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Simple Summary: Colorectal cancer is one of the most common malignancies and the third leading
cause of cancer-related mortality worldwide. Identifying KRAS, NRAS, and BRAF mutations and
MSI status are closely related to the individualized therapeutic judgment and oncologic prognosis
of CRC patients. In this study, we introduced a cascaded network framework with an average
voting ensemble strategy to sequentially identify the tumor regions and predict gene mutations &
MSI status from whole-slide H&E images. Experiments on a colorectal cancer dataset indicated
that the proposed method can achieve high fidelity in both gene mutation prediction and MSI
status estimation. In our testing set, the AUCs for KRAS, NRAS, BRAF, and MSI were ranged from
0.794 to 0.897. The results suggested that the deep convolutional networks have the potential to assist
pathologists in prediction of gene mutation & MSI status in colorectal cancer.

Abstract: Colorectal cancer is one of the most common malignancies and the third leading cause of
cancer-related mortality worldwide. Identifying KRAS, NRAS, and BRAF mutations and estimating
MSI status is closely related to the individualized therapeutic judgment and oncologic prognosis of
CRC patients. In this study, we introduce a cascaded network framework with an average voting
ensemble strategy to sequentially identify the tumor regions and predict gene mutations & MSI status
from whole-slide H&E images. Experiments on a colorectal cancer dataset indicate that the proposed
method can achieve higher fidelity in both gene mutation prediction and MSI status estimation. In
the testing set, our method achieves 0.792, 0.886, 0.897, and 0.764 AUCs for KRAS, NRAS, BRAF, and
MSI, respectively. The results suggest that the deep convolutional networks have the potential to
provide diagnostic insight and clinical guidance directly from pathological H&E slides

Keywords: deep convolutional network; H&E slice; gene mutation prediction; microsatellite instability;
colon carcinoma

1. Introduction

Colorectal cancer (CRC) is one of the most common lower gastrointestinal malignan-
cies and is currently the third leading cause of cancer-related mortality worldwide [1,2].
Despite the over survival rate of colorectal cancer has increased in recent years due to
the improved treatment strategies [3], distant metastasis is still a significant cause of high
morbidity and mortality for CRC patients [4]. So far, various predominant environmental
risk factors for the development of CRC have been identified, including diet, obesity, lack
of physical activity, and inflammatory bowel disease [5]. However, a module formed by
the interaction of multiple genetic alterations determines individual differences and tumor
progression in CRC patients.

In the past decades, a deep understanding of molecular profiles has been more signifi-
cant for selecting appropriate therapies for metastatic CRC patients [6]. Numerous frequent
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genetic mutations have been identified as critical drivers responsible for comprehensive
therapeutic judgment and oncologic prognosis [7]. Mutations of RAS (i.e., exon 2, 3, and 4
of KRAS, exon 2 and 3 of NRAS) are considered negative predictors for targeted therapy
with anti-EGFR monoclonal antibodies (e.g., cetuximab and panitumumab) [8,9]. Mutation
of BRAF V600E is a worse prognostic biomarker. Patients with BRAF V600E mutation
will be less likely to respond to treatment with cetuximab and panitumumab unless com-
bined with a BRAF inhibitor [10,11]. Moreover, the microsatellite instability (MSI) status of
CRC patients is also an important marker closely related to the assessment of prognosis,
the efficacy of chemotherapeutic and immunity therapy [12,13]. Therefore, all metastatic
CRC patients are suggested to detect the KRAS, NRAS, and BRAF mutations and MSI
status according to the National Comprehensive Cancer Network (NCCN) clinical practice
guidelines in oncology (Colon Cancer, Version 2.2021) [14].

The general diagnosis procedure of molecular pathology includes Sanger sequencing,
Next-Generation Sequencing (NGS), ARMS-PCR, and digital PCR , etc. [15]. In recent
years, the accuracy and sensitivity of those methods have been significantly improved.
However, molecular detection remains limited by various factors such as sample quality,
mutated gene abundance, and laboratory conditions. Moreover, in a short period of time,
high testing prices are also a heavy burden for most families.

