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Streptococcus pneumonia is one of the leading causes of mobility and mortality in children
under 6 years and the elderly especially in developing countries in which Ghana, the study
area is not an exception.In this paper, a model of the spread and control of bacterial
pneumonia that include symptomatic carriers, asymptomatic carriers and vaccination is
formulated and analyzed to determine the effect of the vaccination intervention.Analysis
of the system show that the disease free equilibrium is stable if and only if the basic
reproductive number R0 <1. For R0 � 1, the endemic equilibrium is globally stable and the
disease persist. Numerical simulation on the system show that with effective vaccine
intervention pneumonia infection can be eradicated in the long term.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pneumonia has been rated as the leading cause of under six morbidity and mortality in Ghana, with an up setting annual
death toll record of 16,200 children, representing 20 percent deaths per year, according to Ghana Health Service (Ghana
Health Service, 2018; GhanaHomePage).

According toWorld Health Organisation the leading causes of death among children under six in 2016 were preterm birth
complications, pneumonia, intrapartum-related complications, diarrhoea and congenital abnormalities. Neonatal deaths
accounted for 45% of under-five deaths in 2016.Pneumonia is the single largest infectious cause of death in children
worldwide. Pneumonia killed 920,136 children under the age of six in 2016, accounting for 16% of all deaths of children under
six years old (WHO and UNICEF, 2016; World Health Organization, 2016).Globally, about 1.58 million children under six years
die from pneumonia annually,it is the single biggest child-killer in the world according to the United Nations Children
Emergency Fund, more children die from pneumonia than from Human Immured Virus and Acquired Immured Deficiency
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Syndrome (HIV/AIDS), diarrhea andmalaria combined,the disease kills a child every 35 s (United Nations Children Emergency
Fund, 2015).

Pneumonia is a respiratory infection that affects the lungs, resulting in an inflammation of the alveoli, the air sacs that
make up the bulk of the lungs and help us breathe. Infection causes them to fill with fluid or mucus, limiting the amount of
oxygen entering the sacs and making it painful to breathe.Pneumonia are mainly caused by bacteria, viruses, fungal. But
Bacteria are the most common cause of pneumonia with the bacterium called Streptococcus pneumoniae being the primary
causative agent of most common cause of pneumonia in children, with an incubation period between 1 and 4weeks.Themost
common cause of viral pneumonia in adults is the influenza virus that accounts for approximately a third and in children for
about 15% of pneumonia cases. A number of different respiratory viruses cause pneumonia in children such as respiratory
syncytial virus (RSV) and Influenza are the most common viral cause of pneumonia (United Nations Children Emergency
Fund, 2015; World Health Organization, 2016,(Center for Disease Control and Prevention, 2017)).

There is a risk of developing secondary bacterial pneumonia when viral pneumonia is present. However, it is more
common in elderly people over 65 years and young children under six years of age. Some people are at higher risk of
pneumonia because they have pre existing lung diseases, poor nutrition, difficulty in swallowing, other chronic health
problems or problems with their immune system, other higher risk factors that can course pneumonia are smoking, alco-
holism neurological problems or sustaining injuries that interfere with swallowing or coughing.

Basically, pneumonia is classified in to two;

(a) Community-acquired pneumonia (CAP) which is acquired outside of the health-care setting and
(b) Hospital-acquired (or health-care-acquired)pneumonia (HAP) which is typically more serious but about 20% of those

with CAP require treatment in a hospital (mayoclinic).

Pneumonia is preventable through vaccination, proper diagnosis, screening, environmental control measures and
appropriate treatment of other diseases (Singh & Aneja, 2011; Wardlaw, Salama, Johansson, & Mason, 2006). Vaccination is
the most effective way to prevent certain bacterial and viral pneumonia in children under six years of age. The two types of
vaccines available against S. pneumoniae are the pneumococcal polysaccharide vaccine (PPV), based on purified capsular (PS)
and pneumococcal conjugate vaccine (PCV), obtained by chemical conjugation of the capsular (PS) to a protein carrier (Dunn,
2005). PCVs were developed for use in children only and PPV for vaccination of the at-risk adults and the elderly (Moberley,
Holden, Tatham, & Andrews, 2013; Russell & Mulholland, 2004). Pneumococcus spreads through micro aspiration of
oropharyngeal organisms and inhalation of aerosols containing bacteria or viruses especially in children that carry the
bacteria in their throats without being sick. Newborn babies can again, be protected from pneumonia infection through early
recognition and treatment at the level of the community or the primary-care health facility, testing of pregnant mothers for
streptococcus and giving antibiotic treatment and vaccination with PPV that has a proven record of safety in pregnant and
breastfeeding mothers for pneumococcal pneumonia prevention in infants. Suctioning the mouth and throat of babies with
meconium-stained amniotic fluid decreases the rate of aspiration pneumonia (Mulholland, 2007(Ngari et al., 2014)).

