
biomedicines

Article

CCR6 Deficiency Increases Infarct Size after Murine Acute
Myocardial Infarction

David Schumacher 1,2 , Elisa A. Liehn 3,4,5,6 , Anjana Singh 7,8, Adelina Curaj 1, Erwin Wijnands 7,
Sergio A. Lira 9, Frank Tacke 10 , Joachim Jankowski 1,7, Erik A.L. Biessen 1,7

and Emiel P.C. van der Vorst 1,7,11,12,13,*

����������
�������

Citation: Schumacher, D.; Liehn,

E.A.; Singh, A.; Curaj, A.; Wijnands,

E.; Lira, S.A.; Tacke, F.; Jankowski, J.;

Biessen, E.A.; van der Vorst, E.P.

CCR6 Deficiency Increases Infarct

Size after Murine Acute Myocardial

Infarction. Biomedicines 2021, 9, 1532.

https://doi.org/10.3390/

biomedicines9111532

Academic Editors: Francesco Massari

and Pietro Scicchitano

Received: 6 September 2021

Accepted: 19 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen,
Germany; dschumacher@ukaachen.de (D.S.); acuraj@ukaachen.de (A.C.); jjankowski@ukaachen.de (J.J.);
erik.biessen@mumc.nl (E.A.L.B.)

2 Department of Anesthesiology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
3 Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University,

52074 Aachen, Germany; eliehn@ukaachen.de
4 Department of Cardiology, Angiology and Intensive Medicine, University Hospital Aachen,

52074 Aachen, Germany
5 National Institute for Pathology “Victor Babes”, 050096 Bucharest, Romania
6 Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
7 Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University

Medical Centre, 6229 ER Maastricht, The Netherlands; anjana2102@yahoo.co.in (A.S.);
erwin.wijnands@mumc.nl (E.W.)

8 Cognizant Technology Solutions, Phase II Hinjawadi, Pune 411 057, Maharashtra, India
9 Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;

sergio.lira@mssm.edu
10 Department of Hepatology and Gastroenterolgy, Campus Virchow-Klinikum and Campus Charité Mitte,

Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; frank.tacke@charite.de
11 Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
12 Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich,

80336 Munich, Germany
13 DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance,

80336 Munich, Germany
* Correspondence: evandervorst@ukaachen.de; Tel.: +49-241-80-36914

Abstract: Ischemia-reperfusion injury after the reopening of an occluded coronary artery is a major
cause of cardiac damage and inflammation after acute myocardial infarction. The chemokine axis
CCL20-CCR6 is a key player in various inflammatory processes, including atherosclerosis; however,
its role in ischemia-reperfusion injury has remained elusive. Therefore, to gain more insight into
the role of the CCR6 in acute myocardial infarction, we have studied cardiac injury after transient
ligation of the left anterior descending coronary artery followed by reperfusion in Ccr6−/− mice and
their respective C57Bl/6 wild-type controls. Surprisingly, Ccr6−/− mice demonstrated significantly
reduced cardiac function and increased infarct sizes after ischemia/reperfusion. This coincided with
a significant increase in cardiac inflammation, characterized by an accumulation of neutrophils and
inflammatory macrophage accumulation. Chimeras with a bone marrow deficiency of CCR6 mirrored
this adverse Ccr6−/− phenotype, while cardiac injury was unchanged in chimeras with stromal CCR6
deficiency. This study demonstrates that CCR6-dependent (bone marrow) cells exert a protective
role in myocardial infarction and subsequent ischemia-reperfusion injury, supporting the notion that
augmenting CCR6-dependent immune mechanisms represents an interesting therapeutic target.

Keywords: acute myocardial infarction; ischemia-reperfusion injury; chemokine receptors; CCR6

1. Introduction

Acute myocardial infarction (AMI), caused by coronary artery occlusion resulting in
dysfunctional myocardium, is one of the leading causes of death worldwide [1]. The current
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standard therapies are reperfusion strategies for restoring blood flow [2], although these
may result in paradoxical cardiomyocyte dysfunction and worsen tissue damage in a
process called ischemia-reperfusion injury [3]. This ischemic cell death eventually results
in the formation of post-AMI cardiac fibrosis, leading to the formation of a fibrotic scar [4].

