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S Y S T E M S  B I O L O G Y

Systematic inference identifies a major source 
of heterogeneity in cell signaling dynamics:  
The rate-limiting step number
Dae Wook Kim1,2†‡, Hyukpyo Hong1,2†, Jae Kyoung Kim1,2*

Identifying the sources of cell-to-cell variability in signaling dynamics is essential to understand drug response 
variability and develop effective therapeutics. However, it is challenging because not all signaling intermediate 
reactions can be experimentally measured simultaneously. This can be overcome by replacing them with a single 
random time delay, but the resulting process is non-Markovian, making it difficult to infer cell-to-cell heterogene-
ity in reaction rates and time delays. To address this, we developed an efficient and scalable moment-based 
Bayesian inference method (MBI) with a user-friendly computational package that infers cell-to-cell heterogeneity 
in the non-Markovian signaling process. We applied MBI to single-cell expression profiles from promoters re-
sponding to antibiotics and discovered a major source of cell-to-cell variability in antibiotic stress response: the 
number of rate-limiting steps in signaling cascades. This knowledge can help identify effective therapies that de-
stroy all pathogenic or cancer cells, and the approach can be applied to precision medicine.

INTRODUCTION
The response of genetically identical cells to the same extracellular 
signal is largely heterogeneous in both response time and strength, 
even in a homogeneous environment (1–4). This cell signaling 
heterogeneity ultimately leads to diverse, often unpredictable clini-
cal complications, such as drug response variability (5), emergence 
of persister cells (6), incomplete penetrance (7), and phenotypic 
plasticity (Fig. 1A) (8). One of the major sources of this cell signal-
ing heterogeneity is a difference in cellular phenotypes, such as cell 
cycle phase (9), cell growth rate (10), or asymmetric cell division 
(11). Another major source is heterogeneity in the signal cascades, 
such as the number of signaling receptors (12) and the kinetics of 
numerous intermediate signaling reactions (1, 13). However, while 
cellular phenotypes can be tracked with flow cytometry, microfluidics, 
and time-lapse microscopy (11, 14), only a few steps of signaling 
cascades can usually be tracked in a single cell, for example, with 
multicolor luciferase reporter assays (15–17).

Because of this limit of the data, intermediate signaling kinetics 
are unidentifiable (Fig. 1B, i). One promising way to circumvent 
this is to replace a chain of hidden intermediate steps with a single 
random time delay (Fig. 1B, ii) (18–22). This allows one to describe 
signaling cascades with a chain of hidden steps by using a simple 
delayed birth-death process having only one variable that is observable 
experimentally: birth (i.e., signal activation), delay (i.e., signal trans-
duction), and death (i.e., decay of observable signaling molecule) 
(Fig. 2A) (23). However, because this model is non-Markovian (i.e., 
the formation of the response molecule depends on past signal 
activation events due to a time delay as well as the current status of a 
system), well-established inference machinery based on the Markov 
property (i.e., memoryless; the formation of the response molecule 

depends only on the current state not on the past) cannot be directly 
applied (24). Recently, meaningful progress has been made: A Bayesian 
inference method based on non-Markovian delay chemical master 
equations (CMEs) describing the time evolution of stochastic 
systems with delay has been developed (Box 1) (20). However, this 
framework rests on the assumption that all time trace measure-
ments are obtained from identical cells with the same biochemical 
parameters, and thus it cannot be used to quantify the heterogeneity 
in signaling parameters (e.g., signal transduction delay) across cells. 
This challenge can be overcome with a mixed-effects modeling 
approach that offers a framework to analyze cell population–level 
data and accounts for cell-to-cell heterogeneity in the population 
(25, 26). However, its potential in non-Markovian delayed systems 
has yet to be realized.

The other limitation of the previous methods based on CMEs is 
computational intractability. Because they track whole probabilities 
over the integer-valued state space of molecule counts, inference 
using them is substantially slowed when the amount of provided 
data increases (20, 27). One possible remedy for this might be to use 
low-order moments of data (e.g., mean) instead of all the individual 
data points (Fig.  1B, iii) (28). Specifically, tracking the mean 
number of molecules, which includes the essential information for 
determining the model parameters, does not increase the amount of 
the data used for parameter estimation and thus computational 
cost, although the number of measurements (i.e., total data points) 
increases. However, derivation of exact moments is challenging in 
non-Markovian delayed models as the conditional probabilities, 
describing the effect of the models’ history (i.e., past model dynamics) 
on the present model dynamics, need to be handled (29). Thus, the 
approximate moments have been used under the assumption that 
the number of molecules is large (30).

Here, we developed an exact moment-based Bayesian inference 
method (MBI) for signaling processes of a heterogeneous cell 
population by using a mixed-effects modeling approach (25) and 
deriving exact moments of the process. It can accurately capture the 
cell-to-cell heterogeneous birth and death rates and delays for both 
signal transduction and feedback. Furthermore, MBI can be applied 
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to large data as it uses only the first moments of large data rather 
than all individual data points. We used MBI to analyze previously 
published single-cell profiles of time-lapse fluorescent protein 
expression from various promoters in response to four antibiotic 
stresses: tetracycline (TET), trimethoprim (TMP), nitrofurantoin 
(NIT), and chloramphenicol (CHL) in an Escherichia coli (E. coli) 
population (2, 3). This revealed large cell-to-cell variability in stress 
signal activation rate and transduction delay. Importantly, our sys-
tematic inference results identified a previously unrecognized parameter 
that causes cell-to-cell variability in response to antibiotic stress sig-
nals: the number of rate-limiting steps in the signal transduction 
cascade. This was unexpected because a large number of rate-limiting 
steps have been known to reduce the intracellular variability in 
transduction delay (3, 31). Our finding of the major source of cell-
to-cell variability in signaling dynamics is critical for developing 
more potent drugs that kill all target cells, which is important for 
curing cancer and many infectious diseases (4, 32). Our approach 
provides an important step toward elucidating cell-to-cell vari-
ability in signal dynamics, such as in response to cytotoxic drugs.

