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Abstract

Categorization is an important cognitive process. However, the correct categorization of a stimulus is often challenging
because categories can have overlapping boundaries. Whereas perceptual categorization has been extensively studied in
vision, the analogous phenomenon in audition has yet to be systematically explored. Here, we test whether and how
human subjects learn to use category distributions and prior probabilities, as well as whether subjects employ an optimal
decision strategy when making auditory-category decisions. We asked subjects to classify the frequency of a tone burst into
one of two overlapping, uniform categories according to the perceived tone frequency. We systematically varied the prior
probability of presenting a tone burst with a frequency originating from one versus the other category. Most subjects
learned these changes in prior probabilities early in testing and used this information to influence categorization. We also
measured each subject’s frequency-discrimination thresholds (i.e., their sensory uncertainty levels). We tested each subject’s
average behavior against variations of a Bayesian model that either led to optimal or sub-optimal decision behavior (i.e.
probability matching). In both predicting and fitting each subject’s average behavior, we found that probability matching
provided a better account of human decision behavior. The model fits confirmed that subjects were able to learn category
prior probabilities and approximate forms of the category distributions. Finally, we systematically explored the potential
ways that additional noise sources could influence categorization behavior. We found that an optimal decision strategy can
produce probability-matching behavior if it utilized non-stationary category distributions and prior probabilities formed
over a short stimulus history. Our work extends previous findings into the auditory domain and reformulates the issue of
categorization in a manner that can help to interpret the results of previous research within a generative framework.
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Introduction

Categorization is a natural and adaptive process that allows the

brain to organize the typically high-dimensional and continuous

sensory information into robust hierarchical and discrete repre-

sentations. These discrete representations, or categories, are a

means to mentally manipulate, reason about, and respond to

objects in our environment [1,2]. For instance, in auditory

perception, humans and other animals can ignore the natural

acoustic variability that exists between different utterances of the

same vocalization in order to differentiate one type of vocalization

(e.g., a howl) from a second type (e.g., a bark). In other situations,

listeners can use this variability to identify one caller (e.g., Lassie)

from another (e.g., Benji).

The perceptual ease with which we can categorize sound belies

the complex computations underlying this ability. One reason

categorization is complex is that a sensory property may be

ambiguous with respect to the stimulus’ category membership. For

example, because both dogs and wolves can produce howls, the

acoustic structure of the howl by itself may not provide enough

information to the listener for proper identification of the caller. In

such cases, and in the absence of other sensory information, the

listener needs to rely on other sources of information to correctly

categorize a sound and identify whether the howl came from a dog

or a wolf. This information can be prior knowledge such as

knowing that the probability of encountering a wolf is low. Since

prior information is subjective, it is of fundamental interest to

understand the degree to which an observer acquires this

information and then uses it to perform categorical judgments.

The utility of prior information in visual categorization has been

well studied [1,3–10]. In comparison, our understanding of how

prior information informs categorical judgments in audition is

relatively limited and has only more recently become an active

area of research [11–15]. More importantly, auditory categoriza-

tion has not been tested or modeled in situations in which the

auditory stimulus is ambiguous with regard to its category

membership. Understanding auditory-categorization behavior is

important for differentiating between modality-specific versus

modality-general computational strategies, which can provide

insights into the underlying neural computations.

In particular, categorization can be understood as the result of a

probabilistic inference process in which the observer combines

sensory and prior information according to their relative levels of

uncertainty (noise) [16]. Bayesian statistics is a useful mathematical
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framework to formulate generative models for such categorical

inference processes. However, it requires a precise quantification

of the different levels of uncertainty in order to provide behavioral

predictions that allow for unique model interpretations. For

example, different decision strategies can lead to very similar

model predictions if the sensory noise levels are allowed to be free

parameters.

The purpose of this study was two-fold: (1) to test whether

human subjects can learn and use category-prior information

when making auditory categorical judgments and (2) to carefully

constrain and validate a generative Bayesian model of auditory

categorization against experimental data. To this end, we

developed a novel auditory categorization task that required

subjects to categorize the frequency of a tone burst into one of two

overlapping categories (00A00 or 00B00). We systematically varied the

prior probability of choosing a frequency from category 00A00 or
00B00 in different blocks of the experiment. Furthermore, we

determined each subject’s sensory uncertainty by measuring

individual frequency-discrimination thresholds. Based on these

uncertainty measurements, we formulated a Bayesian model to

individually quantify how well each subject learned the categorical

priors (i.e., the category distributions and prior probabilities) and

to test whether subject’s employed an optimal decision strategy.

We found that most subjects appropriately learned the different

category prior probabilities, yet showed some variability and

uncertainty in the shape of the learned category distributions.

Furthermore, given the measured sensory uncertainty during the

experiment, subjects’ overall behavior was more consistent with

probability matching rather than an optimal decision strategy for

category choice. Further analyses indicated that overall probabil-

ity-matching behavior could emerge if, trial-by-trial, subjects

employed an optimal decision strategy and assumed non-

stationary categorical priors.

