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Abstract

Background: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy.

Even with complete tumor resection and adjuvant therapies, the prognosis of

patients with ACC remains unsatisfactory. In the microtumor environment, the

impact of a disordered immune system and abnormal immune responses is

enormous. To improve treatment, novel prognostic predictors and treatment targets

for ACC need to be identified. Hence, credible prognostic biomarkers of immune‐
associated genes (IRGs) should be explored and developed.

Material and methods: We downloaded RNA‐sequencing data and clinical

data from The Cancer Genome Atlas (TCGA) data set, Genotype‐Tissue
Expression data set, and Gene Expression Omnibus data set. Gene set

enrichment analysis (GSEA) was applied to reveal the potential functions of

differentially expressed genes.

Results: GSEA indicated an association between ACC and immune‐related
functions. We obtained 332 IRGs and constructed a prognostic signature on the

strength of 3 IRGs (INHBA, HELLS, and HDAC4) in the training cohort. The high‐
risk group had significantly poorer overall survival than the low‐risk group

(p< .001). Multivariate Cox regression was performed with the signature as an

independent prognostic indicator for ACC. The testing cohort and the entire TCGA

ACC cohort were utilized to validate these findings. Moreover, external validation

was conducted in the GSE10927 and GSE19750 cohorts. The tumor‐infiltrating
immune cells analysis indicated that the quantity of T cells, natural killer cells,

macrophage cells, myeloid dendritic cells, and mast cells in the immune

microenvironment differed between the low‐risk and high‐risk groups.

Conclusion: Our three‐IRG prognostic signature and the three IRGs can be used

as prognostic indicators and potential immunotherapeutic targets for ACC.
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Inhibitors of the three novel IRGs might activate immune cells and play a

synergistic role in combination therapy with immunotherapy for ACC in the future.

KEYWORD S

adrenocortical carcinoma, immunology, prognosis, signatures, tumor microenvironment

1 | INTRODUCTION

Adrenocortical carcinoma (ACC) is a rare endocrine
malignancy worldwide.1,2 The incidence is reported to be
one to two per million per year. The prognosis is poor
with a median overall survival (OS) of 3–4 years.3 Even
with complete tumor resection and adjuvant therapies,
the prognosis of patients with ACC following treatment
remains unsatisfactory.4 The risk of recurrence and
metastasis ranged from at least 15% to 40% among
patients with ACC after initial treatment.5,6 Conse-
quently, novel prognostic predictors and treatment
targets for ACC are needed and credible prognostic
biomarkers of immune‐associated genes (IRGs) should
be explored.

In the microtumor environment, the impact of a
disordered immune system and abnormal immune
responses is enormous.7 Immune cells may modify the
signaling molecule to influence the immunological
response, which significantly impacts the risk of recur-
rence, change, and diffusion of the neoplasm.8,9 Previous
research studies have reported that some tumor cells may
evade immune surveillance and immune elimination,
resulting in tumor infiltration and metastasis.10 An
abnormal immune state is thought to be associated with
glioblastoma progression.11 Martinez‐Bosch et al.10 sug-
gested that immunosuppressive macrophages and
myeloid‐derived suppressive cells may significantly
suppress the immune microenvironment in pancreatic
cancer. Peng et al.12 identified two immune‐related genes
could serve as potential biomarkers for immunotherapy
in ACC, which provide better insights into ACC
microenvironment. In addition, N6‐methyladenosine
methylation regulators had impacts on ACC prognosis
through regulating immune‐related functions.13 Bio-
informatics analyses based on The Cancer Genome Atlas
(TCGA) constructed a competitive endogenous RNA
network associated with tumor‐infiltrating immune cells
and determined that the immune system is implicated in
the microenvironment of ACC.14

Aberrantly expressed IRGs may be potential therapeutic
targets and prognostic biomarkers for patients with ACC.
For this purpose, we explored IRGs and constructed an IRG
prognostic signature. This study was designed using the gene

expression profiles from the TCGA ACC and Genotype‐
Tissue Expression (GTEx) data sets. To investigate the IRG
signature's feasibility, we validated the predictive power in
two Gene Expression Omnibus (GEO) data sets. We also
evaluated the correlation between the IRG signature and
tumor‐infiltrating immune cells.

2 | MATERIAL AND METHODS

2.1 | TCGA ACC and GTEx data sets

The TCGA ACC data set provided ACC specimens
(n= 79), whereas the GTEx data set provided normal
adrenal specimens (n= 258). We acquired the RNA‐
sequencing (RNA‐seq) data and clinical samples from the
GTEx (http://www.gtexportal.org/home/index.html) and
TCGA (http://portal.gdc.cancer.gov/) databases. Differ-
entially expressed genes (DEGs) were aberrated tran-
scripts identified under different biological context
through RNA‐seq analysis.15 DEGs makes RNA‐seq
analysis possible to get a deep understanding of
pathogenesis‐related molecular mechanisms and biologi-
cal functions. Therefore, differential analysis has been
regarded as valuable for diagnostics, prognostics, and
therapeutics of tumors. To identify DEGs from the ACC
and normal adrenal samples, we used the edgeR R
package.16 The cutoff criteria were |log Fold Change| ≥ 1
and an adjusted p (adj. p) < .05.