With the development of big data and deep convolutional network, artificial intelligence
(AI)-assisted pathological diagnosis has attracted more and more attention. In 2018, Coudray
et al. trained a deep convolutional neural network on Whole-Side Images (WSIs) to predict
the cancer subtype and gene mutations in lung cancer [16]. Later, MSI status estimation
of CRC from H&E histology was reported [17,18]. Furthermore, Skrede et al. exhibited
a promising result in the survival risk interpretation of tumor patients based on artificial
intelligence [19]. These methods have significantly extended the application capability of
deep convolutional networks. However, genetic mutation prediction from H&E slices in
CRC, which has more clinical significance in precision diagnosis, is still very challenging. To
fulfill this demand and further explore the potential of H&E slides, we propose a cascaded
deep convolutional framework to simultaneously generate gene mutation predicting and
MSI status estimation using WSIs in colorectal cancer. The proposed method consists of two
tumor region classification models, gene mutation& MSI status estimation models, and an
average voting ensemble strategy. The effectiveness of the proposed method is demonstrated
by a CRC dataset collected from GDC Data Portal and Eighth Affiliated Hospital, Sun Yat-
sen University (see Section 2.1). In qualitative and quantitative evaluation, the proposed
method reveals promising accuracy in tumor classification (0.939–0.976 AUC), gene mutation
prediction (0.792–0.897 AUC), and MSI status estimation (0.764 AUC).

The main contributions of this study can be summarized as follows:

• We proposed a cascaded deep convolutional framework to simultaneously generate
gene mutation prediction and MSI status estimation in colorectal cancer.

• We introduced a simple yet efficient average voting ensemble strategy to produce high
fidelity gene mutation prediction and MSI status estimation of the WSI.

• We further analyzed the effectiveness of the number of features selected for model
ensembling to understand its effects on the performances of deep CNN models.

The rest of the paper is organized as follows: Firstly, we present the datasets and
methods used for this research in Section 2. Then, we illustrate the quantitative and
qualitative results in Section 3. Finally, discussion and conclusion are presented in the
Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Data

To explore the possibility of estimating somatic mutations and microsatellite instability
(MSI) using Hematoxylin-Eosin(H&E) stained whole-slide image (WSI), we downloaded
diagnostic slides and corresponding clinical data of the TCGA-COAD cohort from GDC
Data Portal (https://portal.gdc.cancer.gov/projects/TCGA-COAD, accessed at 20 Febru-
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ary 2022). The pre-compiled somatic mutation data and MSI status data were acquired
from UCSC Xena (https://xenabrowser.net/datapages/, accessed at 10 March 2022) and
MSIsensor-pro [20], respectively. The original WSIs were formated in a magnification
ratio of either 20× or 40×. Prior to performing our experiments, we manually resize the
40× images to 20× using libvips (https://github.com/libvips/libvips) (see Figure 1A–D).
There were 292 WSIs with corresponding somatic mutations and MSI statuses in the TCGA-
COAD dataset. To achieve better generalization, we also collected the SYSU8H dataset
with the cooperation of The Eighth Affiliated Hospital, Sun Yat-sen University. The selected
pathological specimens were fixed in formalin, embedded in paraffin wax block, and cut
by several consecutive slices in 3–5 um by a Leica HistoCore Autocut. Later, the slices were
used for Hematoxylin-Eosin (H&E) staining, IHC staining, or gene sequencing, separately.
Compared with the scanned H&E slices, the tumor areas for the sequencing slices are
in micron-level drifts that tumor genomic heterogeneity among these slices is negligible.
There were total 104 WSIs captured with 20× magnification ratio by PANNORAMIC 1000,
3DHISTECH Ltd.(see Figure 1E–H). Unlike next-generation sequencing (NGS) of TCGA-
COAD, in the SYSU8H dataset, the genetic information was obtained by sanger sequencing.
The binary masks of tumor areas of the WSIs were carefully annotated by experienced
pathologists using QGIS (v3.22.7 LTR, https://qgis.org/).

As shown in Table 1, the 396 WSIs samples were randomly divided into training,
validation, and testing groups with the ratios of 70%(278), 15%(59), and 15%(59), respec-
tively. At 5× magnification WSIs, there were 283,126, 49,988, and 55,787 tiles within the
corresponding training, validating, and testing set. At 10×magnification WSIs, 1,152,481,
203,183, and 2,275,595 tiles were within the corresponding training, validating, and testing
set. In our experiment, the size of each tile was set to 512 × 512 pixels.