Methods

Ethics statement
All subjects participated in a purely voluntary manner, after

providing informed written consent, under the protocols approved

by the Institutional Review Board of the University of Pennsylvania.

Experimental setup
Six subjects (two female) participated in two tasks: (1) a

discrimination task that estimated each subject’s frequency-

discrimination thresholds and (2) an auditory-categorization task

that tested how each subject used category-prior information. Both

tasks were conducted in a darkened anechoic chamber

(2 m61.5 m, Industrial Acoustics Company, Inc.), which housed

a chair for the subject, a gamepad, a table mounted with an LCD

computer screen (P190S, Dell, Inc.), a speaker (MSP7, Yamaha,

Inc.), and a chin rest. The speaker was positioned ,0.1 m below a

subject’s ears when his/her head was placed on the chin rest. The

gamepad registered the subject’s responses during each task. Both

the discrimination and categorization tasks were designed and

implemented in MATLAB (version R2010b) with the Tower-of-

Psych and Snow-Dots packages (freely available resources [17,18]).

For both tasks, the stimuli were 750-ms tone bursts (10-ms cos2

ramp; frequency range: 500–5550 Hz). The tone frequencies were

distributed uniformly in log10 units. Stimuli were synthesized with

an RX6 Multifunction Processor (Tucker-Davis Technologies, Inc.)

with a sampling rate of 25 kHz and were presented at 65 (6 3) dB

SPL.

Discrimination task and analysis
Each subject participated in a two-interval, two-alternative

forced choice frequency-discrimination task. This task measured

each subject’s frequency-discrimination threshold at eight different

‘‘standard’’ frequencies, which were distributed between 500–

5550 Hz: 794, 1260, 2297, 2639, 3031, 3482, 4462, and 4976 Hz.

A trial began with a visual ‘‘GO’’ cue on the computer screen,

followed by the presentation of the first tone burst. After a 1000-

ms delay, the second tone burst was presented. Following offset of

this second tone burst, the subject had 2000 ms to report which

tone burst had the higher frequency. Subjects only received

feedback (in the form of a yellow circle on the computer screen)

when a response was not made within the allotted response

window.

In each trial, one tone burst was one of the standard

frequencies, whereas the other ‘‘comparison’’ tone burst had a

different frequency. We used a 2-up-1-down adaptive staircase

procedure [19] to adjust the frequency of the comparison tone

across trials. On a trial-by-trial basis, the order of the standard and

comparison tone bursts was randomized, as well as the choice of

the standard tone burst. Each subject participated in 2–4

experimental sessions. Each session consisted of two blocks of

trials; each block contained 30 or 40 trials per standard tone

frequency (320 or 480 total trials).

The data for each subject were collapsed across sessions and

only trials in which a response was made within the allotted

response window were included in subsequent analyses. We

computed a psychometric function representing the probability

that the subject reported the comparison tone (ncomp) as higher

than the standard tone (nstand ). Since the values of ncomp varied

across subject and session, ncomp values were binned into five

equidistant bins (in log10 units) for each nstand and subject. Each

subject’s psychometric functions (i.e., one function for each

standard tone frequency) were fit with a cumulative Gaussian

with free parameters m and s using a maximum-likelihood fitting

procedure to the raw data.

We assumed that a subject’s discrimination process was the

result of a comparison between the frequencies of the standard and

comparison tone bursts. We also assumed that the subject’s

sensory measurements of the comparison and standard tone bursts

followed Gaussian distributions, each with the same standard

Author Summary

Categorization is an important cognitive process that
allows us to simplify, extract meaning from, and respond
to objects in the sensory environment. However, catego-
rization is complicated because an object can belong to
multiple categories. Thus, to inform our categorical
judgments, we must make use of prior information. Given
the importance of categorization, we hypothesized that
humans utilize optimal strategies for making categorical
judgments that allow us to minimize categorization errors.
We found, though, that whereas subjects used prior
information (i.e., category prior probability), they were sub-
optimal in their categorization behavior. This seems to be
common in other perceptual and cognitive tasks as well.
We then explored the bases for this sub-optimal behavior
and found that it can be consistent with an optimal
strategy if we assume that subjects have trial-by-trial noise
in components of the judgment process. This work
extends previous similar findings into the field of auditory
categorization and provides a means to reinterpret
previous results.

Auditory Categorization under Uncertainty
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deviation, sn, that we defined as the frequency-discrimination

threshold of that standard tone frequency nstand [20–22].

Consequently, sn was calculated directly from the s derived from

the cumulative Gaussian fit: sn~

ffiffiffiffiffi
s2

2

r
. We then computed each

subject’s frequency-discrimination threshold as the average of the

values measured at each of the eight standard tone frequencies (in

log10 units). We used this average value for the predictions of our

Bayesian model (see Bayesian model).