2.2 | Gene set enrichment analysis
(GSEA) and identification of
immune‐related genes

GSEA (http://www.broadinstitute.org/gsea/index.jsp)
was applied to reveal the potential functions of DEGs.
Gene set permutations were performed 1000 times for
each analysis. p < .05 was established as the cutoff
point for Gene Ontology (GO) enrichments in the
GSEA. We search for IRGs from the GSEA v4.2.3
(http://www.gsea‐msigdb.org/gsea/downloads.jsp:
Immune system process M13664, Immune response
M19817)17 and identified 332 IRGs.
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2.3 | Identification of an
immune‐related gene prognostic
signature

We construct the IRG signature by using the survival R
package. The identification and verification criteria for
IRG signatures in the ACC specimens were as follows:
(1) intact information regarding the IRG expression and
clinical features (age, gender, tumor TNM stage, and
survival time); and (2) specimens with total survival <30
days were excluded (some nonneoplastic factors such as
severe infection or hemorrhage may have destroyed these
specimens). From these, we selected 77 ACC samples for
the IRG signature construction. The 77 specimens were
randomly divided into the training (n= 39) and the
testing (n= 38) cohorts. The training cohort was utilized
for the IRG signature construction. The other cohort was
utilized for validation of the IRG signature.

Next, we screened for prognosis‐related IRGs (p< .01),
regardless of whether the IRGs were protective or deleterious
according to hazard ratio (HR) as well as 95% confidence
interval (CI). The 332 IRGs were analyzed by univariate Cox
regression analysis in the training cohort. After that, we
selected an optimal model from the prognosis‐related IRGs
using the Akaike information criteria (AIC) method. The
three IRGs with minimum AIC values were finally selected
for the prediction model construction.

We analyzed the prognosis‐related IRGs using
multivariate Cox regression analyses to construct a
prognostic IRG signature and identify the coeffi-
cients.18–20 The following in‐house formula was used
to calculate the risk score of the prognostic IGR signal
for each specimen: Risk score = ExpressionIRG1 ×
CoefficientIRG1 + ExpressionIRG2 × CoefficientIRG2 + …
+ ExpressionIRGn × CoefficientIRGn. The risk score of
the prognostic IRG signature may be determined
based on a linear combination of the IRG expression
level weighted by the regression coefficients. We
acquired the coefficient by log‐transformed HR,
derived from the multivariate Cox regression analy-
sis.21,22 We divided the specimens into the low‐risk
and high‐risk groups based on the median value of the
risk score. Univariate and multivariate Cox regression
analyses, time‐dependent receiver operating charac-
teristic (ROC) curve, and Kaplan–Meier (KM) survival
curve were conducted to evaluate the predictive value
of the risk score in the training cohort.

2.4 | Internal validation and external
validation of the IRG signature

To further validate the predictive ability of the IRG
signature, we used the testing cohort and the entire

FIGURE 1 Workflow of this study. The study was carried out in The Cancer Genome Atlas (TCGA) adrenocortical carcinoma (ACC),
Genotype‐Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) data sets. Differentially expressed genes (DEGs) were calculated
between ACC samples from TCGA ACC data set and normal adrenal samples from GTEx data set. GSEA was conducted based on all DEGs
and we found the DEGs were enriched in immune‐related functions. Then, 322 immune‐associated genes (IRGs) were extracted from
Molecular Signatures Database v4.0. The training cohort was used to identify prognostic IRGs and establish a prognostic signature based on
three IRGs (INHBA, HELLS, and HDAC4). The prognosis analysis was validated in the testing cohort and the entire TCGA ACC cohort,
respectively. In addition, external validation was carried out based on GSE10927 cohort and GSE19750 cohort. Tumor‐infiltrating immune
cells analysis was performed based on CIBERSORT tool to investigate the association between the three‐IRG signature and immune system.
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TCGA ACC cohort to perform internal validation, and
used GSE10927 and GSE19750 cohorts from GEO to
perform external validation. The validation was con-
ducted by following the same analysis methods of the
training cohort.

2.5 | Functional enrichment analysis
between different risk groups and
correlation analysis

Principal component analysis (PCA) was carried out to
profile the expression patterns of the low‐risk and

high‐risk groups according to the IRG signature by using
scatterplot3d R package. We identified DEGs in both
groups and adopted the clusterProfiler and GOplot R
packages for GO and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses23 to
uncover the potential capacities in the two risk groups
and the TCGA ACC cohort. Furthermore, the adj. p< .05
was used as the cutoff value. We investigated the
pairwise gene correlation of three IRGs (Inhibin subunit
βA [INHBA], Helicase, lymphoid specific [HELLS], and
Histone deacetylase 4 [HDAC4]) by adopting the Pearson
correlation analysis. The R was determined. p< .05 was
established as the cutoff value.

