A). While the levels of these proteins depend on several
additional factors such as age and lifestyle, they are clear in-
dicators of gender. Applying a one-dimensional principal
component analysis clustered almost all women and men
separately, although one of the eight men and one of the 34
women were assigned to the opposite clusters due to un-
typical PZP levels (Fig. 4, B and C). It is known that SHBG and
especially PZP increase more than tenfold during pregnancy.
Additionally, there are highly specific measures for deter-
mining pregnancy by quantifying placental proteins such as
the family of pregnancy-specific glycoproteins (PSGs), which
are the most abundant trophoblastic proteins in maternal
blood during pregnancy (37, 38), and they are in our experi-
ence readily detectable by MS-based proteomics. Their
6 Mol Cell Proteomics (2021) 20 100035
concentration can increase over 1000-fold, even exceeding
placental peptide hormone human chorionic gonadotropin
(hCG), which is usually determined in pregnancy tests. This is
significant given that pregnancy status is information that in-
dividuals often seek to keep private, as much of the discrim-
ination faced by women is related to the unique status of
(potential) motherhood.
Given that body weight is connected to discrimination, we

investigated the weight loss study for pertinent markers.
Interestingly, SHBG and proteins of the innate immune system
that we readily quantified are among the proteins most
affected by body mass (15, 16). Although individual-specific
differences, acute inflammation, and gender might influence
these parameters, they could conceivably be used to predict a
person’s weight based on their plasma proteome or more
pertinently likely negative health effects for that person.
Similarly, it is also possible to discern information regarding

the ethnic background of an individual using alleles in a similar
way as described above (39). Furthermore, ethnic differences
can complicate analytical results. A prominent example of this
is the abundant plasma protein vitamin D-binding protein (GC),
which has three common alleles Gc1f, Gc1s, and Gc2 with
very different allele distribution depending on ethnic back-
ground. Gc1f is most frequent in West Africans and African
Americans and least common in Caucasians (40, 41). All three
alleles should result in potential MS-detectable peptides, and
we identified the Gc1f peptide in nine and the Gc2 peptide in
21 of 42 study participants at each of the seven time points
(Fig. 4D). However, the third peptide was not detectable,
presumably due to poor ionization.

How to Render the Plasma Proteome Ethically
Unproblematic and General Data Protection Regulation

(GDPR) Compliant

The legal act of the European Union for the protection of
personal information—the General Data Protection Regulation



FIG. 4. Information with the potential to discriminate individuals. A, comparing the plasma proteomes of all individuals and samples in the
weight loss study (15). Proteins with elevated levels in women and men are highlighted in red and blue, respectively. B, one-dimensional principal
component analysis for plasma samples at one time point. C, proteins and their distribution to the separation in (B). D, vitamin D-binding protein
determining alleles quantified by MS-based proteomics.
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(GDPR)—regulates data protection and privacy with one of the
central aims of giving control of personal data to the corre-
sponding individuals (Directive 95/46/EC, (42)). Implemented
in 2018 across the EU, GDPR supplies rules relating to the
protection of an individual with regard to the processing of
personal data and to the movement of personal data. It also
regulates flow of information into “third countries,” outside the
sphere of GDPR. In the United States, the HIPAA (Health In-
surance Portability and Accountability Act) Privacy Rule is a
similar directive on data protection. However, HIPAA focuses
on the protection of individually identifiable health information,
whereas GDPR is a regulation on all data that can be related to
a person. Furthermore, there is an international trend toward
GDPR style rules across many jurisdictions.
Study participants and patients must be informed about the

potential information content of their proteome in advance of
study participation. Ideally, they would be given the opportu-
nity to state whether and to what extent their data can be used
for the benefit of research and third parties. Furthermore, in-
dividuals should be informed about the potential and range of
incidental findings and their preferences as to return of such
information should be ascertained. However, in studies this is
only possible under specific circumstances, for example,
where data is pseudonymized or nonanonymized instead of
anonymized. However, nonanonymization of samples and
data collides with the protection of personal data as the pro-
teome contains sensitive information about individuals and
therefore adequate rules have to be promulgated and adhered
to when working with this kind of data in research and clinical
contexts. In genomics, samples and data from individuals
have to be pseudonymized before analysis to comply with the
GDPR. Pseudonymization still allows for the linking of an in-
dividual to their data under specific conditions and would act
as a safeguard against third-personal access to personal and
sensitive information. In contrast, this would not be possible in
anonymized data and would hinder to link new studies and
their results to previous findings.
Clearly, individuals have to decide to what extent their

samples and personal data should be processed, and they
have to be aware of the range of information that can be
extracted. Informed consent must be given, which can happen
either in an opt-out or opt-in modality. The choice between
these will have a significant impact on the extent of informa-
tion available for research and processing (see our accom-
panying paper, (21)). These issues exist along spectra of
severity, such that their associated ethical questions do not
admit of binary answers and degrees of likelihood, risks,
benefits, and harms must be considered. Next to organiza-
tional measures and access to the samples and data, the
extent further analysis, storage, and integration of proteomics
data for research and clinical purposes are a topic of great
importance. In proteomics, mass spectra of peptides are
generated and saved in raw data files. In principle, allele-
specific peptides could be deleted from the raw data, but
this would itself go against good laboratory practice, which
strongly discourages data manipulation. However, the sharing
of raw data is beneficial due to several reasons including
general research reproducibility. Therefore, in the research
context instead of having controlled access to raw data, data-
sanitization procedures might be applied to have the optimal
trade-off between data utilization and privacy protection as it
has recently been proposed in genomics (43). To prevent the
existence of such data, one could instead direct data acqui-
sition accordingly, which would be difficult or impossible for
data-independent acquisition (dia), challenging for data-
dependent acquisition (dda) and easily accomplished for tar-
geted proteomics.
Once data is acquired, the interpretable information still