Table 1. Distribution of patients and whole-side images samples.

WSIs

Train (n = 278) Val (n = 59) Test (n = 59) Overall (n = 396)

Age(year) Min. 22 29 36 22
Max. 90 90 90 90

Median 65.5 67 68 66

Gender Male 138 30 33 201
Female 140 29 26 195

KRAS W.T. 162 24 35 221
M.T 116 35 24 175

NRAS W.T. 267 57 57 381
M.T 11 2 2 15

BRAF W.T. 251 51 51 353
M.T. 27 8 8 43

MSI MSI-H 236 49 52 337
MSS/MSI-

L 42 10 7 59

Tiles 5×Mag. 283,126 49,988 55,787 388,901
10×Mag. 1,152,481 203,183 227,595 1,583,259

https://xenabrowser.net/datapages/
https://github.com/libvips/libvips
https://qgis.org/
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A                                                                     B                                                              C                                                               D  

E                                                                     F                                                              G                                                               H  

Figure 1. Representative H&E stained whole-side images (WSIs) from SYSU8H and TCGA-COAD
dataset. The (A–D) and (E–H) samples are randomly selected from SYSU8H and TCGA-COAD
datasets, respectively.

2.2. Methodology

In this study, we proposed a cascaded network framework to directly estimate somatic
gene mutation and microsatellite instability status from the H&E stained whole-side image.

As shown in Figure 2, at the training stage, WSIs and corresponding binary masks
of the training and validation set were partitioned into 5× or 10× tiles for training and
validating the tumor classifier. The annotated tumor tiles and their somatic gene mutations
or microsatellite instability (MSI) were used for training a binary classifier to discriminate
wild type (i.e., W.T.) vs. mutant type (i.e., M.T.) of the gene or MSI-H vs. MSS/MSI-L,
respectively. The top N highest probabilities of all tiles within a WSI were used to generate
the final prediction for the patient.

WSIs
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Figure 2. Experimental workflow for estimating somatic gene mutation and microsatellite instability
with H&E stained whole-side images. The 5× or 10× tiles from WSIs will be accessed by a tumor
classifier, a gene&MSI classifier, and a TopN ensemble classifier.

Through several cycles of training and validation, the hyperparameters, including
batch size, the number of iterations, and learning rate, were optimized with the Adam
stochastic optimizer [21]. Subsequently, the predictions generated by the optimized models
were evaluated using the WSIs of the test set (see details in Table 1). For performance
evaluations, we carefully measured the area under the receiver operator characteristic
(ROC) curve [22] and its confidence interval (CI) [23].
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2.2.1. Data Preprocessing

At first, the 396 pairs of whole-side images (WSIs) and their corresponding clinical
records were shuffled and partitioned into three groups: training (70%), validating (15%),
and testing (15%). Within each pair, a binary tumor mask of WSI was generated through
polygon rasterization of its manually created tumor annotation. Later, a square window of
512 × 512 pixels was applied to the whole-side image and the corresponding tumor mask
to extract paired tiles of WSI and mask. Then, each tile of WSI was labeled according to
the positive ratio of pixels of the tumor mask. To focus on the tumor regions, tiles with
positive ratios less than 80% were marked as 0. Otherwise, tiles were marked as 1. There
were 388,901 and 1,583,259 tiles extracted from 5× and 10× magnification. As shown
in Table 1, at 5× magnification, there were 283,126, 49,988, and 55,787 tiles within the
training, validating, and testing set. While at 10×magnification, the number of tiles used
for training, validation, and testing was 1,152,481, 203,183, and 2,275,595, respectively.

2.2.2. Network Architectures

For simplicity and efficiency, we adopted an advanced convolutional neural net-
work (CNN) architecture, i.e., EfficientNet [24], as a backbone for tumor classification and
gene&MSI classification.