Categorization task and analysis
Each subject then participated in a two-alternative, forced-

choice categorization task. The subject reported whether the

frequency of a tone burst was a member of one of two different

frequency categories (00A00 or 00B00).
The frequency range between 550–5550 Hz was divided into

two equal (in log10 units), but overlapping, piecewise-uniform

category distributions (Figure 1a). Category 00A00 contained

frequency values between 500 to 2488 Hz. Category 00B00

contained frequency values between 1115 to 5550 Hz. These

two categories were designed so that category 00A00 comprised the

lower two-thirds of the frequency range, whereas category 00B00

comprised the upper two-thirds of the frequency range (again in

log10 units). As a consequence of this design, one part of each

category’s distribution was exclusive to that category (i.e., the

extreme thirds of the entire frequency range), whereas the other

part was shared with the other category (i.e., the middle third of

the range).

Our critical experimental manipulation was to vary the category

prior probabilities, P(C), where C was either category 00A00 or

Figure 2. Graph of the Bayesian model. (a) The category identity C of the frequency of a tone burst (top level) constrains the values of the tone
frequency n (middle level). The auditory sensory signal m represents a noisy measurement of the true tone frequency n. The black arrows define the
generative conditional probability densities P(nDC) and P(mDn), respectively. The task of the observer is to infer the category membership of the
tone’s frequency from this noisy sensory measurement m (red line from bottom to top level). (b) The category identity is modeled probabilistically
using three P(C~00A00) conditions in the categorization task (top panel). Given a particular category, the probability of a certain tone frequency is
governed by the respective conditional distribution for frequency P(nDC) (middle panel). The sensory process of the Bayesian observer is modeled as
a Gaussian process centered at the true stimulus frequency (bottom level). The width sn reflects the degree of uncertainty in the sensory process due
to noise and determines an observer’s ability to discriminate tones of different frequencies. Thus, we constrained this width with data from an
additional discrimination experiment.
doi:10.1371/journal.pcbi.1003715.g002

Figure 1. Schematic diagram of the categorical priors em-
ployed in the categorization task. (a) The category distributions
over tone-burst frequency are piecewise uniform, such that all
frequencies for a particular category are equally likely. (b) Three
category prior probabilities were employed in separate blocks of trials
by varying the proportion of trials that presented a tone belonging to
each category. Here, P(C) represents the category prior probability,
where C~00A00 or C~00B00.
doi:10.1371/journal.pcbi.1003715.g001
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category 00B00. We varied the prior probabilities, on a block-by-

block basis, by appropriately selecting the proportion of trials

originating from a particular category. We tested the influence of

three different category prior probabilities (Figure 1b). In two of

the manipulations, it was more likely that the frequency of a tone

burst originated from one category than the other. In the third

manipulation, it was equally likely that the frequency of a tone

burst originated from either category.

Before the first session, the category prior probabilities were

explained to each subject. A trial began with a brief 1500-ms

countdown, followed by a visual ‘GO’ cue indicating the imminent

presentation of a tone burst. After tone-burst offset, the subject had

1000 ms to report a choice. Subjects received visual feedback on

every trial: a green circle for correct responses, a red circle for

incorrect responses, and a yellow circle for no response within the

allotted 1000-ms response window. In separate blocks of trials, the

prior probability for category 00A00 was one of three values:

P(C~00A00) = 0.25, 0.5, or 0.75. On a trial-by-trial basis, we

randomly selected the category according to its prior probability.

Figure 3. The discrimination thresholds for each subject. (a)
Mean discrimination thresholds and 95% confidence intervals (CIs) as a
function of standard frequency nstand across subjects. The discrimination
thresholds were derived from the widths of the cumulative Gaussian fits
to each subject’s psychometric function for frequency discrimination at
each nstand . (b) Overall discrimination thresholds across standard
frequencies for each subject, computed as the mean across all nstand

values. Boxplots denote the bootstrapped median, 50%, and 95% CIs of
the overall discrimination threshold. The subjects are ordered by
increasing median of the overall discrimination threshold, sn,mean.
doi:10.1371/journal.pcbi.1003715.g003

Figure 4. Effects of category priors on psychometric data for
individual subjects. (a) Psychometric functions depicting the probability
of choosing ĈC~00A00 , given the true tone frequency, for an example subject.
Data points denote observed performance calculated by binning stimulus
frequencies into nine equidistant bins. Lines depict cumulative Gaussian fits
to raw data. Shading of lines and data points denote P(C~00A00) condition.
Error bars and shaded regions represent bootstrapped 95% CIs. (b) Medians
and bootstrapped 95% CIs of the PSE of the fitted psychometric functions
for each prior probability and subject. (c) Medians and bootstrapped 95%
CIs of the s values of the fitted psychometric functions for each prior
probability and subject. The s values are plotted in log10 units. For (b) and
(c), shading of the data points denotes the different P(C~00A00) conditions.
doi:10.1371/journal.pcbi.1003715.g004
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Figure 5. Effects of learning. The extracted PSEs (a) and slopes (b) for each subject as a function of session. For both sets of plots, the data points
represent the median and 95% CIs based on bootstrapped behavioral data. Shading denotes the different prior probabilities.
doi:10.1371/journal.pcbi.1003715.g005
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Once a category was selected, we randomly selected a frequency

from that category. As noted above, because the category

distributions were piecewise uniform, any stimulus within the

category was equally likely: P(nDC)~k for all frequencies n within

the category distribution (C~00A00 or C~00B00) and P(nDC)~0
outside of the distribution. The value of k, where kw0, is defined

by the width of the category distributions.