AMI triggers a temporally defined inflammatory response that is mediated by various
leukocyte subsets [5,6]. The occurring cell death triggers the recruitment of neutrophils
and monocytes. The recruitment of these inflammatory cells is controlled by chemokines
that are released by the ischemic heart. Several chemokines, such as CCL2 and CXCL12,
have been shown to be involved in the AMI response and the resulting cardiac necrosis
and fibrosis [7,8]. Although it has been well described that chemokines and chemokines
receptors are main regulators of leukocyte trafficking during immune surveillance and
inflammation [9], it seems like they can have opposing effects on AMI [8]. For example,
the silencing of CCR2 resulted in decreased infarct inflammation in mice subjected to AMI
due to the attenuated recruitment of inflammatory Ly-6Chigh monocytes [10], reflecting
the detrimental role of CCR2 in AMI. On the other hand, the conditional deletion of
endothelial ACKR3 (previously known as CXCR7) resulted in an exacerbated heart function
impairment after AMI and increased infarct sizes, reflecting a protective role of ACKR3 in
AMI [11]. It could also be shown that CCL5 plays a role in AMI [12–14], reducing cardiac
injury/inflammation by reducing neutrophil and inflammatory monocyte infiltration.

One of the chemokines that has recently been associated with ischemic heart disease,
particularly AMI, is CCL20. It could be shown that in patients with an AMI, serum levels
of CCL20 are significantly higher compared to those of healthy controls [15]. Furthermore,
it could be demonstrated that inflamed human peripheral blood mononuclear cells have an
increased expression of CCL20 [16]. Interestingly, it could also be shown that the receptor
for CCL20, the chemokine receptor CCR6, plays an essential role in the recruitment of T cells
to ischemic brain tissues [17]. CCR6 is highly expressed on lymphocytes, a cell type that
has also been shown to contribute to ischemia-reperfusion injury after AMI [18,19]. As the
role of CCR6 in AMI and cardiac injury, while plausible, is elusive, we set out to investigate
this further in mice with or without CCR6 deficiency in a transient left anterior descending
coronary artery ligation model and found that CCR6 deficiency increases the infract size,
followed by decreased ejection fraction and stroke volume. Furthermore, CCR6 deficiency
increases apoptosis and the infiltration of inflammatory cells in the injured heart.

2. Materials and Methods

2.1. Coronary Ischemia-Reperfusion Surgery

All animal experiments were performed in accordance with European legislation and
approved by local German authorities (AZ:84-02.04.2013.A185 and AZ: 8.67-50.10.35.09.088).
All mice were housed under standardized conditions in the Animal Facility of the Univer-
sity Hospital Aachen (Germany).

Male C57Bl/6 wild-type (Janvier Labs, Le Genest-Saint-Isle, France) and Ccr6−/−

(generously donated; described in [20]) 10–12 weeks old mice were subjected to coronary
ischemia-reperfusion injury, as described previously [21,22]. For bone marrow (BM) ex-
periments, mice underwent ischemia-reperfusion injury six weeks after BM reconstitution.
Briefly, mice were anaesthetized using 100 mg/kg of ketamine and 10 mg/kg of xylazine
i.p., then were intubated and positive-pressure ventilated with oxygen and 0.2% isoflurane
using a mouse respirator (Harvard Apparatus, March-Hugstetten, Germany). Buprenor-
phine (0.1 mg/kg) was administrated 30 min prior to surgery. We performed a skin and
muscle incision above the left chest and opened the chest by cutting the intercostal muscle
between the second and the third rib. Then, the mice were subjected to acute myocardial
ischemia-reperfusion injury by inducing left anterior descending coronary artery occlusion
for 60 min using a 7/0 silk ligature. The ligature was reopened after 60 min to allow
reperfusion of the myocardium. The ribs, muscle layer, and skin incision were closed, and
buprenorphine (0.1 mg/kg) was administered until full recovery was achieved.