RESULTS
Cellular processes with hidden reactions can be described 
with a gamma-distributed delayed model
After plasma membrane receptors are activated by an extracellular 
signal (Fig. 2A, i, red arrow), the signal is transduced through a 
chain of many intermediate reaction steps (Fig. 2A, i, yellow and 
gray arrows) and triggers a response whose intensity decays (Fig. 2A, 
i, blue arrow) (33). Among all the intermediate reaction steps, the 

slowest steps that determine the overall speed of signaling, called 
rate-limiting steps (Fig. 2A, i, yellow arrows), mainly control the 
signaling dynamics (34). The rate-limiting steps have been widely 
described as a chain of reversible activation and deactivation of 
signaling molecules (Fig. 2A, ii; see Supplementary Text A) (19, 35). 
Specifically, upon initial signal activation with a rate of a, the first 
inactive intermediate is activated and transformed into its active 
form, X0, and then it activates the next inactive intermediate. 
Throughout such sequential activation of intermediates with a rate 
of ai, the initial signal is amplified and, finally, triggers the activa-
tion of the last response molecule, Xn. Each active intermediate is 
deactivated with a rate of r and the last response molecule decays 
with a rate of d. Note that the time for each reaction step is assumed 
to be the same as tr = r−1, because all the steps are rate-limiting 
ones whose time scale is similarly slow [see (35) for details].

In this system, typically, only the final output, Xn, can be 
measured (16, 17). Thus, to handle the limited experimental data, 
the model with the hidden intermediates (X0~Xn − 1) (Fig. 2A, ii) has 
been simplified to a compact coarse-grained model with the only 
observable Xn (Fig. 2A, iii; see Supplementary Text A) (19, 35). In the 
model, the activation of Xn with the signal amplified throughout the 
intermediate steps is simply described with a rate of ​​​​ b​​ = ​ ​ a​​ ​∏ i=1​ n  ​​​(​​ ​​a​ i​​ _ r ​​)​​​​. 
This activation is not immediate but delayed due to the intermedi-
ate rate-limiting steps. The time delay (i.e., the time of the signal 
transduction between signal activation and response), , can be 
shown to follow a gamma distribution, (n, tr), where n and tr are 
the number of intermediate rate-limiting steps and the time for 
each step, respectively (see Supplementary Text A). Similarly, 
various systems with hidden intermediates such as the protein 
maturation process (Fig. 2B, i) (36) can also be described with a 
gamma-distributed delayed one-variable model (Fig. 2B, ii and iii; 
see Supplementary Text A).

Derivation of exact moments of a stochastic delayed 
birth-death process
While the delayed one-variable model (Fig. 2A, iii and B, iii) is ap-
parently simple, the model is non-Markovian. Thus, its underlying 
kinetics cannot be inferred with well-established inference machinery 
based on the Markov property (37). Because of this limitation, the 
time delay has been widely estimated using time points when 
response time traces first reach a certain threshold level (i.e., first 
passage time) after signal activation (2, 3, 38). However, as the first 
passage time distribution strongly depends on the choice of the 
threshold (Fig. 2C, top), the mean time delay, , estimated using 
the first passage time so does (Fig. 2C, bottom). Moreover, the stan-
dard deviation of time delay, , is seriously underestimated. This 
highlights the need of a systematic inference method for the non-
Markovian model with the time delay.

To develop a systematic inference method for the non-Markovian 
model, we first applied the Transient Little’s Law (39) and the 
Chemical Fluctuation Theorem (21) to the equivalent queuing pro-
cess, namely, a delayed birth-death process (Fig. 2D) (20, 40). In the 
process, birth events are initiated, which follow a Poisson arrival 
process with the mean birth rate, b (Fig. 2D, red arrows), and they 
are completed independently after gamma-distributed delay, ~(n, tr) 
(Fig. 2D, yellow arrows). Then, death events occur independently, 
which follow a Poisson arrival process with the mean death rate, d 
(Fig. 2D, blue arrows). This allowed us to derive the time-varying 
exact low-order moments, mean, (t), and variance, 2(t), of Xn