Each subject participated in 3–5 sessions of the categorization

task; each session included one block of each of the three category

prior probabilities. In total, each subject completed between 600–

1000 trials for each category prior probability.

For each subject, we computed the psychometric function

P(ĈC~00A00Dn) (where ĈC represents the subject’s category choice)

for each of the three category prior probabilities across all sessions.

Tone frequencies were binned into nine equidistant bins that

spanned the entire frequency range: three frequency bins in each

of the two unambiguous frequency regions and three bins in the

ambiguous frequency region. We fit each psychometric function

with a cumulative Gaussian using a maximum-likelihood proce-

dure and identified the frequency at which a subject was equally

likely to choose ĈC~00A00 or ĈC~00B00: that is, the point of subjective

equality (PSE). We also fit cumulative Gaussians to each subject’s

categorization performance separately for each session to test for

any potential learning effects throughout the course of the

experiment.

Bayesian model
We developed a Bayesian model that tested three key aspects of

each subject’s categorization behavior. First, we tested whether

subjects used the category-prior information for their categorical

decisions. Second, we tested the degree to which subjects were able

to learn category distributions. Finally, we tested the degree to

which subjects employed an optimal decision strategy given the

characteristics of the categorization experiment.

Categorization can be considered an inference process over the

generative graphical model shown in Figure 2a. The true category

C of a stimulus is governed probabilistically according to the prior

probability P(C) (Figure 2b, top panel). The category distribution,

P(nDC), indicates the probability that a stimulus from a category C
has a certain tone frequency n. We assumed that each tone with

frequency n generated a sensory signal m according to the

probability density P(mDn), which characterized the sensory

uncertainty and noise in the auditory pathway. We assumed

P(mDn) to be Gaussian with a mean centered on the true tone

frequency n and a standard deviation sn that reflected the level of

sensory uncertainty (Figure 2b, bottom panel). We measured sn for

each subject as his or her frequency-discrimination threshold (see

Discrimination task and analysis).

We assumed that subjects performed Bayesian inference over

this generative model when solving the categorization task: given

the sensory evidence m, subjects computed the posterior proba-

bility P(CDm)~
P(mDC)P(C)

P(m)
. In this equation, P(mDC) is the

likelihood that the measured frequency belonged to a particular

category C~00A00 or C~00B00. The likelihood P(mDC) was calculated

by marginalizing over the tone frequency as
Ð

n P(mDn)P(nDC)dn. We

assumed that subjects either (1) learned the experiment’s stimulus

distributions (‘‘objective priors’’; Figure 2b, middle-left) or (2) only

learned an approximation of these distributions (‘‘subjective priors’’).

For the latter case, we parameterized P(nDC) using two piecewise-

uniform distributions, each convolved with a Gaussian (Figure 2b,

middle-right). The subjective category distributions can be thought of

as noisy estimates of the objective distributions. Each subjective

Figure 6. Predictions of the Bayesian model with different
categorization behaviors. (a) Predicted psychometric functions for
the model with objective priors during each of the three prior-
probability conditions. The predictions assuming probability-matching
(MATCH) behavior are on the left, whereas those of the MAP decision
strategy are on the right. (b) Predicted psychometric functions for the
model with subjective priors. Example predictions are plotted for three
selected values of sC for MATCH (left) and MAP (right). Line colors
distinguish MAP versus MATCH and color shade denotes the three prior
probabilities. For all model predictions, sn was fixed to the mean
discrimination threshold across all subjects.
doi:10.1371/journal.pcbi.1003715.g006
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Figure 7. Model comparisons using objective priors and individually measured sensory noise sn. Rows distinguish the responses from
and predictions for each subject. Columns distinguish the three prior probabilities. For all plots, the data points represent mean performance and
bootstrapped 95% CIs in the categorization task. Line colors distinguish MAP versus MATCH and color shade denotes the three prior probabilities.
doi:10.1371/journal.pcbi.1003715.g007
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distribution had its own mean (mA and mB) but had the same

distribution width (w) and the same Gaussian standard deviation (sC ).

Finally, similar to the category distributions, the values of the category

prior probability P(C) were assumed either to be (1) the experimental

prior probabilities (objective priors) or (2) the free parameters p25, p50,

and p75, representing each category prior probability (subjective

priors).