Biomedicines 2021, 9, 1532 3 of 11

2.2. Bone Marrow Transplantation

BM transplantation was performed as described previously [23]. In brief, C57Bl/6
wild-type or Ccr6−/− eight-week-old male mice were irradiated and reconstituted with
either C57Bl/6 wild-type or Ccr6−/− BM. Femurs and tibias were aseptically removed from
donor C57Bl/6 wild-type or Ccr6−/− mice and BM cavities were flushed for BM isolation.
Single-cell suspensions were prepared and donor cells (2 × 106) were administered to the
recipient mice by tail-vein injection 24 h after an ablative dose of whole-body irradiation
(2 × 6 Gray). The BM chimeras were split into four different groups, wild-type mice reconsti-
tuted with wild-type BM, wild-type mice reconstituted with Ccr6−/− BM, Ccr6−/− mice re-
constituted with wild-type BM and Ccr6−/− mice reconstituted with Ccr6−/− BM. Mice were
left to recover for 2 weeks, after which they were subjected to transient coronary artery
ligation to be sacrificed 3 weeks after AMI.

2.3. Echocardiography

The left ventricular heart function was determined by echocardiography performed on
a small-animal ultrasound imager (Vevo 770, FUJIFILM Visualsonics, Toronto, ON, Canada)
before and three weeks after coronary ischemia-reperfusion injury. Measurements of short
and long cardiac axis were taken in B-Mode (2D-realtime) and M-Mode using a 40 MHz
transducer. During the procedure, mice were anesthetized with 1–2% isoflurane. The ejec-
tion fraction (EF %), stroke volume (µL) and left ventricular diameters (mm) were recorded
and analyzed using the VevoLab Software (FUJIFILM Visualsonics, Toronto, ON, Canada).

2.4. Histology and Immunohistochemistry

Infarct size was evaluated 3 weeks after coronary ischemia-reperfusion injury.
Mice were euthanized by isoflurane overdose and their hearts were excised, fixed in
formalin, and embedded in paraffin. Serial sections (10–12 sections per mouse, 400 µm
apart, up to the mitral valve) were stained with Gomori’s 1-step trichrome stain. The in-
farcted area was determined for all sections using Diskus software (Hilgers, Königswin-
ter, Germany) and expressed as a percentage of total left ventricular volume, as de-
scribed before [24]. Serial sections (3 sections per mouse, 400 µm apart) 2 days after
coronary ischemia-reperfusion were stained to analyze the infarcted area for prolifera-
tion (KI67, ThermoFisher Scientific, Schwerte, Germany), apoptosis (TUNEL stain, In Situ
Cell Death Detection Kit, Sigma-Aldrich, Darmstadt, Germany), reparatory macrophages
(Mac3, BD Pharmingen, Heidelberg, Germany), inflammatory macrophages (Mac3 and
MPO double positive; Mac3, BD Biosciences, Heidelberg, Germany; MPO, Neomarkers,
ThermoFisher Scientific, Schwerte, Germany), neutrophils (MPO, Neomarkers,
ThermoFisher Scientific, Schwerte, Germany), cardiomyocytes (Troponin, ThermoFischer
Scientififc, Schwerte, Germany), and B-cells (CD45R/B220, BD Biosciences, Heidelberg,
Germany). Serial sections from 21 days after coronary ischemia-reperfusion injury were
stained for myofibroblasts (smooth muscle actin, DAKO, Jena, Germany) and neoangiogen-
esis (CD31, Santa Cruz Biotechnology, Dallas, Texas, USA). Positive-stained cells or vessels
were counted in six different fields per section and expressed as number of cells per mm2.

2.5. Statistical Analysis

Data represent mean ± SD. Statistical analysis was performed with the Prism7 soft-
ware (GraphPad, San Diego, CA, USA). The means of two groups were compared with
unpaired Student’s t test, using Welch’s correction by significant variance. More than two
groups were analyzed using 1-way ANOVA followed by Tukey’s multiple comparison test.
p-values of < 0.05 were considered significant.
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3. Results

3.1. CCR6 Deficiency Worsens Cardiac Function and Increases Infarction Size after
Ischemia-Reperfusion Injury

To investigate the role of CCR6 in AMI and cardiac injury, we performed coronary
ischemia-reperfusion surgery in C57Bl/6 wild-type and Ccr6−/− mice. Heart function
was assessed three weeks after injury to measure early lesion formation and the recovery
of cardiac performance (Figure 1A). The mortality rate of Ccr6−/− mice was strongly
increased from week 2 onwards, in comparison to wild-type controls (87.5% vs. 50% for
wild-type controls, respectively) (Figure 1B). The ejection fraction and stroke volume were
significantly decreased in Ccr6−/− mice (20% and 30%, respectively, compared to wild-
type controls), whereas the left ventricular end-systolic volume was strongly, though not
significantly, increased (Figure 1C–E). Furthermore, in Ccr6−/− mice the infarction size was
increased by 70% compared to wild-type mice (Figure 1F,G). Together, these data clearly
indicate that deficiency of CCR6 worsens cardiac function after ischemia-reperfusion injury.