In 1998, Lecun et al. introduced the classic CNN architecture, LetNet-5 [25], which
consists of two sets of convolutional & pooling layers, a flattening convolutional layer,
and two fully-connected layers. The CNN reveals two important concepts, sparse con-
nectivity and shared weights, significantly reducing memory occupation and promoting
computational efficiency. With the growing complexity of the dataset and rapid develop-
ment of computational capacity, computer scientists have proposed more advanced CNN
architectures for better generalization capacity and computational efficiency [26]. These
architectures significantly promote CNN performance by introducing well-designed novel
strategies, such as network in network (i.e., NIN) [27], residual learning (i.e., ResNet) [28],
inception architecture [29], and dense connection (i.e., DenseNet) [30]. Differ from the
above-mentioned models, which mainly focus on model accuracy, the EfficientNet architec-
ture is designed to get a present accuracy level with limited computational operations. The
EfficientNet introduces a uniformed scaling method that scales all dimensions of depth,
width, and resolution with a set of fixed scaling coefficients [24].

In our experiments, we chose an ImageNet-1K [31] pretrained EfficientNet B0 (https:
//pytorch.org/vision/master/models/generated/torchvision.models.efficientnet_b0.html, ac-
cessed at 4 March 2022) as the backbone for both tumor classification and Gene&MSI classification.
As shown in Table 2, we introduced a dropout layer (p = 0.5) [32] to prevent overfitting. Then,
we replaced the dimensions of fully-connected (FC) layer from 1280 × 1000 to 1280 × 1.

Subsequently, the activation function was changed from softmax to sigmoid.

zi = b +
c

∑
j=1

wj × xi,j

pi =
1

1 + e−zi

(1)

The w ∈ Rc and b ∈ R1 denote the weights and bias, respectively. The range of
prediction pi is limited to [0, 1].

Instead of binary cross entropy [33], we adopted focal loss [34] as our object function
to focus learning on hard misclassified examples and address class imbalance. The equation
can be formulated as:

pt =

{
pi, if yi = 1
1− pi, if yi = 0

Loss f ocal = −(1− pt)
γlog(pt)

(2)

https://pytorch.org/vision/master/models/generated/torchvision.models.efficientnet_b0.html
https://pytorch.org/vision/master/models/generated/torchvision.models.efficientnet_b0.html
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where pi and yi is the ith prediction and corresponding ground truth. The value of pt
is pi if the observation is in class 1; otherwise, the value is 1 − pi. The γ (≥ 0) is a
tunable focusing parameter which reduces the relative loss for well-classified examples
(i.e., pt > 0.5) and puts more focus on hard, misclassified examples.

Table 2. The backbone network for both tumor classification and Gene&MSI classification. Each row
describes the stage, operation, input resolution, output channel, and the number of layers.

Stage Operator Resolution Channels Layers

0 512 × 512 3 0
1 Conv3 × 3 512 × 512 32 1
2 MBConv1, k3 × 3 256 × 256 16 1
3 MBConv6, k3 × 3 256 × 256 24 2
4 MBConv6, k5 × 5 128 × 128 40 2
5 MBConv6, k3 × 3 64 × 64 80 3
6 MBConv6, k5 × 5 32 × 32 112 3
7 MBConv6, k5 × 5 32 × 32 192 4
8 MBConv6, k3 × 3 16 × 16 320 1
9 Conv1 × 1&Pooling 16 × 16 1280 1

10 Dropout&FC 1280 × 1 1 1

With all of the above layers being trained by mini-batch stochastic gradient descent
(SGD) [35] to minimize the focal loss, the model learns how to map from the input
512 × 512 RGB image to a binary prediction.

2.2.3. Model Ensemble

To make a decisive conclusion on the whole-slide-image (WSIs) using the separated
predictions of 5× and 10× tiles, we introduced a simple yet efficient average voting strategy
using the top N number of features to ensemble models. To ensure the high fidelity of
selected features, a high threshold (i.e., 0.8) was used to filter out tiles with a low probability
of being a tumor region. Later, tiles with a high probability of being tumor regions were
passed to corresponding gene&MSI classification models to generate predictions of 5× tiles
(Px5) and 10× tiles (Px10). Then, the top N highest probabilities of predictions from both 5×
and 10× tiles were selected for the final estimation of the WSI (Pwsi). Finally, the Pwsi and
corresponding ground truth (Ywsi) were used to calculate the area under the curve (AUC)
for performance estimation.