Based upon the posterior P(CDm), we tested whether subjects

employed an optimal decision strategy to make a category choice

(either ĈC~00A00 or ĈC~00B00). This strategy is a maximum a posteriori
(MAP) strategy, in which subjects chose the most probable category

given m. In other words: P(ĈCDm)~
1

0

�
for P(CDm)w0:5

otherwise
. Thus,

the subjects chose ĈC~00A00 if P(C~00A00Dm)wP(C~00B00Dm), and

chose ĈC~00B00 otherwise.

We also tested whether subjects’ decisions reflected probability

matching (MATCH) as a general index of sub-optimal categori-

zation behavior [23–25]. Probability matching is equivalent to a

decision strategy that results in subjects choosing a category

probabilistically according to the posterior probability P(CDm). In

other words, P(ĈCDm)~P(CDm).

Finally, to directly compare and fit the model’s predictions to

each subject’s behavioral data, we computed the psychometric

function as a function of the true frequency n as

P(ĈCDn)~
Ð

m
P(ĈCDm)P(mDn)dm.

Model predictions and fits
Assuming objective priors, we used the Bayesian model to

quantitatively predict each subject’s categorization performance.

We assumed the likelihood function P(mDn) was a Gaussian

distribution with a standard deviation sn, which was measured and

fixed separately for each subject (sn,mean; see Discrimination
task and analysis). Under these assumptions, the model has no

free parameters. Therefore, we could predict each subject’s

psychometric function for each category prior probability and

for both optimal (MAP) and sub-optimal (MATCH) categoriza-

tion. We calculated the quality of the MAP and MATCH

predictions by computing their respective log-likelihood values

across all P(C~00A00) conditions. We rescaled these log-likelihood

values relative to the predictions of two reference models: (1) an

empirical model, which represents how well the observed data

explains itself (i.e., a binomial model that employs the empirical

choice probabilities), and (2) a random-guessing model [26].

Assuming that subjects only learned noisy estimates of the

categorical priors (i.e., subjective priors), we also computed

maximum-likelihood fits of the model for both MAP and MATCH

behavior to each subject’s categorization performance. The

sensory uncertainty sn was again fixed for each subject based on

the results of the discrimination experiment. Thus, the model fit

with the subjective priors had seven free parameters, namely mA,

mB, w, sC , p25, p50, and p75 (see Figure 2b and previous section).

We tested the goodness of fits by again comparing the normalized

total log likelihoods for both MAP and MATCH.

Finally, to assess the full potential of either type of decision

behavior to explain each subject’s categorization performance, we

computed maximum-likelihood fits of the model using subjective

priors, this time including sn as an additional free parameter (for a

total of eight free parameters). Once again, we tested the goodness

of fits by comparing the normalized total log likelihoods.

Results

Individual subject’s frequency-discrimination thresholds
We measured each subject’s frequency-discrimination threshold

to determine individual sensory uncertainty. The frequency-

discrimination experiment required subjects to indicate the

interval that contained the higher-frequency tone burst.

For each subject, we calculated discrimination thresholds sn for

each standard frequency, which is summarized in Figure 3a. As

expected [27–30], we found that the thresholds were approxi-

mately constant across the tested frequency range. Consequently,

for each subject, we computed the mean of the thresholds (sn,mean)

across the eight standard frequencies (Figure 3b). We used sn,mean

as the measure of each subject’s sensory uncertainty in our

Bayesian model.

Human subjects can quickly learn category priors
Because the subjects were initially unaware of the categorical

priors, subjects had to learn both the category distributions and the

category prior probabilities to make informed category decisions. To

test whether subjects learned this information, we first compared each

subject’s psychometric functions (i.e., P(ĈC~00A00Dn)) across the three

different values of the category prior probabilityP(C~00A00). We fit

these psychometric functions with a cumulative Gaussian and

extracted the point of subjective equality (PSE) for each curve. The

psychometric functions and Gaussian fits for an example subject (S3)

are depicted in Figure 4a. Two main points can be taken from this

figure. First, as the tone frequency increased, the probability that the

subject chose ĈC~00A00 decreased. Second, as P(C~A00) increased,

the psychometric functions shifted toward higher tone frequencies.

However, the slopes of the psychometric functions remained

consistent across category prior probability. These effects were

comparable across individual subjects, with all but subject S2

exhibiting clear effects of the different category prior probabilities.

These findings are summarized in Figure 4b and 4c.

These effects of the different category prior probabilities were

evident as early as the first session. Generally, additional

Figure 8. Normalized likelihoods for the Bayesian model
predictions. Likelihoods are normalized between that of a random-
guessing model and empirical performance, defined as how likely the
measured performance explains itself (see METHODS). Color denotes
MAP versus MATCH.
doi:10.1371/journal.pcbi.1003715.g008
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Figure 9. Model comparisons using subjective prior distributions with observed individual responses. The format of the data is the
same as that in Figure 7. For all plots, shaded regions denote bootstrapped 95% CIs for subjective-prior model fits.
doi:10.1371/journal.pcbi.1003715.g009
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experience with the categorical priors had little differential effect

on PSE and slope (Figure 5). Thus, for subsequent analyses we

grouped each subject’s data across sessions.