Figure 1. CCR6 deficiency results in decreased cardiac function and increased infarction size after
ischemia-reperfusion injury. (A) Study design: wild-type and Ccr6−/− mice were subjected to
ischemia-reperfusion injury, echocardiography was performed 3 weeks after injury (n = 3). Image was
created using Biorender.com (Accessed on 2 September 2021). (B) Survival curve after ischemia-
reperfusion injury. (C) Ejection fraction in Ccr6−/− mice compared to wild-type controls. (D) Stroke
volume in Ccr6−/− mice compared to wild-type controls. (E) End-systolic volume in Ccr6−/− mice
compared to wild-type controls. (F) Infarction size in Ccr6−/− mice compared to wild-type controls.
(G) Representative images of Gomori’s 1-step trichrome stain. * p < 0.05, ** p < 0.01.

3.2. Bone Marrow Derived Immune Cells Are Responsible for the Effects of Ccr6−/− after Coronary
Ischemia-Reperfusion Injury

To further assess whether resident cells or bone marrow cells are responsible for the
increased infarction size and worsened heart function in Ccr6−/− mice, we performed bone
marrow transplantation experiments (Figure 2A). Mice receiving Ccr6−/− BM showed a clear

Biorender.com
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trend (15%) towards a reduced ejection fraction compared to mice receiving BM from wild-
type mice (Figure 2B). The genotype of the recipient mice (Ccr6−/− vs. wild type) had no
effect on the ejection fraction. In line with this, mice receiving Ccr6−/− BM had a significantly
increased infarction size compared to controls receiving BM from wild-type mice (3.76% ± 0.44
vs. 2.49% ± 0.33 for Ccr6−/− recipients and 3.60% ± 0.95 vs. 2.36% ± 0.57 for wild-type
recipients; Figure 2C,D). Conversely, the genotype of the recipient mice (Ccr6−/− vs. wild-type)
again had no significant effect (3.76% ± 0.44 vs. 3.60% ± 0.95 for Ccr6−/− BM and 2.49% ± 0.33
vs. 2.36% ± 0.57 for WT BM; Figure 2C,D). The non-significant though clear effect on ejection
fraction can thereby be explained by the relative small infarct size. Combined, these results
clearly demonstrate that bone marrow CCR6, rather than stromal CCR6, is responsible for the
observed profound effects on infarct size.

Figure 2. CCR6 deficiency in the bone marrow results in increased infarction size after ischemia-
reperfusion injury. (A) Study design of bone marrow transplantation experiments, where the mice
were subjected to ischemia-reperfusion injury. Echocardiography was performed 3 weeks after injury.
Image was created using Biorender.com (Accessed on 2 September 2021). (B) Ejection fraction in
wild-type recipient mice receiving either wild-type or Ccr6−/− BM (n = 4–6) and Ccr6−/− recipient
mice receiving either wild-type or Ccr6−/− BM (n = 3). (C) Infarction size in wild-type recipient
mice receiving either wild-type or Ccr6−/− BM (n = 4–6) and Ccr6−/− recipient mice receiving either
wild-type or Ccr6−/− BM (n = 3). (D) Representative images of heart sections stained with Gomori’1
step trichrome staining of wild-type recipient mice receiving either wild-type or Ccr6−/− BM and
Ccr6−/− recipient mice receiving either wild-type or Ccr6−/− BM. * p < 0.05.
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3.3. Increased Cardiac Infiltration of Inflammatory Immune Cells in CCR6−/− Mice

Decreased cardiac function following coronary ischemia-reperfusion injury can be caused
either by increased inflammation and cell death, the exacerbation of the adverse remodel-
ing by myofibroblasts or decreased vessel formation. To clarify the exact reason for the
increased infarction size in Ccr6−/− mice, we first assessed the myofibroblast content and
neovascularization in the infarct tissue, 21 days after ischemia-reperfusion, which both were
not affected by CCR6 deficiency (Figure 3A,B). To elucidate the effects of CCR6 deficiency
on inflammation, 2 days after coronary ischemia-reperfusion injury the number of B-cells,
neutrophils, and inflammatory macrophages was analyzed, demonstrating that Ccr6−/− mice
demonstrate more inflammatory cell infiltration into the tissue compared to their wild-type
littermates (Figure 3C–G), suggesting that increased inflammation is a major underlying cause
for the observed increased infarction size in these mice. In line with this notion, the number of
reparative macrophages in the tissue was significantly decreased in Ccr6−/− mice compared
to wild-type controls (Figure 3E), suggesting insufficient reparatory processes after AMI.