Fig. 1. A framework for inference of cell signaling cascades with a chain of 
hidden reaction steps. (A) Given extracellular signals, genetically identical cells 
respond differently even in a homogeneous environment (i). This cell-to-cell 
heterogeneity yields heterogeneous therapeutic response (ii). (B) In cell signaling 
cascades, intermediates (X0~Xn − 1) are experimentally unobservable (i.e., hidden), 
and only the final output, Xn, is observable (i). Because the intermediate kinetics are 
unidentifiable, a chain of intermediate reaction steps needs to be simplified with a 
single random time delay (ii). However, the simplified system becomes non-Markovian, 
and thus the inference of its dynamics is mathematically and computationally 
intractable. This can be circumvented by exploiting low-order moments (i.e., mean 
and variance) including key information of the dynamics (iii).
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 ​​(t ) = ​​​ 2​(t ) = ​ ​​ b​​ ─ ​​ d​​ ​​(​​​∫0​ 
t
 ​​g( ) d − exp(− ​​ d​​ t ) ​∫0​ 

t
 ​​g( ) exp(​​ d​​  ) d​)​​​​	 (1)

where g() is the probability density function of ~(n, tr) (see 
Supplementary Texts A and B). Note that the mean and variance 
are the same (i.e., Poissonian). Furthermore, the mean and variance 
formulae (Eq. 1) still hold even if g() is an arbitrary probability 
density function, for instance, having complex shapes such as 
multimodality (see Supplementary Texts B and C). The theoretically 
derived mean time trace (Eq. 1) is consistent with the one obtained 
numerically (Fig. 2E) (23).

Estimation of reaction rates and delay distribution 
parameters of a single cell
Based on the formulae (Eq. 1), we developed an efficient and scal-
able Bayesian Markov chain Monte Carlo (MCMC) method, 
namely, MBI, which estimates probability distributions of the 
parameters (i.e., posterior distributions) (Fig. 3A) (see Materials and 
Methods and Supplementary Text D). Specifically, we constructed the 
Gaussian likelihood function using the mean and variance formulae 
(Eq. 1) (Fig. 3A, middle). Furthermore, we used the sample mean of 

the time traces instead of their sample variance to estimate the vari-
ance of the likelihood function, because the delayed birth-death 
process is Poissonian (Eq. 1) and the convergence of the sample 
mean to the true statistics is faster than that of sample variance (41). 
Thus, from just the mean of the given sample time traces, MBI can 
estimate posterior distributions of the birth rate, b, death rate, d, 
and the delay distribution parameters, n and tr (Fig. 3A, right). In-
deed, from the mean of 102 sample time traces measured every min-
ute, the posterior samples of all the parameters obtained with 
MBI successfully capture the true values (Fig. 3, B to D).

When the information of sample time traces is reduced, MBI is 
still accurate and precise. That is, its accuracy and precision do not 
decrease even when the sample number is less than 40 (Fig. 3E) or 
the time interval between observations is similar the mean time 
delay (fig. S1A). Furthermore, MBI can be applied directly to rela-
tively measured data. Only relative measurements (e.g., relative 
fluorescence signal) rather than actual molecular counts are typically 
available. Thus, the mean and variance of the time traces are not the 
same (i.e., non-Poissonian), which is inconsistent with the underlying 
Poissonian model (Eq. 1). This mismatch led to a considerable bias 
in the estimation of the previous inference method for the delayed 

Fig. 2. Sequential biological processes can be described with a delayed birth-death process. (A) The activated signal (red arrow, i) is transduced via a chain of intermediate 
steps (yellow and gray arrows, i) and then triggers a response whose intensity decays (blue arrow, i). This process is mainly regulated by the slowest intermediate steps 
determining the overall signaling speed (i.e., rate-limiting steps; yellow arrows, i). The dynamics with the rate-limiting steps can be described with a chain of reversible 
activation and deactivation of signaling molecules (ii). The time to pass through the rate-limiting steps can be simply described with a gamma-distributed delay (iii) (see 
Supplementary Text A for details). The signal amplification throughout the steps can also be described with the modified signal activation rate, b (iii). (B) Protein maturation 
process with rate-limiting steps (i and ii) can be described with a gamma-distributed delayed one-variable model (iii) (see Supplementary Text A for details). (C) The 
simulated 102 sample time traces of the simplified model with delay [A (iii) and B (iii)]. Depending on the subjective choice of a threshold level, the first passage times 
across the threshold largely change. Vertical and horizontal gray dotted lines represent the true mean and standard deviation of time delay, respectively. (D) The dynamics 
of the simplified model [A (iii) and B (iii)] can be described with a queuing process, namely a delayed birth-death process (20, 40). (E) The mean molecular number of the 
delayed birth-death process calculated by the formula (Eq. 1) (red circle) is the same as that of simulated 102 sample time traces (red line). In (C) and (E), b = 30 min−1, d = 
0.05 min−1, n = 4, and tr = 2 min.
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birth-death process (20). However, our method can still accurately 
estimate the parameters (fig. S1, B and C).

Notably, MBI becomes computationally more tractable than the 
non–moment-based algorithm (20) when the number of samples 
used for the estimation increases (Fig. 3F), while their accuracy and 
precision are comparable (Fig. 3G). Specifically, even if the number 
of samples increases, the amount of the information used for the 
estimation in MBI (i.e., mean) does not increase. Thus, there is no 
increase in computational cost. In contrast, that of the non–moment-
based method increases dramatically when the number of samples 
increases as it tracks all individual data points.

Estimation of cell-to-cell heterogeneous reaction rates 
and delay distribution parameters of a cell population
MBI allows one to estimate the reaction rates and the delay distribution 
parameters of a single cell when a reasonable number of time traces 

(≥~5) from the single cell is given (Figs. 3 and 4A, i). However, such 
multiple repetitive measurements in a single cell are challenging 
with current experimental techniques, because they are time-
consuming and potentially alter the properties of the cell and thereby 
the reaction kinetics (16, 17). Thus, multiple time traces are typically 
measured with a cell population that is considerably heterogeneous 
due to large contribution of extrinsic noise (42, 43). In this case, the 
inference problem is shifted from estimating a parameter set of a 
single cell to estimating multiple parameter sets of a heterogeneous 
cell population.