FIGURE 2 Identification of differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA) between adrenocortical
carcinoma (ACC) samples and normal adrenal samples. (A) Volcano plot of all DEGs. (B) Upregulated DEGs were enriched in humoral
immune response. (C, D) Downregulated DEGs were enriched in immune effector process and immune response.
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2.6 | Tumor‐infiltrating immune cells of
the three‐IRG signature

We retrieved 22 types of tumor‐infiltrating immune cells
from CIBERSORT, a web tool for analyzing tumor‐infil
trating immune cells (http://cibersort.stanford.edu/).24,25 To
identify the differences between the low‐risk and high‐risk
groups, we measured the quantity of each immune cell.
p< .05 was set as the cutoff value.

2.7 | Statistical analysis

Statistical analysis was carried out by GraphPad Prism
7.0 and R software (v3.5.3: http://www.r‐project.org).
The RNA‐seq data were log2‐transformed. To assess the
influences of the IRG prognostic signature on OS and
other clinical features, Cox regression analyses, log‐rank
test, and KMmethod were used. The χ2 test and Student's
t test were adopted to measure qualitative variables and
quantitative variables, respectively. According to the IRG
signature and other indexes, we evaluated the predictive
value using time‐dependent ROC. The cutoff value of the
two‐sided p was set at .05 (two‐sided p< .05).

3 | RESULTS

Figure 1 shows the study flowchart.

3.1 | Identification of DEGs and
functional enrichment analysis

All genes from the TCGA ACC and GTEx data sets were
analyzed via gene differential expression analysis. From
these, we selected 79 ACC specimens and 258 normal
adrenal specimens. We used edgeR R package to identify
DEGs between ACC and normal adrenal samples to
further explore the immune‐related DEGs and immune‐
related functions. In total, we identified 5609 DEGs from
these specimens, including 3519 upregulated and 2090
downregulated DEGs (Figure 2A). The biological capaci-
ties of DEGs determined via GO enrichment analysis was
identified by GSEA. The results indicated that upregu-
lated genes were involved in the humoral immune
response (GO:0006959; p= .027; Figure 2B). Moreover,
downregulated genes correlated with the effector process
of the immune system (GO:0002252; p= .026) and
immune response (GO:0006955; p= .038; Figure 2C,D),
which showed that the tumorigenesis and progress of
ACC are related to the immune system and immune
responses.

3.2 | Identification of immune‐related
genes and the clinical characteristics of
TCGA patients with ACC

We identified and obtained 332 IRGs from the
Molecular Signatures Database v4.0. To construct
and validate the IRG signature, 77 patients with
ACC were included. These patients were randomly
divided into the training (n = 39) and the testing
(n = 38) cohorts. Table 1 was the clinical features of
77 ACC patients.

3.3 | Identification of the IRG
prognostic signature in the training cohort

We identified prognostic IRGs from the 262 IRGs in
the training cohort using univariate Cox regression
analysis. There were seven prognosis‐related IRGs.
To construct an IRG signature, a multivariate Cox
regression model with the smallest AIC was applied
to the seven prognostic IRGs. Ultimately, three IRGs
were selected and we constructed the three‐IRG
prognostic signature. Table 2 summarizes the
details relating to the univariate Cox regression
analysis, descriptions, coefficients, Ensembl IDs,

TABLE 1 Clinical characteristics of 77 ACC patients involved
in identification and validation of the immune‐related gene
prognostic signature

Characteristics

Entire
TCGA ACC
cohort
(N= 77)

Detailed data

pa

Training
cohort
(N= 39)

Testing
cohort
(N= 38)

Age at diagnosis
(years)

.737

≤60 60 (77.9%) 31 (79.5%) 29 (76.3%)

>60 17 (22.1%) 8 (20.5%) 9 (23.7%)

Gender .206

Male 29 (37.7%) 12 (30.8%) 17 (44.7%)

Female 48 (62.3%) 27 (69.2%) 21 (55.3%)

Tumor stage .809

Stage I 9 (11.7%) 6 (15.4%) 3 (7.8%)

Stage II 37 (48.1%) 18 (46.2%) 19 (50.0%)

Stage III 16 (20.8%) 8 (20.5%) 8 (21.1%)

Stage IV 15 (19.4%) 7 (17.9%) 8 (21.1%)

Abbreviations: ACC, adrenocortical carcinoma; TCGA, The Cancer Genome
Atlas.
aχ2 test.
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and gene symbols. All the three IRGs (INHBA,
HELLS, and HDAC4) were deleterious IRGs. For
all three IRGs, the univariate Cox HR was greater
than 1, which suggested that patients with high
expression of the three IRGs may have a shorter
survival time. The following formula was
established to calculate the risk score of the three‐
IRG signature based on the expression of the
three IRGs for OS prediction: Risk score = (1.647 ×
ExpressionINHBA) + (2.583 × ExpressionHELLS) + (2.61
× ExpressionHDAC4).

