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In recent years, several assistive devices have been proposed to reconstruct arm

and hand movements from electromyographic (EMG) activity. Although simple to

implement and potentially useful to augment many functions, such myoelectric devices

still need improvement before they become practical. Here we considered the problem

of reconstruction of handwriting from multichannel EMG activity. Previously, linear

regression methods (e.g., the Wiener filter) have been utilized for this purpose with some

success. To improve reconstruction accuracy, we implemented the Kalman filter, which

allows to fuse two information sources: the physical characteristics of handwriting and the

activity of the leading hand muscles, registered by the EMG. Applying the Kalman filter,

we were able to convert eight channels of EMG activity recorded from the forearm and the

hand muscles into smooth reconstructions of handwritten traces. The filter operates in a

causal manner and acts as a true predictor utilizing the EMGs from the past only, which

makes the approach suitable for real-time operations. Our algorithm is appropriate for

clinical neuroprosthetic applications and computer peripherals. Moreover, it is applicable

to a broader class of tasks where predictive myoelectric control is needed.

Keywords: handwriting, electromyography, pattern recognition, dynamicalmodeling, the Kalman Filter, theWiener

Filter

1. INTRODUCTION

Handwriting is a unique development of human culture. A skill learned during the early childhood,
it remains among the primary means of communication and self-expression throughout the course
of life. From the physiological point of view, handwriting is a complex interplay between the
nervous system and the numerous muscles of the upper extremity. Despite several attempts to
study this intricate activity theoretically (Plamondon and Maarse, 1989; McKeague, 2005) and
experimentally (Linderman et al., 2009; Huang et al., 2010; Li et al., 2013), it is still not well
understood and can not be reliably replicated in prostheses.

The relationship between the muscle force and the pen trajectory is complicated by the motor
redundancy phenomenon (Bernstein, 1967; Guigon et al., 2006). One and the same movement can
be accomplished via basically infinite number of muscle activation patterns. Relatively fine spatial
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scale inherent to the handwriting process and the natural
variations of the limb’s kinematic variables further complicate the
issue.

Additional obstacle in studying the physiology of handwriting
is the difficulty of measuring the muscle force directly. Surface
and intramuscular Electromyography (EMG) are the common
methods to register neuromuscular activity during a motor
task. Surface EMG is a non-invasive method which implies
placing the electrodes on the skin above the muscles of interest.
Being easy and safe to implement, this technique, however,
does not yield sufficiently accurate biomechanical measurements,
due to the complex relationship between the EMG and muscle
force, complicated anatomy of muscles and the inability to
record from all the muscles involved, especially from the deep
muscles. Intramuscular EMG (iEMG) is invasive and uses needle
electrodes inserted into the muscle tissue to yield more spatially
specific measurements with less leakage and disturbance. The
invasive nature of iEMG limits its utility.

Both EMG registration methods posit several substantial
difficulties, primarily related to signal quality and associated
issues of noise filtering and source extraction from the observed
data. Nonetheless, it was shown that even the surface EMG carries
valuable information about the neuromuscular interactions and
can therefore be used effectively in modeling and interpreting
movements (Reaz et al., 2006; Ahsan et al., 2009).

Despite the evident difficulties of measuring and interpreting
neuromuscular activity with the currently available techniques,
understanding such complex motor tasks as handwriting is
important for both theoretical and practical reasons. Once we
learn how to model the relationship between EMG patterns
and pen movements during handwriting, we can introduce
this knowledge to many rapidly expanding fields and practices,
including biomedical engineering, robotics and biofeedback
therapy. For instance, we can substantially improve the existing
treatment and rehabilitation techniques for patients with a loss
or an injury of an upper limb (Xiao and Menon, 2014), create
rules for diagnostics of motor diseases based on handwriting
(Van Gemmert et al., 1999; Stanford, 2004; Silveri et al., 2007),
and even assist young children in learning how to write (Carter
and Russell, 1985). Besides, an accurate model and methodolgies
for building such models, establishing the correspondence
between the handwriting and muscle activation patterns has a
potential to become a foundation for creating intelligent neural
prosthesis with a substantial number of degrees of freedom and
fine spatial scale (Chan et al., 2000; Ohnishi et al., 2007; Shenoy
et al., 2008; Bu et al., 2009; Castellini and van der Smagt, 2009).

However, such appealing advances and practices are still in
their infancy. To date, the existing research on decoding of
handwriting from electromyography is small and restricted to
laboratory conditions. Several papers addressed the question of
written character classification based on surface EMG, which
involved implementation of machine-learning techniques to
distinguish between muscle activation patterns for different
written characters, such as digits, alphabet letters or simple
geometric shapes. Linderman et al. (2009) classified symbols
from 0 to 9, using eight bipolar surface electrodes placed
on the hand and the forearm muscles. They implemented

Fisher Linear Discriminant Analysis to obtain, on average, 90%
accuracy of classification across subjects. Huang et al. (2010) used
Dynamic Time Warping (DTW) to classify symbols based on 6-
channel EMG recordings. Their average classification accuracy
was 98.25% for digits, 97.89% for Chinese symbols and 84.29%
for Latin capital letters. Li et al. (2013) improved the DTW
algorithm by substituting Euclidean Distance with Mahalanobis
Distance, to increase classification precision to almost 95%. In
their experiment, subjects were instructed to write lower-case
letters, while 4-channel EMG signals were recorded from their
forearm.