Figure 3. Deficiency of CCR6 results in the increased infiltration of inflammatory immune cells in the
cardiac tissue after ischemia-reperfusion injury. (A) Quantification of the number of myofibroblast
in the scar from Ccr6−/− mice compared to wild-type mice 21 days after ischemia-reperfusion,
including representative images of smooth-muscle actin (Green) staining. Scale bar = 50 µm.
(B) Quantification of the number of vessels in the scar from Ccr6−/− mice compared to wild-type
mice 21 days after ischemia-reperfusion, including representative images of CD31 (Red) staining.
Scale bar = 50 µm. (C) Quantification of infiltrating B cells, 2 days after ischemia-reperfusion in
Ccr6−/− mice compared to wild-type mice, including representative images of B220 (Yellow) stain-
ing. Scale bar = 50 µm. (D–F) Quantification of infiltrating inflammatory MPO+ immune cells (D),
inflammatory macrophages (E) and reparatory macrophages (F), 2 days after ischemia-reperfusion
in Ccr6−/− mice compared to wild-type mice. (G) Representative images of MPO (Red) and Mac3
(Green) staining. All n = 3. * p < 0.05, ** p < 0.01.
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Furthermore, we determined the degree of cellular proliferation and apoptosis in
the cardiac tissue 2 days after coronary ischemia-reperfusion injury. TUNEL staining
showed that CCR6 deficiency led to an almost 5-fold, albeit not significant increase in
apoptosis (Figure 4A–C), which could mainly be observed in cardiomyocytes (Figure 4B),
while Ki−67 staining, especially present in myofibroblasts, demonstrated that proliferation
was unaffected (Figure 4D–F).

Figure 4. Deficiency of CCR6 results in increased apoptosis, especially in cardiomyocytes, after ischemia-reperfusion injury.
(A–C) Representative images of TUNEL (Green) staining (A) and TUNEL (Green)/Troponin (Red) double staining (B),
including the quantification of total TUNEL+ cells (C), 2 days after ischemia-reperfusion in Ccr6−/− mice compared to wild-
type mice. Scale bar = 50 µm. (D–F) Representative images of Ki67 (Green) staining (D) and Ki67 (Green)/smooth-muscle
actin (Red) double staining (E), including the quantification of total Ki67+ cells (F), 2 days after ischemia-reperfusion in
Ccr6−/− mice compared to wild-type mice. Scale bar = 50 µm. Arrows point at positively stained cells. All n = 3.

4. Discussion

In this study, we aimed to elucidate the role of CCR6 in AMI and subsequent cardiac
injury. We were able to show that CCR6 deficiency, more specifically in bone marrow
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cells, has detrimental effects on cardiac function and infarct size after ischemia-reperfusion
injury. This coincided with a strong increase in cardiac tissue inflammation, characterized
by the presence of inflammatory cells such as neutrophils and inflammatory macrophages,
and impaired reparatory processes due to reduced reparatory macrophages.

The role of CCL20-CCR6 axis in AMI has scarcely been studied, but can be inferred
from the contribution of CCR6 expressing subsets to infarct responses in the heart and
brain [17–19,25,26]. B cells play a key contributory role in ischemia-reperfusion injury and
cardiac inflammation [27]. The genetic and antibody-mediated depletion of mature B cells
resulted in reduced myocardial injury and monocyte infiltration, thereby improving heart
function [27]. In that study, the increased monocyte mobilization and recruitment to the
heart was linked to the increased secretion of CCL7 by B cells. Indeed, we did observe
B-cell accumulation in the cardiac tissue of Ccr6−/− mice, albeit it that this effect did not
reach significance, probably due to the small number of animals analysed.