3.4 | Assessing the predictive capacity of
the three‐IRG prognostic signature for
patients with ACC in the training cohort

From the training cohort, 39 patients with ACC
patients were divided into two groups based on the
median value of the three‐IRG signature risk score,
namely, the high‐risk (n = 19) and low‐risk (n = 20)
groups. Figure 3A,B summarizes the details of
each patient in the training cohort, including survival
time, survival status, and the risk score. Figure 3C

TABLE 2 The three immune‐related genes identified from Cox regression analysis

Gene symbol Ensembl ID Description Coefficient

Univariate Cox regression analysis

HR 95% CI p

INHBA ENSG00000122641 Inhibin subunit βA 1.647 5.193 1.111–24.262 0.006

HELLS ENSG00000119969 Helicase, lymphoid specific 2.583 9.882 1.956–49.925 <0.001

HDAC4 ENSG00000068024 Histone deacetylase 4 2.610 13.242 2.919–60.073 0.002

Abbreviations: CI, confidence interval; HR, hazard ratio.

FIGURE 3 Evaluating the predictive power of the immune‐related signature in the training cohort. (A–C) Distribution of survival
status, risk score, and gene expression of patients in the training cohort. (D) Kaplan–Meier survival curve of the high‐risk and low‐risk
groups in the training cohort. (E) Time‐dependent receiver operating characteristic (ROC) curves and area under the ROC curve (AUC)
based on the training cohort for 5‐year overall survival. (F) Forest plot for multivariate Cox regression analysis.
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illustrates the expression of the three IRGs. The KM
survival curve of all the patients with ACC in the
training cohort is shown in Figure 3D. We analyzed
the survival time and found that patients in the low‐
risk group had a longer survival time than those in the
high‐risk group (p < .001). As shown in Figure 3E, by
plotting time‐dependent ROC curves of the three‐IRG
prognostic signature and other clinical features in the
training cohort, we identified that the area under the
ROC curve (AUC) value was 0.923. We also evaluated
the age, three‐IRG prognostic signature, gender, and
tumor stage using multivariate Cox regression analy-
ses, as shown in Figure 3F. From the risk score

(HR = 2.585, 95% CI = 1.569–4.258, p < .001) of the
three‐IRG signature, a unique prognostic target of
overall poor survival was identified (Table 3).

3.5 | Authentication of the three‐IRG
prognostic signature in the entire TCGA
ACC cohort and the testing cohort

We utilize the three‐IRG signature to evaluate the OS of
patients with ACC in the testing cohort to prove the
stability and predictive capacity of the three‐IRG signature.
Risk scores of the three‐IRG signature in 38 patients with

TABLE 3 Univariate and multivariate Cox regression analyses of the training, testing, entire TCGA ACC, GSE10927, and GSE19750
cohorts

Variables

Univariate analysis Multivariate analysis

HR 95% CI p HR 95% CI p

Training cohort

Three‐IRG signature risk score 1.003 0.968–1.040 .866 1.008 0.962–1.056 .751

Age at diagnosis 1.505 0.496–4.563 .470 1.178 0.330–4.202 .801

Gender 2.579 1.441–4.617 .001 1.118 0.561–2.229 .752

Tumor stage 2.718 1.752–4.216 <.001 2.585 1.569–4.258 <.001

Testing cohort

Three‐IRG signature risk score 1.029 0.984–1.076 .209 1.067 1.002–1.137 .044

Age at diagnosis 0.907 0.288–2.862 .868 0.847 0.1750–4.103 .837

Gender 3.499 1.700–7.202 .001 3.434 1.264–9.329 .016

Tumor stage 1.932 1.372–2.720 <.001 2.168 1.281–3.668 .004

Entire TCGA ACC cohort

Three‐IRG signature risk score 1.010 0.985–1.036 .430 1.019 0.987–1.052 .236

Age at diagnosis 1.043 0.473–2.299 .917 0.863 0.353–2.112 .747

Gender 2.903 1.844–4.569 <.001 1.707 1.049–2.780 .031

Tumor stage 1.920 1.562–2.360 <.001 1.842 1.471–2.307 <.001

GSE10927 cohort

Three‐IRG signature risk score 1.012 0.977–1.048 .519 0.992 0.9589–1.026 .632

Age at diagnosis 1.471 0.510–4.242 .475 1.251 0.326–4.802 .745

Gender 1.818 1.095–3.019 .021 2.330 1.298–4.184 .005

Tumor stage 1.863 1.143–3.036 .013 2.660 1.345–5.261 .005

GSE19750 cohort

Three‐IRG signature risk score 1.035 0.994–1.079 .097 1.019 0.978–1.063 .368

Age at diagnosis 0.294 0.091–0.956 .042 0.905 0.210–3.900 .894

Gender 1.143 0.700–1.865 .593 1.284 0.737–2.234 .377

Tumor stage 1.008 1.003–1.013 <.001 1.008 1.003–1.013 .001

Note: Bold values indicat statistically significant results.