The other studies considered a rather complex task of on-line
decoding of the pen traces, based on the incoming EMG signals
from the measurement electrodes. Among the most successful
methods known to the authors, is the Wiener Filter (Linderman
et al., 2009), which allows to attain accuracy of reconstruction
of 47 ± 2% for X-coordinate and 63 ± 15% for Y-coordinate,
measured by the coefficient of determination. However, the
method used the data samples from the future, which would lead
to extra delays in cases when used in the on-line mode.

In this paper, we consider the same multisubject data-set as
in Linderman et al. (2009) and present our approach to EMG-
based pen tracking that by taking into account the dynamic
model of the pen coordinate process allows to outperform
the previously reported techniques. The main idea behind our
method is to fuse two information sources available about the
process of handwriting. The first information source comes from
the physical and the kinematic characteristics of handwriting.
The second information source comes from the multichannel
electromyography that indirectly measures the strength of the
upper extremity muscles, activated to move the pen. To perform
the fusion of the two sources optimally, we employ the Linear
Kalman Filter (Kalman, 1960), which is a well-known recursive
algorithm for dynamic statistical model-based inference.

2. MATERIALS AND METHODS

2.1. The Kalman Filter
2.1.1. Preliminary Remarks
In its classical formulation the Kalman Filter (KF) (Kalman,
1960) is an algorithm that fuses several (usually two) noisy
sources of information to produce an estimate of the dynamical
system’s state vector, which is optimal in the “minimum squared
error” sense. The method is over 50 years old, but it is still very
popular, due to its intuitive structure, ease of implementation and
computational efficiency.

In our application, the first information source is the
dynamical model that captures the physical properties of
the arm-wrist-pen device and is formalized as a multivariate
autoregressive (MVAR) process, whose parameters are estimated
from the data. The noisy vector of EMG measurements is
the second source of information, whose relation to the pen
coordinate is modeled via multivariate linear regression equation
with coefficients determined from the training data-set.

For simplicity, the derivations provided in this section are
based on the assumption of multivariate normality of the fused
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sources (Faragher, 2012), which is essential for the Kalman Filter
to be the optimal estimator (the best among all other kinds).
However, in the general Kalman Filter framework, this does
not have to be the case (Arulampalam et al., 2002). When the
assumption of normality does not hold, it is still possible to
derive the KF equations based on the orthogonality principle
(e.g., Jazwinski, 2007), which would guarantee the KF to be the
best linear estimator, but not necessarily be optimal. In this case,
it might be possible to increase accuracy by employing non-linear
techniques that exploit higher order dependencies in the data,
such as the Extended Kalman Filter (Julier and Uhlmann, 1997)
or its “distribution-free” version, called Unscented Kalman Filter
(Wan and Van Der Merwe, 2000). However, since the majority
of trials in our multisubject dataset appear to test positively for
the normality (see Appendix, Section Testing the Assumptions of
theModel) the extent of improvement furnished by the use of the
non-linear approaches is hard to predict theoretically. This leaves
the question in the empirical realm to be addressed in the future
studies.

As demonstrated by the statistical tests described in the
Appendix (Section Testing the Assumptions of the Model),
we could not reject the hypothesis of independence for the
majority of trials. Based on this and, for the simplicity reasons,
we base our developments in this paper on the assumption of
independence of the two fused sources. In case the independence
assumption is violated, the performance gained by taking into
account the dynamics of the reconstructed process could have
been more sizable should we use a slightly modified form
of equations (Shimkin, 2009) to account for the non-trivial
cross-covariance structure of the residuals. However, the extent
to which modeling the cross-covariance structure of residuals
would improve the performance is not entirely clear, due to
the inherent non-stationarity and the associated estimation
errors.

2.1.2. State Transition Model
As the first information source, we assume that, at each time
moment t, the system evolves from the previous state at time t−1,
according to the rule:

st = Ast−1 + vt (1)

where

• st = [xt, yt, ẋt, ẏt, ẍt, ÿt, ..., xt−K+1, yt−K+1, ẋt−K+1, ẏt−K+1,
ẍt−K+1, ÿt−K]T is a 6K × 1 state vector containing pen
coordinates and their first and second rates of change for the
window of K time moments starting from t;

• A is a [6K × 6K] state transition matrix, which performs the
mapping between the state vectors at the two consecutive time
moments;

• vt is a [6K × 1] vector containing process noise, which
is assumed to be drawn from a multivariate Gaussian
distribution with zero mean and covariance matrix Q.

Based on Equation (1), we can derive the following expressions
connecting themean and the covariancematrix of the state vector
at the two consecutive time moments.

• µ1t = Aµ1(t−1) is a 6K-dimensional mean state vector at
time t;

• 61t = A61(t−1)A
T + Q is a 6K × 6K positive-definite

covariance matrix of the state vector at time t.

Detailed derivations of the model parameters can be found in the
Appendix (Section Testing the Assumptions of the Model).