To estimate heterogeneous parameters, we extended MBI with 
a mixed-effects model, which is a class of statistical models that 
allows one to analyze the population-level data with extrinsic noise 
(Fig. 4A, ii; see Supplementary Text E) (25). In this extended MBI, 
all single cells in a heterogeneous population are assumed to share 
the same model structure (i.e., the delayed birth-death process), and 

Fig. 3. MBI allows estimation of the reaction rates and time delay parameters of a single cell. (A) Schematic diagram of MBI. Multiple sample time traces are mea-
sured from a single cell (left). Then, using their average time trace, X, we computed the likelihood function, L, which was constructed with the mean and variance formulae 
(Eq. 1) under the Gaussian noise assumption (middle). Σ is a diagonal matrix whose entry is a variance estimate at each time point. Through MCMC sampling with this 
likelihood function, the posterior samples of parameters are obtained (right). (B to D) The posterior samples of parameters obtained with MBI using the mean of the 
sample time traces measured at 1-min intervals in Fig. 2E. The reaction rates (B) and time delay parameters (C and D) were accurately estimated. The sample values were 
normalized by dividing with the true values of the parameters. (E) Box plots of 102 posterior means that were obtained using an increasing number of time traces. The 
estimates were normalized as in (B) to (D). The subsets of between 5 and 40 time traces were randomly and repeatedly selected from the time traces in Fig. 2E. (F) This 
moment-based algorithm is computationally more efficient than the non–moment-based algorithm (20) as the number of sample time traces used for the estimation 
increases. Here, the means of the computation times, which were obtained from 20 individual repetitions of parameter estimation in the setting as in (B) to (D), are 
shown. (G) Box plots of the posterior means obtained from the 20 repetitions. The accuracy and precision are comparable between MBI and the non–mo-
ment-based algorithm. Noninformative priors were used throughout these estimations (see Supplementary Text D).
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their difference in responses to an extracellular signal is assumed to 
originate from different values of the model parameters (i.e., the 
cell-to-cell heterogeneous birth and death rates and delay distribu-
tion parameters), which are distributed following gamma hyper 
prior distributions (see Supplementary Text E). This allows one to 
use the information from all single cells in a heterogeneous popula-
tion together (25). Thus, the inference with the mixed-effects model 
would enable the accurate estimation of parameters even if only one 
time trace is measured in each single cell in the population.

Indeed, the extended MBI with the mixed-effects model accurate-
ly estimated heterogeneous birth rates, b, death rates, d, and mean 
delays, , of the 102 delayed birth-death models even when only a 
single time trace of each model is given (i.e., total of 102 time traces) 
(Fig. 4, B to D). Specifically, the posterior distributions of estimated 
parameters are similar to those of true parameters [Hellinger dis-
tance (DH) < 0.2] (Fig. 4, B to D, inset). Such accurate estimation is 
kept when the magnitude of the heterogeneity in the parameters 
increases, and thus the variation in sample time traces becomes 
larger (fig. S2).

While an estimated variance of delay, ​​​​ 
2​​, of a single cell is accu-

rate when multiple time traces from the single cell are given (Fig. 3D), 
estimated ​​​​ 

2​​ of heterogeneous single cells are inaccurate (Fig. 4E). 
This is due to the inaccurate estimation of the number of rate-
limiting steps, n (Fig. 4F), and the time for each step, tr (Fig. 4G), 

caused by their strong correlation leading to their unidentifiability 
(fig. S3). This identifiability issue might be circumvented by assum-
ing that the number of intermediate rate-limiting steps is the same 
among single cells, which is reasonable, because the number of 
intermediate rate-limiting steps in signaling cascades is more likely 
to be similar among isogenic cells under the same environment 
compared to the reaction rates. This assumption can be easily in-
corporated into our method, because it is based on the mixed-effects 
modeling instead of the traditional naïve two-stage approach that 
individually estimates parameters (e.g., the rate-limiting step 
number) of each single cell (25), demonstrating an advantage of 
MBI. Under the assumption, MBI accurately estimated the number 
of common intermediate rate-limiting steps (Fig. 4H) and the time 
for each step (Fig.  4I) as well as the other parameters (fig. S4). 
Furthermore, even when only the relative measurements are available, 
MBI provides considerably accurate estimation for the magnitude 
of cell-to-cell heterogeneity (fig. S5).