PtopN = max([Px5, Px10], N)

Pwsi =
1
N

N

∑
i=1

PtopN
(3)

3. Results

A total of 396 colorectal cancer (CRC) patients with various gene mutations and MSI
status from the SYSU8H and TCGA-COAD datasets were recruited in this study. The
collected WSIs were randomly split into three sets: training, validation, and testing with
the ratio of 70%, 15%, and 15%, respectively. The tiles extracted from the training and
validation set wereused for training and optimizing hyperparameters of the proposed
classification models. In order to estimate the performance of the proposed classification
models, we have conducted heavy quantitative and qualitative comparisons on the testing
set. All experiments were performed on the same dataset and processing platform.

3.1. Tumor Classification

The tumor regions annotated by the pathologist and probability maps generated by
the tumor classification models using 5× and 10× tiles of WSIs are presented in Figure 3.
Both 5× and 10×models display high fidelity in tumor recognition compared to manual
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annotations. Compared with the 5×model, the model trained with 10× tiles shows fewer
false positives (e.g., orange and red patches outside the blue dashed curve of A, B, and C),
fewer false negatives (e.g., blue and green patches inside the blue dashed curve of E and
F), and better boundaries (e.g., around the blue dashed curve of A, B, and D). We selected
5 tiles from each of the four randomly selected whole slide images in the testing set, which
present the highest probabilities to be the tumor regions according to our trained 5× or 10×
tumor classification models (Figures 4 and 5). The selected tiles show high consensus with
the annotations by the pathologist. The receiver operator characteristic (ROC) curve and
area under the curve (AUC), are used to evaluate the performance of tumor classification
models using 5× and 10× tiles of the WSIs (Figure 6). The AUCs of 5× classification model
have achieved 0.939 (95% CI of 0.937–0.940), 0.910 (95% CI of 0.905–0.914), and 0.959 (95%
CI of 0.957–0.961) for training, validating, and testing set, respectively. Slightly better than
the 5×model, the AUCs of 10× classification model are up to 0.971 (95% CI of 0.971–0.972),
0.973 (95% CI of 0.972–0.973), and 0.976 (95% CI of 0.975–0.977) for training, validating, and
testing set, respectively. These values are consistent with our observation in Figures 3–5.

                       Annotation                        Tumor Classification (5x Tiles)         Tumor Classification (10x Tiles)            Probability 

A 

                                                                                                                   
B 

C 

D 

E 

F 

0.0 – 0.2
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Figure 3. Probability maps of tumor classification using 5× and 10× tiles of the whole slide images
(WSIs). The annotations created by the pathologist are marked with the blue dashed curve. The
probability values are categorized into five groups with different color representations. The (A–C) and
(D–F) samples are randomly selected from the testing set of TCGA-COAD and SYSU8H, respectively.
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                    Tile-1                                  Tile-2                                   Tile-3                                    Tile-4                                   Tile-5                 

A 

                                                                                                                   

B 

C 

D 

Figure 4. Representative tiles of tumor classification using 5× tiles of the whole slide images (WSIs).
The (A–D) samples are randomly selected from the testing set. In each row, tiles 1–5 are patches from
the same WSI.

                    Tile-1                                  Tile-2                                   Tile-3                                    Tile-4                                   Tile-5                 

A 

                                                                                                                   

B 

C 

D 

Figure 5. Representative tiles of tumor classification using 10× tiles of the whole slide images (WSIs).
The (A–D) samples are randomly selected from the testing set. In each row, tiles 1–5 are patches from
the same WSI.
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A                                                                                                                       B 

Figure 6. The receiver operator characteristic (ROC) curve and area under the curve(AUC) of tumor
classification using 5× and 10× tiles of the whole slide images (WSIs). (A) The curves of training, validating,
and testing set using 5× tiles. (B) The curves of training, validating, and testing set using 10× tiles.

3.2. Gene&MSI Classification

After model ensembling, the proposed method generates probabilities of gene muta-
tions (i.e., KRAS, NRAS, and BRAF) and MSI status of every WSI.

As shown in Figure 7a–c, in the testing set, the proposed method reaches 0.792 (95%
CI of 0.669–0.914), 0.886 (95% CI of 0.688–1.00), and 0.897 (95% CI of 0.800–0.994) AUCs
for gene mutation predictions of KRAS, NRAS, and BRAF, respectively. In Figure 7d,
our method shows high accuracy (i.e., 0.764 AUC, 95% CI 0.563–0.965) on the MSI status
estimating in colorectal cancer.