2.1.3. Measurement Model
Usually, in the KF framework, themeasurement equation appears
in the z = F(s) form, describing the way the process to
be estimated (s) is related to the available vector of indirect
measurements (z). However, in our application, due to causal
and physiological reasons, it is more natural to think that the
EMG registered muscle activity gives rise to the pen movement.
Therefore, we use the “inverse” form of what is usually called the
observation equation in the KF framework and write

st = Hzt + wt (2)

where

• zt is a [8L× 1] observation vector containing L groups of eight
EMGmeasurements corresponding to the [t−L+1, t] window
of Lmost recent samples;

• H is a [6K×8L]measurement transformationmatrix, mapping
the measurement domain to the state vector domain;

• wt is a [8L × 1] vector of measurement noise with zero mean
and covariance matrix R. Additionally, the measurement noise
wt is assumed to be independent from the process noise vt .

The 6K-dimensional state mean vector at time t is given by

µ2t = E[st] = Hzt . (3)

Since we do not model zt as a stochastic process, the covariance
matrix of st reduces to covariance matrix of the measurement
noise, so that 62t = E[wtw

T
t ] = R. Note that this noise is

assumed to be stationary.

2.1.4. Information Fusion
As outlined in the previous two subsections, we have two
independent sources of information about the state vector. The
first endogenous source bases its predictions on the dynamical
characteristics of the pen coordinates during the handwriting
and yields f1(st|st−1) as the state vector distribution (red
distribution in Figure 1). The second source is exogenous and
uses externally registered EMG signals to suggest f2(st|zt) as
the state vector distribution (blue distribution in Figure 1).
In order to reconstruct the state vector, optimally taking into
account the predictions from both sources, we perform the
statistical fusion of the estimates based on the dynamical and
the measurement models. The schematic procedure of the source
fusion is illustrated in Figure 1.

The joint conditional estimate of the state vector is distributed
as ffused(st|st−1, zt) (green distribution in Figure 1). Assuming
independence of the sources, the problem of finding f (st|st−1, zt)
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FIGURE 1 | Information Fusion by means of the Kalman Filter allows to improve reconstruction accuracy by adaptively balancing the contribution

from the two information sources.

reduces to a simple multiplication of the two probability density
functions, i.e.,

ffused(st|st−1, zt) = f1(st|st−1)f2(st|zt) (4)

The product of two multivariate normal distributions is also a
multivariate normal (Rencher, 2003). Its mean and covariance
can be easily expressed in terms of the mean vectors and the
covariance matrices of each of the two normal multipliers.

Specifically, 6fused is the covariance matrix of the fused
distribution can be computed as

6fused = (6−1
1t + 6

−1
2t )

−1, (5)

and the 6K-dimensional mean vector of the fused distribution is
found to be the following weighted sum of the two mean vectors
of the fused information sources:

µfused = 6fused(6
−1
1t µ1t + 6

−1
2t µ2t), (6)

It is instructive to reformulate the expressions for the mean and
the covariance matrix of the new distribution and to separate the
influence of the two distributions being fused.

Using the matrix inversion lemma (Henderson and Searle,
1981), and setting

Kt = 61t(61t + 62t)
−1 (7)
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we can rewrite Equations (5) and (6) as

6fused = 61t − Kt61t . (8)

and

µfused = (I − Kt)µ1t + Ktµ2t . (9)

For detailed derivation of the parameters see the Appendix.
The term Kt in Equation (7), commonly known as the

Kalman Gain, plays a crucial role of the dynamic scaling factor
reflecting the distribution of trust in each of the two information
sources. It depends on the relative amount of uncertainty present
in the estimates by each of the information sources alone, and
varies over time.

Since covariance matrices are positive definite, Equation (8)
shows that by fusing the two distributions we reduce the variation
associated with the state estimate, proportionally to the Kalman
gain. At the same time, the fused mean (Equation 9) becomes
the weighted average of the endogenously predicted and the
measurements-based mean estimates.

2.1.5. The Algorithm
Based on the above equations we are now ready to formulate
the algorithm for calculating the Kalman Filter estimate. At each
time moment the computation can be split into three consecutive
steps.

1. Endogenous state prediction and error covariance
update:

ŝt|t−1 = µ1t = Aŝt−1|t−1 (10)

Pt|t−1 = 61t = APt−1|t−1A
T + Q (11)

2. Kalman Gain Calculation:

Kt = 61t(61t + 62t)
−1 = Pt|t−1(Pt|t−1 + R)−1 (12)

3. Measurement Update:

ŝt|z = µ2t = Hzt (13)

ŝt|t = ŝt|t−1 + Kt(ŝt|z − ŝt|t−1) (14)

Pt|t = Pt|t−1 − KtPt|t−1 (15)

In order to relate our approach to the classical KF paradigm in the
equations above, we assigned the variables used in the previous
subsection to the standard symbols, commonly employed in the
KF literature. In the above algorithm, the first step is to use the
State Transition Equation only and to calculate the so-called a
priori estimate ŝt|t−1, with associated variance Pt|t−1 (Equations
10 and 11).

Then, we calculate the Kalman Gain based on the a priori
covariance matrix and the covariance matrix of theMeasurement
Model (Equation 12).