The magnitude of cell-to-cell heterogeneity in the amplified 
signal activation rate is positively correlated 
with the number of intermediate rate-limiting steps
To facilitate the use of MBI, we developed a publicly available 
computational package of MBI (see Supplementary Text G). Using 
this computational package, we analyzed the previously measured 

Fig. 4. Bayesian mixed-effects modeling approach allows estimation of cell-to-cell heterogeneous reaction rates and time delay parameters. (A) MBI can estimate 
a single set of parameters from multiple measurements from a single cell (i) or multiple sets of heterogeneous parameters from a single measurement from each single 
cell in a heterogeneous population (ii). (B to G) The estimated posterior means of parameters from the 102 time traces simulated using 102 heterogeneous-delayed birth-
death models. The parameter values of the 102 models were randomly sampled from gamma distributions whose mean and coefficient of variation are the values in 
Fig. 2E and 0.2, respectively. The estimates of b (B), d (C), and  (D) are accurate, and thus their distributions are comparable to those of the true values [inset, (B) to (D)]. 
However, the estimates of ​​​​ 2​​ (E) are inaccurate due to the inaccurate estimation of n (F) and tr (G) caused by their strong correlation (fig. S3). The estimated and true 
parameter values were normalized by dividing by the mean of the true parameters. (H and I) When 102 delayed birth-death models share the same value of n, n (H) and 
tr (I) as well as the other parameters (fig. S4) can be accurately and precisely estimated. Here, posterior samples of n (H) and posterior means of tr (I) are shown. Noninformative 
priors were used throughout these estimations (see Supplementary Text E).
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single-cell time-lapse yellow fluorescent protein (YFP) expression 
from the dnaK promoter in response to an antibiotic stress, TET, in 
two E. coli colonies (Fig. 5A) (3). Because the dilution rate of YFP 
(d) can be estimated directly from the experimentally measured 
cell growth rate after antibiotic addition (3), we assigned a strongly 
informative gamma prior for d (see Supplementary Text H). Then, 
under the assumption that the number of intermediate rate-limiting 

steps is the same among cells, we estimated the amplified stress sig-
nal activation rate (b), the number of rate-limiting steps (n), the 
time for each step (tr), and thus the mean signal transduction delay 
( = n ∙ tr) (Fig. 5, B to E). The inferred values of parameters showed 
a considerable magnitude of cell-to-cell heterogeneity (Fig. 5, B to D). 
The population estimates were similar between the two colonies 
(Fig. 5, C to E), although the time traces of colony 1 appeared to be 

Fig. 5. Rate-limiting step number is positively correlated with the magnitude of heterogeneity in signal response. (A and B) From single-cell YFP expression from 
the dnaK promoter stimulated by TET (A), the posterior means of single-cell parameters were estimated with MBI (B). a.u., arbitrary units. (C and D) The mean and coeffi-
cient of variation (CV) of the posterior means of b (C) and  (D). (E) The posterior mean of n and the mean of the posterior means of tr. (F) Table describing the 
antibiotic stresses and their response promoters. The arrows denote the previously reported reaction pathways. (G) Single-cell protein expression from the promoters 
stimulated by the stresses in (F). The solid and dashed lines represent data from two colonies. (H) The estimates inferred as in (C) to (E). Here, each estimate normalized by 
the mean of the estimates is represented by a color ranging from 0.5 (green) to 1.5 (red). If the normalized value is lower than 0.5 or higher than 1.5, then its color is 
represented by the color for 0.5 or 1.5, respectively. (I) The population mean of . Abbreviations for the promoter name are as follows: dK, dnaK; aC, ahpC; iR, iscR; nH, 
nrdH; ds, dps; pT, purT; pM, purM; yC, ybjC; rA, recA. Subscripts denote the index of microcolony. (J) The promoters can be classified into three groups, G1, G2, and G3, 
according to n and mean of tr. (K and L) n is not correlated with CV of  (K) but positively correlated with CV of b (L).  and P denote the coefficient and P value of Pearson’s 
correlation test, respectively. (M) When signal passes through more rate-limiting steps, the cell-to-cell variability in signal response increases.
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more heterogeneous than those of colony 2 (Fig. 5A, arrows and 
dashed lines), supporting the accuracy of MBI even for noisy exper-
imental data.

To investigate how signaling dynamics changes across different 
antibiotic stresses and response promoters, we applied MBI to the 
previously measured single-cell time-lapse fluorescent protein expres-
sion from other promoters in response to three antibiotic stresses, 
TET, TMP, and NIT (Fig. 5, F and G; see Supplementary Text H) 
(3). The resulting population estimates were again similar overall 
between the two colonies (Fig. 5H), demonstrating the accuracy of 
MBI. The population estimates are considerably heterogeneous, de-
pending on the type of the promoter driving the gene expression and 
the type of antibiotic (Fig. 5H). Specifically, the population mean of 
the mean transduction delay varied widely from ~0.3 to ~4.2 hours 
(Fig. 5I). Notably, the OxyR/SoxS-regulated oxidative stress response 
(i.e., ahpC, dps, and ybjC) was faster than the other stress responses 
regardless of which antibiotic stress was given (Fig. 5I). Furthermore, 
the order of response predicted based on the estimated time delay 
(purT ➔ purM and ybjC ➔ recA; Fig. 5I, i and ii, respectively) 
matched with previously known reaction orders of purine biosyn-
thesis (Fig. 5F, i) (44) and cellular responses to NIT (i.e., oxidative stress 
response followed by SOS response) (Fig. 5F, ii) (3, 45), respectively. 
This illustrates that MBI can be used to explore the temporal order 
of biochemical reactions and cellular responses.