Abbreviations: ACC, adrenocortical carcinoma; CI, confidence interval; HR, hazard ratio; IRG, immune‐associated gene; TCGA, The Cancer Genome Atlas.
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ACC from the testing cohort were computed using the
previously mentioned formula. The 38 ACC patients were
divided into the high‐risk and low‐risk groups (n=19 per
group) based on the median value. Figure 4A‐B provides
the clinical features of the testing cohort, the survival time,
survival status, and the risk score. The expression of the
three IRGs is shown in Figure 4C.

Figure 4D displays the KM survival curve of the
testing cohort. Our results found that patients of the low‐
risk group subsisted for a longer time compared with the
high‐risk group (p= .002). Figure 4E shows the plotting
time‐dependent ROC curves of the three‐IRG prognostic
signature and other clinical features in the training
cohort, which demonstrated that the AUC of the three‐
IRG prognostic signature was distinctly better than other
clinical features (risk value was 0.867). The results
between the training cohort and the testing cohort were
the same. From the multivariate Cox regression analysis,
the risk score (HR= 2.168, 95% CI = 1.281–3.668,
p= .004) confirmed the three‐IRG signature as a unique
prognostic target (Figure 4F and Table 3).

All the patients in the TCGA ACC cohort were
analyzed using time‐dependent ROC curves, KM survival
curve, and multivariate Cox regression analysis. The
results are shown in Figure 5 and Table 3.

3.6 | External validation using the
GSE10927 and GSE19750 cohorts

To externally validate the three‐IRG signature in the
GSE10927 (n=24) and GSE19750 (n=22) cohorts, we
applied the time‐dependent ROC curve (Table 4), univariate
and multivariate Cox regression analyses, and KM survival
curve (Table 3). The KM survival curve and time‐dependent
ROC curve for the GSE10927 cohort are shown in
Figure 6A,B. The results confirmed that patients of the
low‐risk group subsisted for a longer time compared to those
of the high‐risk group (p= .005). The AUC of three‐IRG
prognostic signature was distinctly better than other clinical
features (risk value was 0.861). Similar results were found in
the GSE19750 cohort (Figure 6C,D).

FIGURE 4 Evaluating the predictive power of the immune‐related signature in the testing cohort. (A–C) Distribution of survival status,
risk score, and gene expression of patients in the testing cohort. (D) Kaplan–Meier survival curve of the high‐risk and low‐risk groups in the
testing cohort. (E) Time‐dependent receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) based on the
testing cohort for 5‐year overall survival. (F) Forest plot for multivariate Cox regression analysis.
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FIGURE 5 Evaluating the predictive power of the immune‐related signature in the entire The Cancer Genome Atlas (TCGA)
adrenocortical carcinoma (ACC) cohort. (A–C) Distribution of survival status, risk score, and gene expression of patients in the entire TCGA
ACC cohort. (D) Kaplan–Meier survival curve of the high‐risk and low‐risk groups in the entire TCGA ACC cohort. (E) Time‐dependent
receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) based on the entire TCGA ACC cohort for 5‐year
overall survival. (F) Forest plot for multivariate Cox regression analysis.

TABLE 4 AUCs from time‐dependent ROC curves

Variables Entire TCGA ACC cohort GSE10927cohort GSE19750 cohort

Three‐IRG signature risk score

1‐Year 0.883 0.853 0.792

3‐Year 0.923 0.956 0.897

5‐Year 0.914 0.861 0.765

Age at diagnosis

1‐Year 0.607 0.537 0.607

3‐Year 0.534 0.536 0.643

5‐Year 0.534 0.512 0.717

Gender

1‐Year 0.512 0.694 0.512

3‐Year 0.504 0.548 0.480

5‐Year 0.504 0.611 0.333

Tumor stage

1‐Year 0.611 0.616 0.611

3‐Year 0.811 0.791 0.676

5‐Year 0.811 0.438 0.488

Abbreviations: ACC, adrenocortical carcinoma; AUC, area under the ROC curve; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas.
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3.7 | Survival, clinical features, and the
three‐IRG prognostic signature

We analyzed the entire TCGA ACC cohort by stratified
survival analysis, to further verify the prognostic capacity
and explore the extensive feasibility of the three‐IRG
signature (Figure 7A–G). The samples with Stage I–II
(p= .011), Stage III (p= .008), and Stage IV (p= .031)
were assigned to the low‐risk group, which had better
survival than the high‐risk group. Similar results were
found in diverse ages and different gender.

Clinical features were distributed along with the
three‐IRG prognostic signature. The high‐risk group had
a higher number of mortalities, which was reflective of
poorer survival in these patients who had a high‐risk
value (p< .05) (Figure 8B–D). Furthermore, there were
different risk scores for patients in different disease

stages. Patients at the inchoate stages (Stage I and Stage
II) have lower risk values than those at more advanced
stages (Stage III and Stage IV; p< .05; Figure 8E–G),
which verified that risk scores of the IRG prognostic
signature were distinctly related to the development
of ACC.