Finally, the a posteriori estimate ŝt|t is computed by adjusting
the endogenous a priori estimate with the EMG measurements.
The amount of adjustment is governed by the time-varying
Kalman Gain (Equation 14) and the innovations process ŝt|z −
ŝt|t−1, informing the algorithm on the amount of mismatch
between the endogenous and exogenous estimates. The a
posteriori uncertainty, associated with the prediction, based on
the two models, is given by Pt|t (Equation 15), which shows
that, in the final estimate, the a priori uncertainty gets reduced
proportionally to the Kalman Gain.

2.2. The Experiment
2.2.1. Data
Six healthy participants were instructed to write symbols from
0 to 9, repeating each symbol approximately 50 times. At the
same time, muscle activity was recorded with eight bipolar-
surface EMG electrodes, placed on each participants leading
hand muscles: opponens pollicis, abductor pollicis brevis, medial
and lateral heads of first dorsal interrosseus, and four forearm
muscles: flexor carpi radialis, extensor digitorum, extensor carpi
ulnaris, and extensor carpi radialis. The reference electrode
was placed on each subject’s forehead. Position of the pen
was recorded using the special digitizing tablet, yielding a pair
of coordinates in the two-dimensional space. For a detailed
illustration of the experiment set-up, see Linderman et al.
(2009).

2.2.2. Preprocessing
Before applying the algorithm, we preprocessed EMG signals to
extract the envelope via the standard rectification procedure. For
each channel separately, we first calculated the absolute value
of the EMG signals and then low-pass filtered the result with
a second-order Butterworth Filter with the cut-off frequency
of Fc. We optimized the value of the cut-off frequency based
on the training subset of the recorded data to obtain the
best reconstruction performance. In the final results reported
here Fc = 2 Hz. Additionally, we have applied square-
root transformation to each signal’s envelope, obtained via the
described rectification procedure.

2.2.3. Training and Testing
Half of the trials of each symbol was randomly assigned to
training the parameters of the model, while the remaining half
was used for testing the performance (Figure 2). During training,
the parameters of the dynamical model (Equation 1) and the
measurement model (Equation 2) were estimated. We applied
Ordinary Least Squares Method to estimate matrix A in the
state transition equation and matrix H in the measurement
equation. Covariance matrices R and Q were estimated based
on the residuals of the two fitted models. Note that estimation
of the covariance matrices of the error processes is particularly
simple here, since, at the model identification step, we have
the direct access to both state vector and the actual EMG
measurements, thanks to the experimental setup described in
Linderman et al. (2009). Figure 2 shows the data flow diagram
in the model identification and coordinate reconstruction
modes.
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FIGURE 2 | Implementation of the Kalman Filter algorithm. For each participant of the experiment, the trials are randomly divided into training trials (black) and

testing trials (white). Then, the training trials are used for learning of the parameters of the state transition model (matrices A and Q) and the measurement model

(matrices H and R). The EMG data from the testing trials and the learned matrices are then used for the prediction of the state vector in both models. Finally, the

predictions of the two models are merged via the Kalman filter algorithm and the result of the filter is compared to the actual state vector. The squared correlation

coefficient (R2) is used as a measure of efficiency of reconstruction.

We used two basic experimental designs to calibrate our pen
tracking algorithm.

1. Within-Group Design
A single set of parameters (A, H, R, and Q) was estimated
using the training trials from all symbols at the same time and
then tested on the remaining test trials.

2. Between-Group Design
A separate set of parameters (An, Hn, Rn and Qn, n ∈ 0, ..9)
was estimated for each symbol and then tested within the data
from the trials of the same symbol.

Note that for Within-Group Design, only one set of matrices
was estimated by pooling all the training samples together,
while in Between-Group Design the four matrices were
estimated separately for each of the ten symbols. Then,
the out-of-training sample measurements were used to
reconstruct handwriting via the recursive process outlined in
Section 2.1.5.

The testing procedure was the same within each experimental
design (see Figure 2). For each trial, the starting pen location
point was set to zero vector. Then, the estimate of the

pen position was computed recursively (Section 2.1.5).
Reconstruction accuracy was measured by the squared
correlation coefficient R2 between the actual coordinate
and its fused estimate (Figure 2). This criterion corresponds to
the percentage of energy in the actual pen traces (Total Sum of
Squares - SSt) explained by the reconstructed ones (Explained
Sum of Squares SSe), i.e.,

R2 =
SSe

SSt
=

N
∑

i = 1
(ŝi − s̄)2

N
∑

i = 1
(si − s̄)2

(16)

The accuracy was computed within each trial, and then
averaged across trials for each symbol. Confidence intervals were
computed to account for the standard errors associated with the
variation across the participants.

2.2.4. Comparison with Other Models
We compared the accuracy of our model to the accuracy of
the Wiener Filter (WF) estimate, which was originally tested
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on the same data-set by Linderman et al. (2009). The Wiener
Filter approach is directly equivalent to predicting the pen
coordinates, using only the measurement equation of the KF-
framework alone (Equation 2). In other words, the Kalman
filter is the Wiener filter, accompanied by information about the
system’s physical properties. Therefore, a comparison between
the two models would not only show the possible improvement
associated with the Kalman Filter, but also highlight the isolated
benefit furnished by employing the dynamical properties of the
system.