Further, there are data supporting the role of CCR6 in B cell development.
Intriguingly, it could be observed that the lack of CCR6 led to the increased presence
of the appearance of germinal centres in the spleen and increases the maturation of B
cells, although the produced antibodies in Ccr6−/− B cells were of lower affinity [28,29].
In addition, CCR6 uniquely marks memory B cells (and precursors) in both mouse and
human germinal centres, is essential for the appropriate anatomical positioning of memory
B cells, and coordinates antigen recall by these cells [30,31]. Strikingly, B cells were also
seen to migrate to ischemic areas in the brain in response to injury [25], which corresponds
to the increased B-cell presence in ischemic heart tissue seen in our study.

CCR6 is also known to play an important role in T cell trafficking. Both Th17 and
regulatory (Treg) cells express CCR6, which has been linked to the susceptibility to au-
toimmune diseases [26]. Interestingly, CCR6 expressed by tissue resident γδ T cells has
also been shown to play an important role in stroke and subsequent brain ischemia [17].
A lack of CCR6 in Th17 cells has also been shown to inhibit their recruitment [26]. It seems
that Th17 cells also interact with neutrophils during inflammatory processes stimulating
the production of IL-23/Th17-associated cytokines, which leads to severe tissue damage
and impaired repair in psoriasis [32], acute kidney injury [33], infective endocarditis [34],
or multiple sclerosis [35]. Furthermore, the role of the CCR6/CCL20 axis has also already
been elaborately investigated in other autoimmune diseases such as inflammatory bowel
disease and rheumatoid arthritis, which also highlights its importance in Th17 cells, as re-
cently reviewed in [36]. Strikingly similar to our AMI model, CCR6-deficient mice show
aggravated tissue injury, macrophage/neutrophil inflammation, and fibrosis in models of
chronic liver injury. In the liver, CCR6 is necessary for the accumulation of the subset of
interleukin (IL)-17- and IL-22-expressing γδ T cells that restricts hepatic inflammation and
fibrosis [37]. In the heart, Toll-like receptor signaling and IL-1β, present during neutrophil
infiltration [38,39], together with IL23, expand IL-17A production [40]. IL-17A seems to
act in the late phase of remodeling by increasing cardiomyocyte injury, promoting the
sustained infiltration of proinflammatory cells, and enhancing fibroblast proliferation [40].

A lack of CCR6 in Th17 cells also limits the recruitment of Treg’s into inflammatory
tissues in a Th17-dependent manner. Similarly, Treg expressed CCR6 also plays a crucial
role in their migratory response to sites of inflammation [26]. In the healthy myocardium,
only few resident Treg cells are present, however they rapidly infiltrate the tissue in the
context of AMI [41,42]. Several studies have reported a beneficial role of Tregs in AMI [19].
For example, Treg expansion improves both survival and myocardial wound healing by
shifting macrophages toward a more reparatory and fibrotic phenotype [43].

Supportive of a role in AMI, a recent study demonstrated that AMI patients have
significantly more circulating CCR6+ lymphocytes [44] and its ligand CCL20 [15] compared
to controls, rendering the CCR6/CCL20 axis a potential biomarker of AMI. However,
both studies involved rather small cohorts, warranting the further confirmation of these
findings in a larger cohort. Furthermore, the former study was designed as a cross-
sectional study and was therefore unable to demonstrate any causality between CCR6
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and AMI. By inference, it is clear that CCR6 deficiency could impact on AMI response,
possibly by modulating B cell/monocyte interaction or Treg mobilisation, although the
exact underlying mechanisms remain to be elucidated in future studies.

5. Conclusions

In this study, we demonstrate that a deficiency in CCR6 and, more specifically, a de-
ficiency in CCR6 expressed in bone marrow cells aggravates cardiac function loss in a
model of cardiac ischemia-reperfusion injury, which is accompanied by the sustained
accumulation of B-cells, neutrophils, and inflammatory macrophages as well as a reduction
in the resident macrophage pool. Though it is tempting to speculate that these effects
are caused by the reduced accumulation of Treg or reparative B cell subsets, future stud-
ies are needed to fully elucidate the exact underlying mechanisms and the therapeutic
potential of CCR6/CCL20 targeting in AMI. Furthermore, the investigation of the impor-
tance of the CCL20/CCR6 axis in AMI should be performed in larger human cohorts for
validation purposes.
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