3.8 | PCA and functional enrichment
analysis

To determine the disparate distribution patterns between
the high‐risk and low‐risk groups based on the three
IRGs, we performed a PCA analysis. The two groups
were obviously separated in two different directions
based on the three IRGs. It was evident that the samples
in the high‐risk group were significantly different from

FIGURE 6 External validation for evaluating the predictive power of the immune‐related signature in GSE10927 cohort and GSE19750
cohort. (A) Kaplan–Meier survival curve of the high‐risk and low‐risk groups in GSE10927 cohort. (B) Time‐dependent receiver operating
characteristic (ROC) curves and area under the ROC curve (AUC) based on GSE10927 cohort for 5‐year overall survival. (C) Kaplan–Meier
survival curve of the high‐risk and low‐risk groups in GSE19750 cohort. (D) Time‐dependent ROC curves and AUC based on GSE19750
cohort for 5‐year overall survival.
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FIGURE 7 Stratified survival analyses with immune‐related prognostic signature in the entire The Cancer Genome Atlas (TCGA)
adrenocortical carcinoma (ACC) cohort. (A–G) Kaplan–Meier overall survival (OS) curves in subgroups stratified by different clinical characteristics.

FIGURE 8 Association between clinical characteristics and the immune‐related prognostic signature. (A) Heat map for distribution of
clinicopathologic features, and gene expression in low‐risk and high‐risk groups in the entire The Cancer Genome Atlas (TCGA) adrenocortical
carcinoma (ACC) cohort. (B–D) Risk score comparison between alive and dead patients. (E–G) Risk score comparison between different tumor
stages. ***p< .005.
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that of the low‐risk group (Figure 9A–C). From the entire
TCGA ACC cohort, 664 upregulated and 563 down-
regulated DEGs were revealed between low‐risk and
high‐risk groups. We identified their capacity using the
KEGG and GO functional enrichment analyses. The top
15 terms of GO are listed in Figure 9D and Table 5. The
top 15 terms of KEGG are shown in Figure 9E and
Table 6. We found that they were significantly enriched
in the extracellular matrix regulation, cell cycle, and
phosphatidylinositol 3‐kinase (PI3K)‐Akt signaling
pathway.

3.9 | Survival analysis and correlation
analysis of INHBA, HELLS, and HDAC4

We further explored the prognostic value of the three IRGs
(INHBA, HELLS, and HDAC4) for construction of the

signature and identified that higher expression levels of
INHBA, HELLS, and HDAC4 were related to worse OS time
among patients with ACC (p< .05; Figure 10A–C). Higher
expression levels of HELLS and HDAC4 also indicated worse
disease‐free survival (Figure 10D–F). INHBA, HELLS, and
HDAC4 in the TCGA ACC data set were analyzed by
pairwise correlation analysis. The expression levels of HELLS
and HDAC4 demonstrated an obvious positive correlation
(p< .001 and R=0.648). An increase in HELLS was related
to an increase in HDAC4 (Figure 10G).

3.10 | Correlation between tumor‐
infiltrating immune cells and the
three‐IRG signature

We compared the tumor‐infiltrating immune cells
between low‐risk and high‐risk groups in the entire

FIGURE 9 Principal component analysis (PCA) and functional enrichment analyses. PCA based on the three IRGs indicated low‐risk
and high‐risk groups were generally distributed in two different directions in (A) TCGA ACC cohort, (B) the training cohort, and (C) the
testing cohort, respectively. (D) Gene ontology (GO) functional enrichment analysis between low‐risk and high‐risk groups based on TCGA
ACC cohort. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis between low‐risk and high‐risk groups
based on TCGA ACC cohort.
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TCGA ACC cohort, to investigate the relationship
between tumor immune microenvironment and the
three‐IRG prognostic signature. T cells, natural killer
(NK) cells, macrophage cells, mast cells, and myeloid
dendritic cells showed disparate abundance in the low‐
risk and high‐risk groups (p< .05; Figure 11). The
correlation heat map was also plotted based on the
distribution of immune cells in patients with ACC
(Figure 12).

4 | DISCUSSION

Accumulating evidence indicated that aberrantly ex-
pressed genes in tumors may be potential biomarkers for
diagnosis, target therapy, and prognosis through bio-
informatics analysis.26 In cancer treatment, immuno-
therapy is gaining more and more attention. Currently,
we can identify potential prognostic targets, analyze
underlying mechanisms, and explore valuable IRGs
through high‐throughput sequencing data.27,28 We re-
searched IRGs using the TCGA ACC data set and
constructed a three‐IRG prognostic signature that may
be used as a prognostic indicator or immune therapeutic
target in patients with ACC.