In the framework of handwriting recognition from
electromyography reported in Linderman et al. (2009), the
pen trace at time t was represented as a linear combination
of EMG signals recorded in the non-causal interval of t:
[t − δ1, t + δ2]. The unknown weights, mapping rectified EMG
signals into the pen-tip coordinate vector, were estimated using
the Ordinary Least Squares Method. It is important to stress that,
in contrast to the approach reported in Linderman et al. (2009),
our reconstruction procedures (both Kalman Filter and Wiener
Filter based) operate causally and use only the samples from
the immediate past. For each time moment t, only the samples
from the [t− δ1, t] interval were used. It is, therefore, interesting
and instructive to test, whether or not the use of the dynamical
model compensates for the reduced amount of information in
the external measurements. In the situation when both methods
use the same amount of exogenously registered data, the Kalman
Filter is expected to outperform the Wiener Filter. To test the
hypothesis, we performed the coordinate reconstruction with
the two filters, fixing all other external parameters related to the
data preprocessing step and compared their performance on the
testing set of trials.

3. RESULTS

3.1. Finding Optimal Model Order
The dynamical model (Equation 1) and the measurement
model (Equation 2) contain model order parameters K and L,
corresponding to the number of past samples used. In order to
find the optimal values of these parameters, we applied the cross-
validation procedure. We used R2 as a metric of the goodness of
reconstruction achieved (Figure 3).

To search for the combination of K and L that delivers
the highest performance, we looked for the values of these
parameters that maximize the g = E(R2)/std(R2) ratio.
The expected value E(R2) and the standard deviation std(R2)
were computed over the trials in the data-set used for cross-
validation. Therefore, high values of g correspond to the
combination of high accuracy and stability of the reconstruction
quality. Figure 4 shows the average over all subjects value of g
and R2.

Based on these maps, we set K = 1 and L = 2 to obtain the
results reported in this paper. Note that the number of optimal
measurement lags was reduced from 20 to 2, comparing to the
original paper by Linderman et al. (2009), which significantly
reduces computational complexity of the problem and reduces
the response time of the system and potentially allows to track
brisker movements.

3.2. Within-Group Design
We first trained one set of parameters for all symbols and used it
to reconstruct pen traces from the EMG data in the testing set.
Figure 5 shows the result of reconstruction of several trials of
each character for one of the participants. Despite being noisy

FIGURE 3 | Reconstruction accuracy as a function of model order parameters (K and L) for 6 subjects separately.
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FIGURE 4 | Average reconstruction accuracy as a function of model order parameters (K and L). Left: average over all 6 subjects value of g. Right: Average

over all 6 subjects value of R2 for the mean reconstruction accuracy in the two coordinates (X + Y )//2.

FIGURE 5 | Within-Group Reconstruction: several reconstructed trials of each symbol from cross-validation sample of one of the participants.

and, at times, inaccurate, the symbols are still identifiable and
reproducible between trials.

Table 1 gives a detailed accuracy distribution for all symbols.
Each of the entries in the table were found as follows: we
computed accuracy of reconstruction for each test trial available
for each symbol, then calculated the statistics within trial of
the same symbol to determine the reported mean and standard
deviation. Finally, we computed 95% confidence intervals for the
average accuracy of every symbol reconstruction, based on the
sample of 6 participants. We report reconstruction accuracy by
coordinates independently, and as an average between the two
coordinates.

Statistically speaking, we managed to achieve the average
accuracy of 63 ± 17% and 73 ± 14% with 95% confidence,
for the two reconstructed coordinates, as estimated for the

six participants of the experiment. Note that the average
accuracy in both coordinates is higher than that found by
Linderman et al. (2009) (47 ± 2% and 63 ± 15% for the two
coordinates, respectively), where non-causal Wiener Filter based
reconstruction was employed. Additional improvement over
that pioneering work lies in the use of the smaller number of
measurement lags (L) (2 instead of 20, see Section 3.1) which
reduces the response time of the system. These observations
demonstrate the benefits brought in by the use of the dynamical
properties of the process being identified.

3.3. Between-Group Design
In the Between-group design, we attempted to learn the
parameters of the Kalman Filter for each symbol separately, and
then reconstruct the traces of the same symbol. Figure 6 shows
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the results of reconstruction of several trials of each symbol
for one of the participants. As predicted, the separate Kalman
Filters for each symbol perform a more specific and accurate
reconstruction, which is visually evident from the figure.

The average reconstruction in the two coordinates between
subjects was 78± 13% and 88± 7%, respectively. Table 2 reports
95% confidence intervals for the average reconstruction accuracy
of each symbol with separate Kalman Filters.

3.4. Comparison with the Wiener Filter
In the previous subsection we have shown that, as expected,
the Kalman Filter improves the reconstruction performance,
as compared to the previously proposed method (Linderman
et al., 2009). The parameter search (Section 3.1) shows that
adding non-zero autoregressive lag(s) to the model, and as a
result, capturing the dynamical properties of the system, leads

TABLE 1 | Within-Group Reconstruction Performance: 95% confidence

intervals for the average reconstruction accuracy of each symbol

between the 6 participants.