(A) KRAS                                                                                                                         (B) NRAS  

(C) BRAF                                                                                                                           (D) MSI

Figure 7. The receiver operator characteristic (ROC) curve and area under the curve(AUC) of
Gene&MSI classification using 5&10× tiles of the whole slide images (WSIs). (A) The curves of KRAS
gene mutation classification. (B) The curves of NRAS gene mutation classification. (C) The curves of
BRAF gene mutation classification. (D) The curves of MSI status classification.
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To investigate the effect of the selected number of features (i.e., topN) used for model
ensembling, we conducted a comparison experiment on the testing set using sequential
values (i.e., [1, 3, 5, 7, 9]) of topN. Figure 8 shows the trend of the AUC values under
sequential values of topN in the testing set. Among all values, the proposed method
achieves the highest KRAS, NRAS, and BRAF gene mutation prediction accuracy while
topN equals 7. In gene mutation predictions, as the value of topN increases, the AUC
value will firstly increase and then decrease. In MSI status estimation, the AUC increases
gradually as the value of topN increases. As the value of topN passes 7, the increment of
AUC narrows down.

Figure 9 shows the top weighted tiles of whole slide images (WSIs) in gene mutation
prediction and MSI status estimation by the proposed models.

(A) KRAS                                                                                                                         (B) NRAS  

(C) BRAF                                                                                                                           (D) MSI

Figure 8. The receiver operator characteristic (ROC) curve and area under the curve(AUC) of
Gene&MSI classification using sequential values of topN. (A) The trend of KRAS gene mutation
classification. (B) The trend of NRAS gene mutation classification. (C) The trend of BRAF gene
mutation classification. (D) The trend of MSI status classification.
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                    Tile-1                                  Tile-2                                   Tile-3                                    Tile-4                                   Tile-5                 

KRAS 

                                                                                                                   

NRAS 

BRAF 

MSI 

Figure 9. Top weighted tiles of whole slide images (WSIs) in gene mutation and MSI status estimation.
In each row, tiles 1–5 are either 5× or 10× tiles extracted from the same WSI.

4. Discussion
4.1. Regarding the Cascaded Framework

In recent years, deep convolutional networks have demonstrated their potential in
computer-aided cancer identification using clinical images such as CT scan [36], ultrasonic [37],
and MRI images [38]. Other than tumor recognization, a growing number of researches
are trying to look deeper into microsatellite instability estimation [39,40], gene mutation
prediction [41] or survival risk evaluation [19], which are vital for precision pathological
diagnosis and treatment.

To the best of our knowledge, the proposed cascaded framework is the first end-to-end
method that simultaneously generates gene mutation prediction and MSI status estimation
using the whole slide image (WSI) in colorectal cancer. Our method can produce high-
fidelity gene mutation prediction and MSI status estimation for each WSI through a simple
yet efficient average voting strategy to ensemble models. Predicting the gene mutations
(KRAS, NRAS, and BRAF) and MSI status from deep convolutional networks provides
pathologists with a more convenient way to evaluate prognosis and guide medication. For
example, advanced metastatic CRC patients with KRAS and NRAS mutations are not rec-
ommended to choose anti-EGFR monoclonal drugs (cetuximab and panimab) for treatment.
The evaluation of BRAF mutation can stratify the prognosis and guide clinical treatment.
Patients with BRAF genetic mutation are unlikely to respond to the treatment of cetuximab
or panimab. MSI is a predictor of the efficacy of immune checkpoint inhibitors, CRC
patients with MSI-H are more likely to benefit from the treatment of immune checkpoint
inhibitors (e.g., pabolizumab). Qualitative and quantitative results of the experiment data
demonstrated the effectiveness of our proposed framework. These results suggest that the
deep learning models have the potential to provide diagnostic insight and clinical guidance
directly from pathological H&E slides. Additionally, as the gene mutation prediction and
MSI status estimation are directly computed from histopathology H&E slides, in principle,
the proposed method should apply not only to colorectal cancer but also to other malignant
cancers (e.g., lung, breast, and liver cancer).
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4.2. Accuracies, Uncertainties, and Limitations

The proposed framework revealed high values of area under the curve (AUC) in both
tumor classification and gene&MSI classification tasks. In tumor classification,the 5× and
10× classification models achieved 0.959 (95% CI of 0.957–0.961) and 0.976 (95% CI of
0.975–0.977) AUCs in the testing set, respectively. The values show a very close judgment
between the pathologist and the proposed method, which suggest that the AI-algorithm can
potentially serve as a pre-screening tool. The performance will be further evaluated using a
larger dataset with multiple tissue samples collected from varied pathology departments.