Bayesian-model predictions
Our Bayesian model makes distinct predictions for subjects’

psychometric performance (Figure 6). In the lowest and highest

thirds of the frequency range, choice behavior is independent of

category prior probability and identical for MATCH and MAP.

This independence occurs because these frequency ranges are

exclusive to categories 00A00 and 00B00, respectively. The effects of

P(C~00A00) are only present in the middle third of the frequency

range, where the category distributions overlap. Under the

objective-priors assumption, probability matching (Figure 6a, left)

yields psychometric functions that exhibit a characteristic plateau.

Increasing P(C~00A00) causes vertical shifts in these plateaus. In

contrast, the MAP decision strategy (Figure 6a, right) yields

smooth, sigmoidal psychometric functions. Moreover, increasing

P(C~00A00) causes lateral shifts of the psychometric function. For

both behaviors, sn governs the steepness of the transition in choice

behavior from choosing ĈC~00A00 to choosing ĈC~00B00.
Under the subjective-priors assumption, the predicted charac-

teristics of the psychometric functions change distinctly for MAP

and MATCH (Figure 6b). With MATCH, the psychometric

functions become smoother overall with increasing values of sC

(Figure 6b, left column). However, the vertical shifts with

increasing P(C~00A00) are still evident. The predictions for the

MAP decision strategy are similar to those under the objective-

priors assumption (compare Figures 6a and 6b, right column).

Contrary to what is seen in the predictions for MATCH behavior,

here sC does not affect the slopes but, instead, affects the relative

lateral shifts of the psychometric functions.

Data versus model predictions for objective priors
We compared the predictions of the Bayesian observer with

each subject’s behavior assuming the objective priors (see

Figure 10. Normalized likelihoods for the Bayesian-model fits
assuming subjective priors. The format of the data is the same as
that in Figure 8.
doi:10.1371/journal.pcbi.1003715.g010

Figure 11. Individual subjects’ reconstructed category distributions from the model fits for MATCH behavior. Green traces denote
distributions for category 00A00 , whereas orange traces denote distributions for category 00B00 . Thick solid lines denote the category distributions
calculated from the fit to each subject’s observed performance. Thin solid lines denote category distributions from the individual bootstrap fits. Thick
dashed lines denote objective priors for comparison.
doi:10.1371/journal.pcbi.1003715.g011
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METHODS). In general, the model predictions for both types of

decision behavior did not accurately reflect subjects’ behavior

(Figure 7). MATCH behavior predicted step-like psychometric

functions (see Figure 6) that were reflected only in some subjects’

performance (e.g. S4). The predictions of the model with the

MAP decision strategy were even less accurate: this decision

Figure 12. Fitted model parameters for MATCH behavior of the model with subjective priors. (a–d) Boxplots depicting the range of (a)
the fitted means for the category-00A00 distribution; (b) the fitted means for the category-00B00 distribution; (c) the fitted widths that were shared
between both category distributions; and (d) the widths of the fitted Gaussian functions that were convolved with the fitted uniform distributions.
For plots (a–d), the thin dashed lines denote depict the values of mA (a), mB (b), w (c), and sC (d) that reflect the objective priors. (e–g) Boxplots
depicting ranges of the fitted prior probability parameters p25, p50, and p75. Thin dashed lines denote experimental prior probability values. For all
plots, the stars denote values of parameters fit to the measured data, whereas the boxplots denote the median, 50%, and 95% CIs of the parameter
values estimated from bootstrapped empirical responses. Note that subject S2’s categorization performance was not influenced by the category prior
probabilities.
doi:10.1371/journal.pcbi.1003715.g012
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strategy predicted slopes of the psychometric functions that were

substantially and consistently steeper than those observed in each

subject.

We quantified the quality of the two model predictions by

calculating the total likelihood of the models given each subject’s

behavior. MATCH was significantly more predictive of each

subject’s performance, as exemplified by the likelihoods for each

type of decision behavior across subjects (Figure 8). In fact, the

MAP strategy was significantly worse than a random guess for all

subjects, whereas MATCH was better than random guessing for

half of the subjects (i.e., S1, S4, and S5).

Data versus model fits with subjective priors
Because the objective category distributions did not fully predict

the subjects’ performances, we used subjective categorical priors

and fit the Bayesian model (see Figure 2 and METHODS).

However, as before, we fixed sn to reflect each subject’s measured

frequency-discrimination threshold.

Fits assuming MATCH behavior almost perfectly accounted for

the data, with an accuracy that approached empirical performance

(Figures 9 and 10). However, the fits under the MAP strategy were

still poor: the MAP strategy failed to account for the slopes of the

psychometric functions (Figure 9). Except for subject S1, the MAP

strategy yielded fits that were significantly worse than random

guessing. In fact, the MAP-strategy fits to the data did not provide

any better account of the data than its predictions based on the

objective priors (compare Figures 8 and 10).