Average performance, R2

Symbol X-coordinate Y-coordinate Average: (X+Y)/2

“0” 0.65± 0.15 0.57± 0.17 0.61± 0.15

“1” 0.49± 0.08 0.85± 0.08 0.67± 0.05

“2” 0.71± 0.14 0.75± 0.12 0.73± 0.13

“3” 0.59± 0.20 0.79± 0.09 0.69± 0.13

“4” 0.71± 0.15 0.63± 0.17 0.67± 0.13

“5” 0.67± 0.15 0.72± 0.05 0.70± 0.08

“6” 0.68± 0.18 0.71± 0.11 0.70± 0.12

“7” 0.59± 0.28 0.69± 0.22 0.63± 0.25

“8” 0.61± 0.15 0.74± 0.12 0.77± 0.11

“9” 0.62± 0.22 0.71± 0.15 0.67± 0.17

All 0.63± 0.17 0.73± 0.14 0.68± 0.13

to the increase in accuracy of reconstruction for all subjects
(Figures 3, 4).

To consider the increase in accuracy, specifically associated
with the dynamical model, we reconstructed pen traces of several
symbols by Within-group design (one set of parameters for all
symbols), and then repeated the procedure on the same samples
using the Wiener Filter, fixing all other external parameters,
including those related to the training-testing split of the data and
data preprocessing techniques.

On average, introduction of the KF framework leads to
a significant increase in accuracy for both reconstructed
coordinates across the six participants (Figure 7). The increase is
more or less homogeneous between different symbols. Figure 8
shows the distribution of the difference between the Kalman
Filter accuracy and the Wiener Filter accuracy for separate
symbols. For all symbols, the difference is significantly greater

TABLE 2 | Between-Group Reconstruction Performance: 95% confidence

intervals for the average reconstruction accuracy of each symbol

between the 6 participants.

Average performance, R2

Symbol X-coordinate Y-coordinate Average: (X+Y)/2

“0” 0.84± 0.06 0.86± 0.05 0.85± 0.05

“1” 0.63± 0.15 0.97± 0.01 0.80± 0.08

“2” 0.82± 0.11 0.92± 0.06 0.87± 0.09

“3” 0.75± 0.12 0.93± 0.06 0.84± 0.08

“4” 0.81± 0.11 0.81± 0.03 0.81± 0.05

“5” 0.80± 0.10 0.86± 0.06 0.83± 0.07

“6” 0.83± 0.05 0.88± 0.05 0.85± 0.05

“7” 0.76± 0.20 0.88± 0.08 0.82± 0.14

“8” 0.76± 0.12 0.86± 0.07 0.81± 0.09

“9” 0.81± 0.09 0.84± 0.08 0.83± 0.08

All 0.78± 0.13 0.88± 0.07 0.83± 0.08

FIGURE 6 | Between-Group Reconstruction: several reconstructed trials of each symbol from cross-validation sample of one of the participants.
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FIGURE 7 | Distribution of the difference in the average performance of the Kalman Filter (KF) and the average performance of the Wiener Filter (WF)

for all written characters across subjects. Statistical Difference between the average KF and the average WF performance is measured by one-sided Wilcoxon

matched-pair test for X-coordinate, Y-coordinate and the average of the two, i.e., (X+Y)/2: **significantly greater than zero at 1% significance level.

FIGURE 8 | Distribution of the difference between the Kalman Filter Accuracy (KF R2) and the Wiener Filter Accuracy (WF R2) between subjects,

measured for each written character independently. Statistical Difference between the KF and the WF performance is measured by one-sided Wilcoxon

matched-pair test for each character: *significantly greater than zero at 5% significance level, **significantly greater than zero at 1% significance level.

than zero with at least 95% confidence, guaranteed by the one-
sided Wilcoxon test for matched pairs.

The ergonomics of the reconstructed handwriting traces
plays an important role. The use of the dynamical model to
enforce natural smoothness of handwriting yielded improved
ergonomics of the recovered traces. Figure 9 allow to visually
compare the reconstruction of the pen traces for each symbol
obtained with the two methods (left—the Kalman Filter
reconstruction, right—the Wiener Filter reconstruction). As we
can see from the figures, the use of the Kalman filter furnishes a

smoother coordinate reconstruction than that based exclusively
on the measurements. While both filters make it possible to
visually discriminate between different symbols, the smoothness
of the traces, obtained with the Kalman filter, makes them more
natural and ergonomically plausible.

4. DISCUSSION

In this work we applied the Kalman Filter approach to
reconstruction of handwritten pen traces on the basis of EMG
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FIGURE 9 | Pen trace reconstruction of digits zero to nine with the Kalman Filter (left) and the Wiener Filter (right), Within-Group Method for several

cross-validation trials of one of the participants.
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measurements. We have demonstrated that it is possible to
obtain accurate and ergonomic reconstruction of pen traces and
still remain in the linear framework to utilize all the benefits
associated with it. Our results show a significant improvement
over the figures, previously reported by Linderman et al.
(2009). In contrast to that pioneering work, we used only
causal filtering and exploited fewer past samples of the EMG
signals.