The immune system impacts the tumor micro-
environment, particularly tumor immune escape.26

Immune components have quite a significant influence
on the clinical outcomes and gene expression by tumor

TABLE 5 GO functional enrichment analysis between high‐risk and low‐risk groups in entire TCGA ACC cohort

ID Term Category Adjusted p

GO:0030198 Extracellular matrix organization Biological process 2.92E− 15

GO:0043062 Extracellular structure organization Biological Process 2.92E− 15

GO:0060485 Mesenchyme development Biological process 6.13E− 09

GO:0048871 Multicellular organismal homeostasis Biological process 1.40E− 07

GO:0140014 Mitotic nuclear division Biological process 4.74E− 07

GO:0031012 Extracellular matrix Cellular component 6.31E− 22

GO:0062023 Collagen‐containing extracellular matrix Cellular component 2.08E− 20

GO:0042611 MHC protein complex Cellular component 1.56E− 16

GO:0071556 Integral component of lumenal side of endoplasmic reticulum membrane Cellular component 1.09E− 10

GO:0098553 Lumenal side of endoplasmic reticulum membrane Cellular component 1.09E− 10

GO:0005201 Extracellular matrix structural constituent Molecular function 4.23E− 12

GO:0042605 Peptide antigen binding Molecular function 2.80E− 08

GO:0033218 Amide binding Molecular function 1.52E− 07

GO:0042277 Peptide binding Molecular function 1.67E− 07

GO:0032395 MHC class II receptor activity Molecular function 1.75E− 06

Abbreviations: ACC, adrenocortical carcinoma; GO, Gene Ontology; MHC, major histocompatibility complex; TCGA, The Cancer Genome Atlas.

TABLE 6 KEGG pathway enrichment analysis between high‐
risk and low‐risk groups in entire TCGA ACC cohort

ID Term Adjusted p

hsa04061 Viral protein interaction with cytokine
and cytokine receptor

4.67E− 08

hsa04672 Intestinal immune network for IgA
production

3.63E− 07

hsa04512 ECM–receptor interaction 3.63E− 07

hsa04110 Cell cycle 3.77E− 07

hsa04218 Cellular senescence 5.61E− 07

hsa04060 Cytokine–cytokine receptor interaction 1.97E− 05

hsa04933 AGE‐RAGE signaling pathway in
diabetic complications

1.97E− 05

hsa05205 Proteoglycans in cancer 2.23E− 05

hsa04151 PI3K‐Akt signaling pathway 7.38E− 05

hsa04974 Protein digestion and absorption 1.09E− 04

hsa04612 Antigen processing and presentation 1.41E− 06

hsa04514 CAMs 3.53E− 06

hsa04145 Phagosome 6.89E− 06

hsa04510 Focal adhesion 1.65E− 04

hsa04657 IL‐17 signaling pathway 4.21E− 04

Abbreviations: ACC, adrenocortical carcinoma; AGE‐RAGE, advanced
glycationend products‐receptor of AGES; CAMS, Cell adhesion molecules;
ECM, extracellular matrix; IL‐17, interleukin‐17; KEGG, Kyoto
Encyclopedia of Genes and Genome; PI3K, phosphatidylinositol 3‐kinase;
TCGA, The Cancer Genome Atlas.
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tissues, which exist in the tumor microenvironment.9,29,30

There were 3519 upregulated and 2090 downregulated
DEGs found in ACC samples and normal adrenal samples
in this study. GSEA suggested that these DEGs are
involved in the humoral immune response (GO:0006959),
and the immune effector process (GO:0002252) and
immune response (GO:0006955), which indicated that
the development of ACC is significantly correlated with
immune responses and the immune system (Figure 2).

We extracted 332 IRGs and constructed an IRG
signature based on three IRGs (INHBA, HELLS, and
HDAC4) in the training cohort. Based on the median
value of the three‐IRG signature risk score, we divided
the samples into the low‐risk and high‐risk groups. We
discovered that the prognosis of samples could be
distinguished by the three‐IRG signature. The OS of the

high‐risk group was worse than those of the low‐risk
group (Figure 3D). The multivariate Cox regression
analysis suggested that the risk score may be regarded
as a unique prognostic target of OS through multivariate
Cox regression analyses and the three‐IRG signature was
superior to other clinicopathologic features according to
the ROC curve. The above findings were verified the
testing cohort, and the whole TCGA ACC, GSE10927,
and GSE19750 cohorts.

We then explored the wide applicability of the
three‐IRG signature. Survival analyses were con-
ducted in disparate subgroups, stratified by age,
tumor stage, and gender. We found that the three‐
IRG signature was applicable in various subgroups
(Figure 7). Moreover, we observed that the risk score
of patients with early‐stage ACC (Stage II and Stage I)

FIGURE 10 Survival analysis and correlation analysis of three immune‐related genes (INHBA, HELLS, and HDAC4) based on The
Cancer Genome Atlas (TCGA) adrenocortical carcinoma (ACC) cohort. Overall survival (OS) for (A) Inhibin subunit βA (INHBA), (B)
Helicase, lymphoid specific (HELLS), and (C) Histone deacetylase 4 (HDAC4). Disease‐free survival (DFS) for (D) INHBA, (E) HELLS, and
(F) HDAC4. (G–I) Correlation analyses among INHBA, HELLS, and HDAC4.
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was lower than the advanced one (Stage IV and Stage
III; Figure 8). Our findings demonstrated that the
three‐IRG prognostic signature is not only a potential
predictive indicator of tumor progression but can be
applied to all patients with ACC.