In gene mutation prediction, the proposed method achieved 0.792 (95% CI of
0.669–0.914), 0.886 (95% CI of 0.688–1.00), and 0.897 (95% CI of 0.800–0.994) AUCs for
gene mutation predictions of KRAS, NRAS, and BRAF, respectively. Because of the ex-
tremely biased ratio of mutant type / wild type distribution (i.e., 15 vs. 381 of NRAS, 43 vs.
353 of BRAF), the value of AUCs fluctuates in a large range within 95% confidence interval
(see details in Figure 7). In terms of MSI status estimation, recent researches [39,40] had
reported higher performance than ours(i.e., 0.764 AUC, 95% CI 0.563–0.965). Compared
with these methods, our method is able to simultaneously generate gene mutation predic-
tion (KRAS, NRAS, and BRAF) and MSI status estimation, which are all mandatory for
metastatic CRC patients. As for future clinical application, improving the accuracy level of
our algorithm remains one of the main future goals.

With the current cascaded classification-based scheme, the models are trained to gen-
erate tile-to-label predictions using features extracted from sequential convolutional layers.
The lack of internal connectivity with adjacent tiles within the same WSI might lead to
partial misclassification (e.g., red patches outside the blue dashed curve and green patches
within the blue dashed curve in Figure 1B,D). Since the models are trained and optimized
separately, the proposed framework requires extra computational time and storage for
training and saving checkpoints of multiple models. Considering the computational effi-
ciency, a unified model with shared parameters and object functions should be explored in
further work.

Considering the type of H&E used for staining, varied types of hematoxylin have
certain differences in stability, durability, and dyeing time, which may lead to distinct
visual patterns. In the SYSU8H dataset, the H&E slices were stained using an identical form
of hematoxylin (i.e., Harris hematoxylin) to make sure both the nucleus and cytoplasm
can be clearly visible and discriminated. Due to the fact that the TCGA-COAD dataset
was collected from multiple centers, the forms of hematoxylin used for staining were very
likely to be different. However, as shown in Figure 3, in tumor classification, prediction
accuracies among slices were not so significant. The result indicates that our method can
be adapted to different forms of H&E staining approaches.

Another issue that should not be ignored is the tumor heterogenity of the primary
and metastatic lesions. Clinically, whether it is pathological diagnosis or target gene
detection, the tumor specimen of the primary lesion is the first choice. However, there
may be discrepancies in the gene mutation between the primary and metastatic tumor.
For advanced metastatic tumors,when the target gene mutation of the primary tumor is
negative, the target gene detection of the metastatic tumor can be carried out if conditions
permitted, which can increase the opportunity for patients to receive one more targeted
drug treatment. In this study, limited by the publicly available clinical samples attached
with the gene mutation information of the primary tumor and the corresponding metastases,
our method focused exclusively on primary tumors. Further evaluation is still necessary to
clarify the reliability and generalization of our model performance.

5. Conclusions

For colon carcinoma, we design a cascaded deep convolutional framework to simul-
taneously generate gene mutation predicting and MSI status estimation based on the
whole-slide images. The proposed method introduces a simple yet efficient average voting
ensemble strategy to produce a high-fidelity prediction of the WSI. In gene mutation&MSI
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status classification task, the proposed method achieves 0.792 (95% CI of 0.669–0.914), 0.886
(95% CI of 0.688–1.00), 0.897 (95% CI of 0.800–0.994), and 0.764 (95% CI 0.563–0.965) AUCs
for KRAS, NRAS, BRAF, and MSI, respectively. These results suggest that the deep learning
models have the potential to provide diagnostic insight and clinical guidance directly from
pathological H&E slides. We plan to improve the architecture of the framework and apply
it to other data sources to achieve better generalization capacity and diagnostic reliability.
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