Although the accuracy of reconstruction does not generally
go above 90%, in terms of the coefficient of determination, the
method still offers a reliable and ergonomic reconstruction for all
symbols. Approximately 25 trials of each symbol were enough to
learn the parameters of the filter and yield comparable results in
testing samples.

The method works well for both specific (Between-Group
design) and general (Within-Group design) models, which
reveals its potential for a wide range of applications. The
Between-group design, although quite limited at first sight, is not
entirely unrealistic, due to the fact that handwritten figures are
very well discriminated between each other on the basis of EMG
signals (Linderman et al., 2009; Huang et al., 2010). It means
that separate Kalman filters can be applied as a second-stage
algorithm in the off-line experiments, after another algorithm
(such as the Hidden Markov Model of Linear Discriminant
Analysis) is used to classify the symbols into groups.

The Within-group design, on the other hand, is more
applicable to on-line handwriting reconstruction, when no prior
information about the class of the symbol being written is
available. In this framework the causality of our approach offers
additional benefits and makes the EMG-controlled handwriting
feel natural to the user. Also, the natural smoothness of the
traces, recovered with the use of the KF, provides for an improved
feedback, which is crucial in the real-life on-line scenario.

While our method has shown improvement over the
previously proposed technique, it still requires thorough
consideration before it can be reliably applied in neuroprosthetic
devices and rehabilitation practices. One of the main difficulties
in applying the Linear Kalman filter is the high variability of
results across subjects. The confidence intervals in Tables 1, 2
clearly show very high margins of error, which indicate that
handwriting is very person-specific.

Such heterogeneous performance across individuals
apparently stems from a combination of behavioral and
physiological factors, which we could not control in this study.
Participants vary in the style and neatness of handwriting,
including the way they hold and press the pen, and the strategies
they apply to write the same symbol. Anatomical differences,
such as the individual muscle length, muscle size and attachment
to the bones and the differences in the amount of subcutaneous
fat might be significant factors influencing the patterns of the
recorded neuromuscular activity (EMGs). Additional source of
variability may come from the variation in electrode placement
sites.

The problem of EMG variability has received significant
attention in the recent experimental literature (Linssen et al.,
1993; Araújo et al., 2000; Nordander et al., 2003). Fundamentally,
one and the same movement can be reproduced by different

force patterns in multiple agonist and antagonist muscles.
This phenomenon, called motor redundancy (Bernstein, 1967;
Guigon et al., 2008) allows a certain kinematic pattern to be
reproduced by virtually infinite number of distinct muscular
activation patterns (Amis et al., 1979). The EMG recordings
which we used captured relatively consistent EMG patterns in
individual subjects, which were, however, different from subject
to subject. The approach proposed in this paper appears to
have sufficient generalization power to capture the within subject
variability (both natural and the one that stems from instructed
variations of symbol writings to be produced). However, initial
training of the algorithm is required for each individual subject
independently.

Additionally, the results can be further improved by
individually tuning the latent parameters, such as the model
orders, filter cut-off frequency and sensor locations. In this work,
however, we intentionally used a single set of latent variable
values in order to emulate the out-of-box performance of such
a system. Methods for non-supervised on-line adaptation and
individual tuning of the latent variables need to be developed
to address these issues and make the fine-tuning seamless to the
user.

The linear framework of the filter offers significant benefits,
such as stability and good generalization ability. However, the
non-linear nature of the relation between the recorded EMG
signals and the actuator trajectory prompts to explore the use
of non-linear models in this application. The benefits brought in
by the non-linearity, however, have to be leveraged against the
additional complexity and potential instability associated with
the use of such models.

5. CONCLUSIONS

In this paper we investigated the relationship between
handwriting and neuromuscular activity measured by
electromyography. We built and optimized the Kalman
filter in order to reconstruct the pen coordinates based on the
dynamical characteristics of handwriting and the corresponding
EMGmeasurements.

We showed that the Kalman filter significantly outperforms
previously proposed method (Linderman et al., 2009) and
yields a mean accuracy of 68% in Within-Group design and
83% in Between-Group design, measured by the coefficient of
determination, averaged for the two reconstructed coordinates.
Our method is suitable for real-time applications as it is causal
and utilizes only the EMGs from the past. The dynamical
nature of the Kalman filter provides for the time-varying optimal
fusion of the information and allows to take into account
not only the EMG activity, but also the physical properties of
handwriting.

The main attraction of the proposed method is its
ability to smooth the noise and, as a result, provide
a comprehensible and realistic reconstruction. Further
progress in this field would potentially create intelligent
rehabilitation techniques for patients with hand injuries, as well
as become useful in human-computer interfaces, associated with
handwriting.
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APPENDIX

Parameters of the State Transition Model
Equation (A3) shows the distribution of the estimate of the State
Transition Model given by Equation (1).