Functional enrichment analyses demonstrated that
the DEGs between low‐risk and high‐risk groups were
obviously enriched in cell cycle function and PI3K‐Akt
signaling pathway. Cell cycle regulation is known to play
a vital role in the differentiation and growth of tumor
cells.31 Subramanian et al.32 identified a series of genes
involved in regulating pathways of the cell cycle and
overexpression of these genes was correlated with poorer
OS in patients with ACC. LncRNA‐HOTAIR participated
in ACC development by regulating the cell cycle and
proliferating ACC cells.33 PI3K‐Akt signaling pathway is
a key driver in carcinogenesis and Akt overactivation has
been verified in various endocrine gland neoplasms,
including thyroid carcinoma subtypes, parathyroid

carcinoma, pituitary tumor, and pheochromocytoma.34

In vitro experiments revealed that low expression of
SCTR could stimulate proliferation via the PI3K/AKT
signaling cascade in ACC cells.35

Recently, with the advent of checkpoint inhibitors
and targeted immunotherapy, a greater focus has been
placed on tumor immunotherapy for patients with
ACC.36,37 Our study evaluated the prognostic value of
three IRGs for the construction of the IRG signature.
Higher expressions of INHBA, HELLS, and HDAC4 were
correlated with worse OS time for patients with ACC.
Hence, the three IRGs may be promising therapeutic
targets for ACC.

INHBA encodes a member of the transforming
growth factor‐β super‐family of proteins.38 INHBA
participates in the regulation of the immune system,
especially in skin suffering from repetitive ultraviolet‐B
irradiation.39 Mesenchymal stromal cells inhibited
monocytes through upregulating INHBA in patients

FIGURE 11 Tumor‐infiltrating immune cells analysis based on The Cancer Genome Atlas (TCGA) adrenocortical carcinoma (ACC)
cohort. (A–J) Comparisons of tumor‐infiltrating immune cells between high‐risk and low‐risk groups. (K) Heat map for distribution of 22
immune cells between high‐risk and low‐risk groups.
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with myelodysplastic syndrome.40 IDO inhibitor induced
the upregulation of IHNBA in regulating the functions of
NK cells among sarcoma patients.41

HELLS belongs to the SNF2‐family, such as
chromatin remodeling proteins.42 HELLS mutation
leads to immune deficiency syndrome in children.43 A
study based on adult mice suggested that although
HELLS is not indispensable for lymphoid development,
it is still necessary for the proliferation of peripheral T
lymphocytes.44 In addition, high‐dose‐rate γ‐irradiation
could impair immune signaling pathways by inducing
the downregulation of HELLS.45

HDAC4 is one of the histone‐modifying enzymes,
which are the main epigenetic regulators in the control
of inflammatory processes. Furthermore, overexpres-
sion of HDAC4 may suppress the production of Type I

interferons induced by pattern‐recognition receptors in
innate immunity.46 Aberrant epithelial responses may
arise via a self‐defense mechanism generated by miR‐22
through suppressing HDAC4 expression in epithelial
cells.47 Moreover, the HDAC4/PGRN and HDAC4/
nuclear factor‐κB axes have been involved in the
regulation of inflammatory cytokines in rheumatoid
arthritis.48

To identify gene signatures and further create
clinical predictive models, high‐throughput sequencing
data has been utilized in large‐scale research studies. Xu
et al. stated that a signature could forecast the prognosis
of ACC according to survival‐associated alternative
splicing events.49 We constructed an immune‐related
signature based on 3 IRGs in the TCGA ACC data set
and further validated its application in two GEO data

FIGURE 12 Correlation heat map of 22 immune cells in The Cancer Genome Atlas (TCGA) adrenocortical carcinoma (ACC) cohort.
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sets. Furthermore, the predictive capacity of the signa-
ture was further confirmed. Besides, we also explored
the association between tumor‐infiltrating immune cells
and the three‐IRG signature and we found that T cells,
NK cells, macrophage cells, myeloid dendritic cells and
mast cells showed diverse abundance between the low‐
risk and high‐risk groups, which further verified the
immune correlation of this signature.14

Although the three IRGs were regarded as therapeutic
targets for the treatment of ACC, the underlining
mechanisms have not been clarified, which was one
limitation of this study. Therefore, more in vitro and in
vivo experiments based on a larger sample size are
necessary for validating these findings and applying our
results into clinical immunotherapy practice in the
future.

5 | CONCLUSION

We identified an immune‐related signature based on 3
IRGs in ACC. The three‐IRG signature has important
clinical significance, not only as a good classifier in
distinct subgroups of ACC, but also as a unique
prognostic target for ACC. Inhibitors of the three novel
IRGs (INHBA, HELLS, and HDAC4) might activate
immune cells in ACC immune microenvironment and
play a synergistic role in combination therapy with
immunotherapy for ACC in the future.
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