Subjective category distributions and prior probabilities
Finally, we were interested in reconstructing the subjective

category distributions for the subjects and comparing them to the

objective distributions; because the MAP decision strategy

provided a poor description of subjects’ performances, we focused

only on the fits assuming MATCH behavior.

The reconstructed category distributions tended to more closely

resemble Gaussian distributions rather than boxes (Figure 11).

Both the modeled category means and category widths either were

close to or overlapping with the actual means and widths of the

objective distributions (Figure 12a–c). However, the category

edges were much less defined as compared to the edges of the

objective distributions, exemplified by large sC values (Figure 12d).

Overall, the fitted category prior probabilities p25, p50, and p75 for

individual subjects were remarkably similar to the actual values

0.25, 0.5, and 0.75, respectively (Figure 12e–g).

Analysis of categorization behavior with subjective priors
and all free parameters

The previous model analyses revealed that probability matching

(MATCH) is much better than the optimal (MAP) strategy in both

predicting each subject’s categorization behavior as well as

explaining behavior after fitting the model with subjective priors.

However, this comparison assumes that we have accurately

measured each subject’s sensory uncertainty. It is possible that, with

additional sources of sensory uncertainty (e.g., memory noise

[31,32]), the MAP strategy could be equally as descriptive as

MATCH behavior. Indeed, under certain noise conditions, MAP

and MATCH behaviors are equivalent [33]. To address this

possibility, we performed an additional analysis in which all of the

parameters were fit, including sn (for a total of eight free parameters).

When we included sn as a free parameter, both strategies

accurately reflected individual subject’s categorization behavior

(fits not shown). However, we found that, without exception,

MATCH behavior was still a better explanation of each subject’s

performance (Figure 13a). Moreover, in order for the MAP

strategy to achieve this improvement in explanatory power, the

sensory noise sn had to be 10–100 times larger than the measured

values for each subject. In comparison, the fitted levels of sn

obtained from the MATCH fits were quite close to the individually

measured discrimination thresholds for each subject (Figure 13b).

Effects of noise on the categorical priors
Up to now, the model formulations assumed that subjects’

estimates of the categorical priors were constant. However, this

may not be true. Thus, we were interested in determining how

trial-by-trial noise on the categorical priors may affect categori-

zation performance. In particular, we wanted to test whether this

additional noise could cause performance under an optimal

decision strategy (MAP) to appear sub-optimal (MATCH).

Figure 13. Likelihood comparisons for model fits. (a) Normalized
log-likelihoods (see Figure 8) for MAP and MATCH. Data points denote
median and bootstrapped 95% CIs. Dashed line depicts the unity line.
(b) Boxplots depicting the range of the fitted sensory uncertainties (sn)
for MAP (red) and MATCH (blue). Stars denote fitted values to the
measured data. Boxplots denote the median, 50%, and 95% CIs of the
bootstrapped data. Black points denote measured discrimination
thresholds for each subject and their 95% CIs.
doi:10.1371/journal.pcbi.1003715.g013
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We conducted a series of simulations in which we added noise to

both the means of the category distributions and the prior

probabilities (Figure 14a). Increasing category-distribution noise

(sCD) led to decreases in the slope of the psychometric function

(Figure 14b). Note, even though the net effect of this noise is

similar to having constant Gaussian-shaped distributions

(Figure 14b, inset), the predicted categorization performance is

different from the MAP predictions with constant Gaussian-

shaped distributions (see Figure 6). In the latter case, there is no

effect on the slopes of the psychometric function.

Increasing prior-probability noise (sp) exhibited qualitatively

different effects on performance as a function of P(C~00A00)
(Figure 14c). First, under asymmetric prior-probability conditions

(i.e., P(C~00A00) = 0.25 or 0.75), sufficiently small levels of sp (e.g.,

below ,0.08) did not substantially influence the psychometric

function (Figure 14c, left and right panels). However, larger levels

of sp caused the function to exhibit plateaus. Moreover, depending

on the level of sp, we could observe over-, under-, or true

probability matching; compare the bright and dark red traces in the

left and right panels of Figure 14c. Interestingly, when the prior

probabilities were symmetric (i.e., P(C~00A00) = 0.5), any level of sp

led to psychometric functions with a characteristic plateau.

One potential interpretation of this noise is that subjects’

categorical priors are non-stationary. Specifically, we hypothesized

that subjects estimated the categorical priors only over recent trial

history. To investigate this hypothesis, we computed running

estimates of P(C~00A00) over different bin lengths of consecutive

trials and compared the variability in these estimates with the levels

of sp that yielded step-like psychometric functions. We found that

the variability in P(C~00A00) over relatively short bin lengths (i.e.,

generally ,16 trials) was generally consistent with these sp levels

(Figure 15).