The mean of the distribution is

µ1t = E[st] = Aŝt−1 = Aµ1(t−1). (A1)

The covariance matrix is derived the following way:

61t = E[(st − µ1t)(st − µ1t)
T] =

= E[(Ast−1 + vt − Aŝt−1)(Ast−1 + vt − Aŝt−1)
T] =

= E[(A(st−1 − ŝt−1)+ vt)(A(st−1 − ŝt−1)+ vt)
T] =

= E[(A(st−1 − ŝt−1)+ vt)((st−1 − ŝt−1)
TAT + vTt )] =

= AE[(st−1 − ŝt−1)(st−1 − ŝt−1)
T]AT + AE[(st−1 − ŝt−1)v

T
t ]

+E[vt(st−1 − ŝt−1)
T]AT + E[vtv

T
t ].

Since the state estimate noise vt is uncorrelated with the estimate,

E[vt(st−1 − ŝt−1)
T] = E[(st−1 − ŝt−1)v

T
t ] = 0

and the covariance matrix reduces to:

61t = AE[(st−1 − ŝt−1)(st−1 − ŝt−1)
T]AT + E[vtv

T
t ] =

= A61(t−1)A
T + Q. (A2)

The Fusion
Under the normality assumption the probability density function
(pdf) of the state space vector st can be written as

f1(st|st−1) = (2π)−3K |61t|
−1/2 exp

(

−
1

2
(st − µ1t)

T

6
−1
1t (st − µ1t)

)

(A3)

Since the additive noise term wt in Equation (2) is assumed
to be Gaussian, while each of the observed EMG signals are
not modeled as stochastic processes, the state vector follows the
Gaussian distribution

f2(st|zt) = (2π)−4L|62t|
−1/2 exp (−

1

2
(st − µ2t)

T6
−1
2t (st − µ2t)).

(A4)
By multiplying pdf in Equation (A3) by pdf in Equation (A4) we
get a scaled fused Distribution of the state estimate:

ffused(st|st−1, zt) = f1(st|st−1)f2(st|zt) =

N (µ1t,61t) ·N (µ2t,62t) = cN (µfused,6fused), (A5)

with parameters

6Fused = (6−1
1t + 6

−1
2t )

−1 (A6)

µFused = 6Fused(6
−1
1t µ1t + 6

−1
2t µ2t) (A7)

and a normalization constant

c =
1

(2π)k/2
|6Fused|

1/2

|61t|1/2|62t|1/2
exp

(

−
1

2

(

µT
1t6

−1
1t µ1t

+µT
2t6

−1
2t µ2t + µT

Fused6
−1
Fused

µFused

))

(A8)

Let us reformulate the expressions for the mean and Covariance
matrix of the new distribution in such a way that they separate
the influence of the two fused distributions.

Using the Matrix Inversion lemma (the Woodbury matrix
identity) for two matrices of the same dimension (61t and 62t)
and setting Kt = 61t(61t + 62t)−1 the parameters of the fused
Gaussian can be neatly rewritten in the form of Equations (8) and
(9), i.e.,

6Fused = 61t − 61t(61t + 62t)
−161t = 61t − Kt61t . (A9)

µFused = (61t − Kt61t)(6
−1
1t µ1t + 6

−1
2t µ2t) =

= µ1t + 61t6
−1
2t µ2t − Ktµ1 − Kt61t62tµ2t =

= µ1t + Kt(K
−1
t 61t6

−1
2t µ2t − µ1t − 61t6

−1
2t µ2t) =

= µ1t + Kt((61t + 62t)6
−1
1t 61t6

−1
2t µ2t − µ1t − 61t6

−1
2t µ2t) =

= µ1t + Kt(61t6
−1
2t µ2t + µ2t − µ1t − 61t6

−1
2t µ2t) =

= µ1t + Kt(µ2t − µ1t) = (I − Kt)µ1t + Ktµ2t . (A10)

Testing the Assumptions of the Model
We ran the Royston test for multivariate normality on the
residuals of each training sample and concluded that for most
samples the assumption of normality is not violated (at 1%
significance level). Table A1 summarized the percentages of

TABLE A1 | Percentages of trials across participants, in which the

assumption of multivariate normality of the error term is not violated at

1% significance level.

Participants

1 2 3 4 5 6 Average

(%) (%) (%) (%) (%) (%) (%)

State transition model 92 79 92 96 83 73 86

Measurement model 93 85 92 94 80 77 87

Joint model 89 72 89 93 76 67 81

TABLE A2 | Percentages of trials across participants, in which the test for

uncorrelatedness of residuals of the two fused models was not rejected

at 5% significance level.

Participants

1 2 3 4 5 6 Average

(%) (%) (%) (%) (%) (%) (%)

Independent trials 83 72 76 80 67 68 74
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samples, in which the assumption of normality of the error
term holds in the two reconstructed models and in the joint
model.

The fusion of the two information sources described in this
paper is heavily based on the assumption that the two merged
sources are independent.

Then, we checked to what extent the two information sources
can be considered independent. Taking into account the results
of the test for multivariate normality, we checked for the absence

of correlation between the error terms of the two merged models
(Equations 1 and 2). We used the residuals of the two models
to calculate the sample cross-correlation matrix and assessed the
significance of its elements for each trial.

Given the sample size and the multiplicity of the tested
hypothesis (36), we could not reject the null-hypothesis of no-
correlation at 5% group level significance for the majority of trials
(74%). Detailed distribution of the test performance across the
participants is given in Table A2.
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