We next compared the number of intermediate rate-limiting steps 
and the time for each step between the promoters (Fig. 5J). We found 
that the promoters can be categorized into three groups, G1, G2, and 
G3, according to the number of intermediate rate-limiting steps and 
the time for each step (Fig. 5J). Long delays in signal transduction 
stemmed from either the long-time of each intermediate step (G1) 
or a large number of short intermediate rate-limiting steps (G3) but 
not both. We considered whether there might be a difference in the 
heterogeneity of the time delay depending on whether the delay is 
generated by a greater number of rate-limiting steps or a longer time 
of each step. In particular, we hypothesized that a large number of 
intermediate rate-limiting steps reduces the cell-to-cell variability in 
delay because the intracellular variability in the transduction delay 
decreases as the step number increases (3, 31). However, we did not 
find any significant correlation between them (Fig. 5K), indicating 
the difference in intracellular and cell-to-cell variability. In contrast, 
unexpectedly, we found that the magnitude of the cell-to-cell het-
erogeneity in the amplified signal activation rate is positively corre
lated with the number of rate-limiting steps (Fig. 5L). This indicates 
that, as the number of intermediate rate-limiting steps increases, 
the cell-to-cell variability in signal amplification induced by each 
intermediate rate-limiting step (46) accumulates, leading to the 
large cell-to-cell variability in the amplified final activation rate 
(​​​​ b​​  = ​ ​ a​​ ​∏ i=1 ​ n  ​​​(​​ ​​a​ i​​ _ r ​​)​​​​). In this case, cell-to-cell variability in the signal 
response intensity, mainly determined by b, also increases accord-
ing to our theoretical calculations (see Supplementary Text I) and exact 
stochastic simulation (fig. S6). This indicates that the number of 
rate-limiting steps is a major source of cell-to-cell variability in sig-
nal response intensity (Fig. 5M).

Estimation of cell-to-cell heterogeneity for cell signaling 
processes with feedback regulation
In cell signaling processes, a set of regulatory steps that feeds the 
output signal back to the input (i.e., a feedback loop) exists ubiqui-
tously (47, 48). For instance, feedback inhibition (Fig. 6A, i) can lead 

to complex dynamics such as oscillatory signal response that cannot be 
analyzed using MBI with the delayed birth-death process. To analyze 
such complex dynamics with MBI, we extended the delayed birth-
death process by incorporating feedback inhibition with a fixed de-
lay (2) using the sequestration-based repression function (Fig. 6A, 
ii) (49–52). Then, we derived its time-varying exact low-order moments 
by using a transient Little’s law (39) and the Chemical Fluctuation 
Theorem (see Supplementary Text F) (21). The theoretically derived 
mean time trace is consistent with the simulated one (Fig. 6B). Fur-
thermore, MBI based on the formulae allows the accurate estima-
tion of the parameters of a single cell, including ones describing 
feedback inhibition (fig. S7, A and B). The estimates are still accu-
rate even if sample time traces generated with a random feedback 
delay were used for estimation, which causes a model misspecification 
(fig. S7C). Furthermore, MBI with the mixed-effects model, which 
can be easily used with the computational package (see Supplemen-
tary Text G), successfully estimated heterogeneous model parameters 
(Fig. 6C). Note that, because the derived formulae (Supplementary 
Text F) are not restricted to the sequestration-based feedback inhi-
bition, MBI can be also used to analyze systems with different types 
of feedback regulations, including feedback activation.

We next analyzed the previously measured single-cell time-lapse 
YFP expressions from the fpr promoter in response to NIT in two 
E. coli colonies that show adaptation behaviors, indicating the pres-
ence of the feedback inhibition (Fig. 6D) (3). The inferred population 
estimates were similar overall between the colonies (Fig. 6E), indi-
cating the accuracy of MBI even for the system with the feedback. 
We next applied our method to the previously measured single-cell 
time-lapse fluorescent protein expression from various promoters in 
response to four antibiotic stresses, TET, TMP, NIT, and CHL (Fig. 6F 
and fig. S8) (see Supplementary Text H) (2). Our inference results 
identified that the dynamics of output response depend on the mean 
of total time delay of signal transduction and feedback (1 + 2) and 
the ratio between birth rate and the abundance of output molecules 
to achieve maximum repression (b/R), representing the repression 
intensity (Fig. 6F and fig. S8B). Specifically, when both 1 + 2 and 
b/R are small, stress responses would monotonically increase and 
then be saturated with small fluctuation (rmuC; Fig. 6F, i). As 1 + 2 
becomes large, adaptation with a long duration occurs (ychF; Fig. 6F, ii). 
When b/R becomes large, signal response intensity shows oscilla-
tions (ycfR; Fig. 6F, iii), and the period becomes longer with larger 
1 + 2 (hemB; Fig. 6F, iv). These results illustrate the usefulness of 
MBI to understand the dynamics underlying output measurements. 
In this analysis (Fig. 6F), we were not able to infer cell-to-cell vari-
ability, because a single time trace was given for each promoter. Thus, we 
performed an in silico experiment, indicating that the rate-limiting 
step number is again the source of cell-to-cell variability even for the 
non-Poissonian process with the feedback inhibition (fig. S9).