depends on the processing workflow. For example, allele in-
formation is easily extracted when a sequence database
Mol Cell Proteomics (2021) 20 100035 7
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(FASTA) file with allele information is used. FASTA files without
allelic information would render the proteomic readout non-
identifiable for many purposes, as protein levels alone cannot
identify an individual to the degree of certitude necessary in
forensic and similar contexts. Therefore, tightly restricting
access to the raw data might be warranted in many circum-
stances. We suggest that in clinical environments, the
handling and analysis of data should be done in an automatic
fashion. Access could be secured by technologies such as
blockchain, ensuring that only approved information is read
out and reported to the patient, depending on their former
written consent.
MS-based proteomics is uniquely information-rich because

it accurately and quantitatively measures thousands of pep-
tides in clinical samples. However, affinity-based methods are
also increasingly applied to the plasma proteome (26). As only
a single or few epitopes are probed, there is much less chance
of revealing allele-specific information. Furthermore, pre-
analytical factor such as freeze–thaw cycles can affect epitope
recognition, whereas this does not introduce variations in MS-
based methods (29). Thus, identifiability is currently not a
particular issue in affinity-based methods, and incidental
findings could be stripped out by removing them from the
reported protein level measurements.
DISCUSSION

Exploring the plasma proteome in various clinically rele-
vant areas, we have encountered several categories of
findings with potential ethical implications. In this paper, we
systematically investigated the main ones using a plasma
proteome profiling study (15), which served as a prototypical
case. Quantitative protein levels allowed us to detect acute
diseases and markers for future events that raise ethical is-
sues. Individual-specific levels of plasma proteins enabled us
to identify individuals in this longitudinal study. We further
showed that MS-based proteomics delivered broad knowl-
edge about allele distribution with the potential to identify
individuals, predict disease risks, and detect alleles charac-
terizing ethnic groups. Even though insights based on allele
variation are not very extensive in plasma yet, they will
become more so through further technological progress.
This is already the case for the proteomic analysis of tissue
samples because tens of thousands of peptides are routinely
measured and large-scale efforts are already on the horizon
(44–47). Much remains to be learned about plasma proteome
alterations in response to variables such as lifestyle, disease,
and medication. If these variables change the plasma pro-
teome, they might complicate the identification of an indi-
vidual. However, the continuous exploration of the plasma
proteome will increasingly allow us to acquire information
about plasma proteome modulators and take them into ac-
count. Moreover, as technology progresses, it will enable the
investigation of increasingly large studies while expanding
8 Mol Cell Proteomics (2021) 20 100035
the information that can be extracted from a single plasma
proteome.
As the power of proteomics increases (11), so do insights

that may be derived from an individual’s sample. Indeed this is
necessary for the medical application of proteomics. Yet the
hypothesis-free nature of proteome profiling also yields in-
formation not directly relevant to the study or intervention at
hand, which may nevertheless be relevant for other medical
reasons or for other purposes entirely. Since not all uses of
this additional information are benign, it is important to
discuss how the benefits of additional knowledge can be
reaped, maximized, and shared, while avoiding the potential
for harm and exploitation which that knowledge may also
bring.
These almost exclusively relate to the knowledge that can

be obtained from proteomic data and thus have much in
common with issues familiar from broader health and research
contexts such as data storage, data sharing, and adequate
consent. However, the proteomic context is unique, and the
progress made in other fields does not necessarily translate
easily. Therefore, it is important that the proteomics commu-
nity is aware of, raises, and discusses these issues to protect
data subjects and facilitate research in ethical and legal ways.
We hereby wish to start a discussion within our proteomics

community about potential uses of the data in our hands. We
believe this is important not only to maximize benefit and
minimize harm, but crucially also because our community is
best positioned to explore questions not only of an ethical and
legal nature but are also intertwined with technical and sci-
entific issues related to the reliability, accuracy, storage,
sharing, propriety, and kinds of inferences that may be sur-
mised from proteomics.
We hope this discussion can serve as a first step toward

serious scientific self-regulation in the proteomic community,
which is acceptable to regulators and society, as has
happened with recombinant DNA techniques at the Asilomar
conference already in 1975 (48), and as is currently being
attempted in the context of editing the human germline (49).
To achieve this, the proteomics community will need to

become aware of ethical issues involved and begin to discuss
them seriously. Luckily, the effort will not have to be made
from scratch as structurally similar issues have been exten-
sively debated in other fields. Nevertheless, these debates are
far from settled and the unique research context of proteomics
means that potential answers cannot be imported wholesale
but rather need to have their fit and applicability assessed and
thoroughly discussed.
In conclusion, the increasing power of MS-based proteomics

for generating both medical and nonmedical insights brings
with it a concomitant increase in the importance of associated
ethical issues. We have presented some of these issues by
showcasing a single plasma proteomics study. The purpose of
this exploratory contribution has been to point out that these
issues already exist and to initiate discussion; but more
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importantly, we hope to stimulate others to point the attentions
of ourselves and the community to issues that are not dis-
cussed here. In our accompanying paper, we further elucidate
and develop ethical implications from a bioethical and philo-
sophical perspective in the hope of starting a discussion con-
cerning the first potential guidelines for the community: (21).
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