Discussion

We found that subjects learned the categorization task to

varying degrees. All but one subject could use the category-prior

information to solve the task. Subjects learned general character-

istics of the category distributions (i.e., high versus low frequencies)

and the category prior probabilities as early as the first session.

This is consistent with previous work showing that the largest

effects of category learning occur early in training and then are

fine-tuned with further experience [34,35]. Our finding that

subjects learned the category prior probabilities is consistent with

previous visual categorization tasks [5,8,9,36–38]. However, the

systematic evaluation of prior probabilities and category learning

in this study is novel for audition.

One goal of this study was to test whether subjects employed an

optimal decision strategy to perform auditory categorization under

categorical ambiguity. In order to do this, we developed a single

generative Bayesian model that allowed us to both predict and fit

each subject’s psychometric curve for all tested conditions under

instances of either optimal or sub-optimal categorization behavior.

A critical component of this approach was that we separately

estimated each subject’s perceptual noise by measuring frequency-

discrimination thresholds.

One finding of our model predictions was that subjects’

performances were not accurately predicted assuming the

Figure 14. Simulations of behavior under the assumption of additional sources of categorical-prior noise. (a) Illustration of the two
types of added noise: noise in the means of the category distributions (sCD, top) and noise in the category prior probabilities (sp, bottom). For the
simulations, we computed the net effect on the psychometric function from 600 iterations of varying either the category means (b) or the category
prior probabilities (c) assuming one of eight different levels of Gaussian noise. For (b) and (c), we also note the net effect on the corresponding
estimates of the category distributions and category prior probabilities, respectively. (b) Net effects of noise in the category means (sCD) on the
psychometric function for P(C~00A00) = 0.25. Colors denote the level of added noise. The effects were similar for each prior probability. (c) Effects of
prior-probability noise (sp) on the psychometric function. Panels depict effects for P(C~00A00) = 0.25, 0.5, and 0.75, respectively. Insets for each panel
depict mean and 95% CIs for P(C~00A00). Colors denote level of sp noise. Note, because probabilities range from 0 to 1, samples were fixed to remain
within the range 0–1.
doi:10.1371/journal.pcbi.1003715.g014
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objective priors (i.e., box-shaped distributions). This suggests that

subjects were limited in their ability to learn the objective priors.

Indeed, our model fits were consistent with the hypothesis that

subjects learned smooth approximations of the box-shaped

distributions. This finding may not be surprising: previous work

has demonstrated that subjects often assume approximate versions

of experimental distributions when learning new behavioral tasks

[39–42]. It is possible that the large degree of uniform overlap

between the categories contributed to subjects’ difficulties in

estimating the category distributions. However, other evidence

suggests that subjects can, to an extent, learn category distributions

that are non-Gaussian [41,43,44]. Therefore, with extensive

training, subjects might have been able to learn the objective

priors.

Another important finding was that subjects’ performances were

more consistent with probability matching. This was the case after

both predicting and fitting performance with our Bayesian model.

Because this type of behavior reflects sub-optimal categorization,

we conducted further analyses to investigate whether subjects

actually implemented an optimal decision strategy but performed

sub-optimally due to additional uncertainties [33,45,46].

Additional memory noise was unlikely to account for this

possibility for two reasons. First, when sensory noise was a free

parameter and could account for additional memory noise,

probability matching still outperformed the optimal decision

strategy. Second, the fitted values of the sensory noise for the

optimal strategy were 10–100 times larger than our measured

estimates (Figure 13). This difference between the measured and

fitted values seems unreasonable given previous work on the effects

of memory noise on frequency discrimination [31,32].

We also simulated the effects of additional noise on the category

distributions and prior probabilities. The results of the simulations

suggested that a combination of category-distribution and prior-

probability noise could lead to psychometric functions that mimic

probability-matching behavior (i.e., shallow psychometric func-

tions with a plateau), even though the decision strategy was

optimal (see Figure 14).

Categorical-prior noise could reflect true uncertainty or

subjects’ tendencies to search for patterns in sequences of random

events [23,25,47,48]. One interpretation is that our subjects

assumed that the categorical priors changed over time (i.e., they

were non-stationary). Under this assumption, our analyses

suggested that subjects’ estimates of the categorical priors were

reflections of the short-term stimulus history (see Figure 15).

Future work is necessary to determine more quantitatively whether

subjects whose performance is most sensitive to the local trial

history are more likely to exhibit psychometric functions that

mimic probability-matching behavior and how this effect changes

after extensive training.

Together, our results suggest that the prevalence of probability

matching in perceptual tasks might reflect model assumptions of

stationarity that are not correct [7,49–52]. In other words, the

interpretation of subjects’ categorical behavior should not focus on

sub-optimal versus optimal decision strategies but, rather, should

focus on the degree to which subjects assume the environment is

stationary and which factors can impact these assumptions. For

example, changes in cost-reward structures may not change

subjects’ decision strategy, but may influence their view of

environmental stationarity [7,8,37,50].
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