DISCUSSION
In this work, we developed MBI that can infer cell-to-cell het-
erogeneity in amplified activation rate, signal transduction time, 
feedback inhibition time, and signal decay rate from only the time 
traces of the final signal response (Figs. 3 to 6 and figs. S1 to S5, S7, and 
S8). In particular, without tracking intermediate steps experimen-
tally, our method can infer the number of intermediate rate- 
limiting steps and the time of each step. This allowed us to classify 
the stress response promoters to three antibiotic stresses (i.e., TET, 
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TMP, and NIT) based on the number of rate-limiting steps and the 
time of each step. Throughout the classification, we found that the 
long time delay stems from either a large number of steps or a long 
time of each step but not both (Fig. 5J). We also found the counter-
intuitive discrepancy between intracellular and cell-to-cell variabil-
ity in signaling dynamics: While the intracellular variability in the 
transduction delay decreases as the rate-limiting step number in-
creases (3, 31), the cell-to-cell variability does not change (Fig. 5K). 
Furthermore, we found that as the number of rate-limiting steps in-
creases, the magnitude of the cell-to-cell heterogeneity in signal ac-
tivation rate, determining the strength of signal response, increases 
(Fig. 5, L and M). This relationship is preserved for Poissonian- 
delayed birth-death processes having any heterogeneous cell-to-cell 
parameter distribution (see Supplementary Text I), which is expand-
able to the non-Poissonian process with feedback regulation accord-
ing to an in silico experiment (fig. S9). It would be interesting in 
future work to investigate whether the property can be extended to 
diverse systems, for instance, having multimodal dynamics such 
as a toggle switch network with arbitrary waiting time distributions 
(22, 53, 54).

The delayed birth-death process used in this study can describe 
fundamental reaction networks, such as signaling cascades (Figs. 2A and 
6A) and mature protein synthesis (Fig. 2B) (18–20, 35, 37). How-
ever, this model has a limitation. For instance, protein dilution is 

modeled as a first-order reaction, and the consecutive signal activation 
is used. This might not accurately describe their contribution to ex-
trinsic cell-to-cell variability (55, 56). To tackle this, more realistic 
dilution reflecting cell division and signal activation via a bursty re-
action are needed to be incorporated into the delayed model as in 
previous work (fig. S10) (55–57). Even when these mechanisms are 
incorporated into the model, we can derive the formulae describing 
the model dynamics (see Supplementary Text J). It would be interest-
ing to use our framework with the formulae to systematically analyze 
the contribution of cell division or bursty expression to extrinsic cell- 
to-cell variability. For more complex reaction networks, moments 
could be derived with the Little’s Law (39), the Chemical Fluctuation 
Theorem (21), Wiener-Khinchin Theorem (56), or Lindley’s integral 
equation (40). Moreover, a theory, which converts a non-Markovian 
system with time delay into a topology-equivalent Markovian sys-
tem by introducing effective transition rate decoding the effect of non- 
Markovian processes, could also be used (22, 58).

Since our method is only based on the low-order moments, it is 
computationally more efficient than methods tracking all individual 
data points (Fig. 3F). However, for complex systems, estimation using 
low-order moments can be biased as it exploits only partial informa-
tion of the system. This issue could be resolved by tracking all indi-
vidual data points in the inference (59), which would be interesting 
in future work. Another important piece of follow-up research is to 

Fig. 6. MBI can be used to analyze cell signaling processes with feedback inhibition. (A) Signaling process with feedback inhibition. The feedback inhibition is incor-
porated into the delayed birth-death process (Fig. 2D). The output response molecules (X) self-inhibit their expression via interaction with input molecules, which is modeled 
as a delayed sequestration-based repression function ​​​⌊​​1 − ​X(t − ​​ 2​​) _ R  ​​⌋​​​​, where R is the abundance of output molecules to achieve maximum repression, 2 is a fixed time delay for 
the feedback inhibition, and ⌊f⌋ is maximum of f and 0. (B) The mean of the molecular number of the model calculated by the formula (red circle) is the same as that of simu-
lated 102 sample time traces (red line). Here, b = 30 min−1, d = 0.05 min−1, 1~(n = 5,   tr = 2 min−1), R = 50, and 2 = 5 min. (C) The estimated posterior means of parameters 
of 102 heterogeneous models with feedback inhibition. The parameters were estimated as in Fig. 4 (B to I). The dilution rate (d) was given, as it can be directly estimated 
from the experimentally measured cell growth rate. (D) Single-cell YFP expression time traces from the fpr promoter in two colonies stimulated by NIT. (E) The population 
estimates of the parameters are similar between the two colonies. (F) The posterior means of the total delay, 1 + 2

, and the repression intensity, b/R. See fig. S8 for details.
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generalize the gamma hyper prior assumption of the mixed-effects 
model used in our and previous studies (25, 60), because this makes it 
challenging to capture the multimodality of population distributions 
(61). In this case, one can use a maximum entropy-based framework 
that exploits data-derived constraints to derive the parameter distribu-
tion rather than enforcing a specific one (62). An interesting avenue 
for further work is to combine the maximum entropy-based frame-
work with our moment-based method. To use MBI more accurately, 
identifying a specific model that successfully captures a system struc-
ture (e.g., delayed birth-death process) is a prerequisite. For this, var-
ious network inference methods (63–65) can be used.

The heterogeneous mean signal transduction delays can be accu-
rately inferred by using our user-friendly computational package even 
from noisy experimental time series data (Fig. 5, B, D, H, and I). The 
inferred delays can provide valuable information to identify the tem-
poral order of biochemical reactions and single-cell responses to an 
extracellular stimulus (Fig. 5, F and I). Furthermore, this can assist 
identification of whether adaptation to a stressful environment (e.g., 
oxidative stress) offers a tolerance or resistance to other stresses (e.g., 
DNA damage stress), i.e., cross-protection (Fig. 5, H and I) (3, 45). 
In particular, our method can be used to find hidden cross-protection 
relationships between cellular stresses (e.g., acid stress and thermal 
stress) (66) or between virus infections (e.g., Dengue and Zika) (67). 
We also identified that the cell-to-cell variability in the strength of re-
sponse to antibiotic drugs accumulates as the signal passes through 
more rate-limiting steps (Fig. 5, L and M). This indicates that an in-
crease in the number of rate-limiting steps that lie between the ap-
plication of the drugs and the therapeutic response increases the 
variability of the efficacy. Given this, the rate-limiting step number, 
which can be estimated by our method, appears to be critical infor-
mation for selecting target molecules for drug development. Our 
result can also facilitate the precision medicine as it allows for the 
systematic understanding of the heterogeneity of treatment effects, 
which is a big challenge in precision medicine (68).

MATERIALS AND METHODS
Derivation of low-order moments for signaling processes 
and MBI with the derived moments
We derived the mean, (t; ), and variance, 2(t; ), for the delayed 
birth-death process (Fig. 2D; see Supplementary Texts B and C) and 
the one with feedback regulation (Fig. 6A; see Supplementary Text 
F) where  is the set of parameters. Then, as done in previous work 
(69), the likelihood function of  for given data x = (xt1, …, xtK) is 
constructed as

	​​ L(∣x) = ​∏ 
i=1

​ 
K

 ​​ p​(​​​x​ ​t​ i​​​​∣​ ~ ​(​t​ i​​), ​​ ~ ​​​ 2​(​t​ i​​)​)​​​​	

where p(x∣, 2) is the probability density function of the normal 
distribution with mean  and variance 2, and the ​​ ~ ​ ​and ​​​ ~ ​​​ 2​​ were 
calculated using the derived moments (see Supplementary Texts D 
to F for details). This likelihood function was used to estimate pa-
rameters for a single cell (Fig. 3, A to E, and fig. S7; see Supplemen-
tary Texts D and F). Then, it was exploited with a mixed-effects 
modeling approach to estimate parameters for a heterogeneous cell 
population (Figs. 4 and 6C; see Supplementary Texts E and F). This 
developed inference framework can be easily implemented via our 
publicly available and user-friendly computational package (see 

Supplementary Text G for the step-by-step protocol; https://doi.
org/10.5281/zenodo.5904961).

Simulation
All the simulations were performed using R version 4.0.5 with a 
computer cluster composed of seven machines where each machine 
is equipped with two Intel Xeon SP-6148 CPUs (2.4 GHz, 20C), 
192-GB RAM, and the operating system CentOS 7.4, 64 bit.

Statistical analysis
Pearson correlation coefficients and the corresponding P values in 
Fig. 5 (K and L) were calculated using Mathematica.

Box 1. Glossary.
 Bayesian inference: Statistical inference method to update our prior 
beliefs about events when new information becomes available (41). In this 
study, an event represents that cell signaling parameters [θ = (λb, λd, n, tr, 
R, τ2)] have certain values, and prior beliefs are our initial beliefs about the 
parameter values (i.e., prior distributions) when any information is 
unavailable. The new information is sample time traces measured from 
single cells (x). See Supplementary Texts D and E for details.
 Chemical Fluctuation Theorem: Mathematical theorem that provides 
the exact time-varying relationship between the fluctuation in the 
molecular number (i.e., the variance of molecular number) and the 
dynamics of creation and degradation processes of molecules. See (21) 
and Supplementary Text C for details.
 Chemical master equation: Equation providing the probabilistic 
description of chemical reaction systems (e.g., the delayed birth-death 
process in Fig. 2D) (27). In the equation, the system state is given by the 
molecular numbers. The probability of being in a certain state at a given 
time is governed by the equation.
 Hellinger distance: A metric to measure the difference between two 
probability distributions. If the two distributions are identical, then the 
Hellinger distance is zero. If they are completely different, then the 
distance is one.
 Likelihood function: Function to measure how well given beliefs explains 
given information (41). See Supplementary Texts D and E for details.
 Markovian and non-Markovian systems: A Markovian system is a 
random process in which the future state is only dependent on the 
present. A non-Markovian system is a random process in which the future 
state is dependent on the past as well as the present.
 MCMC methods: Methods to sample from a probability distribution, 
which is typically high dimensional. Samples from the desired distribution 
are obtained by recording the states of a Markovian system whose 
stationary distribution is the desired distribution. See Supplementary 
Texts D and E for details.
 Mixed-effects model: A statistical framework for exploring variability 
between individuals in a population. It allows making use of population-
level data together, when inferring an individual parameter. Thus, it helps 
to circumvent the uncertainty problem in parameter estimation, which is 
caused by the lack of information. See (25) and Supplementary Text E  
for details.
 Moments: A set of statistical parameters determining the shape of the 
probability distribution. The kth moment of a random variable is the 
expected value of its kth power. Thus, the first moment is the mean,  
and the second moment subtracted by the first moment squared is  
the variance.
 Transient Little’s law: Mathematical theorem that provides the exact 
time-varying relationship between the mean number of molecules and 
the dynamics of creation and degradation processes of molecules. See 
(39) and Supplementary Text B for details.

https://doi.org/10.5281/zenodo.5904961
https://doi.org/10.5281/zenodo.5904961
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl4598

View/request a protocol for this paper from Bio-protocol.
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