Environmental measures for pneumonia prevention include reduction of indoor air pollution by encouraging good hy-
giene in crowded homes and smoking cessation that reduces risks of pneumonia infections among children and adults. Since
the bacteria and viruses can also be spread to your hands and then to your mouth, it is important to wash hands with soap
when around a person with pneumonia infection (Kizito & Tumwiine, 2018).

Appropriate antibiotics are used for treatment of bacterial pneumonia,it treatment depends on the underlying cause of
infection. Effective and timely treatment together with better diagnostic tools and education prevents antibiotic resistance
(Rodrigues, 2017, Effelterre et al., 2010).

These are some of literatures of the mathematical models developed to study transmission dynamics of pneumonia using
different procedures.

Tilahun et al. (Tilahun et al., 2017). Proposed and analyse a nonlinear mathematical model for the transmission dynamics
of pneumonia disease cost-effective strategies. They used deterministic compartmental model and stability theory of dif-
ferential equations in their study. They also consider possibility of bifurcation of the model and the sensitivity indices.

Ndelwa et al. (Ndelwa et al., 2015). Used amathematical model of the transmission dynamics of pneumoniawith screening
and treatment to formulate and analyse the disease with the aim of understanding its transmission dynamics and the effects
of these interventions that lead to the causes of serious illness and deaths among children under five years of age in Tanzania
and around the world.

Ong’ala et al. (Jacob Otieno, Joseph,& John, 2012). Used amathematical model of the transmission dynamics of pneumonia
among children under five years of age and they considered four compartments based on the disease status, that is Sus-
ceptible, Carriers, Infectious and Recovered (SICR). The model is analyzed using the theory of ordinary differential equations,
dynamical systems and possibility of bifurcation. They only considered the S.pneumonia since it is the most common among
children under five years of age.

Kizito et al. (Kizito& Tumwiine, 2018). They study, a model of the spread and control of bacterial pneumonia under public
health interventions that involve treatment and vaccination. They also infer the effect of these interventions on the dynamics
of the pneumonia through sensitivity analysis on the effective reproduction number. Fromwhich it is revealed that treatment
and vaccination interventions combined can eradicate pneumonia infection. A numerical simulation was done to illustrate
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the analytical results and establish the long-term behavior of the disease. It is revealed that, with treatment and vaccination
interventions combined, pneumonia can be wiped out. However, with treatment intervention alone, pneumonia persists in
the population.

Temime et al. (Temime, Guillemot, & B€oelle, 2004). Developed a mathematical model of selection for S. pneumoniae
resistance to penicillin G in an age structured population. The model considered three age classes, that is, [0, 2) years, [2, 15)
years and 15 þ years. The model incorporated vaccination and sought to understand the epidemiological characteristics of S.
pneumoniae in a vaccinated population and also the distribution of resistance levels in children and adult carriers after
introduction of vaccination. The results suggested that because of serotype replacement, the effects of vaccination observed at
a particular instant would not be sustained in the long run.

Sutton et al. (Sutton, Banks, & Castillo-Chavez, 2010). Developed a mathematical model for pneumococcal infection with
vaccination. It was made up of partial differential equations with time and age as independent variables, though in the
analysis these were reduced to differential equations. The model was used to evaluate the impact of vaccines at population
level and parameters were estimated using data.The use of vaccination as an intervention, age dependence and estimation of
parameters were important aspects that informed our work.

2. Model description and formulation

Themodel divides the total population(N) into six sub-classes according to their disease status. susceptible S(t),vaccinated
V(t),symptomatic carrier CsyðtÞ, asymptomatic carrier CAsyðtÞ, infected I(t), recovery R(t).

In the model the disease is assumed to have several progress stages, and so individual move between these stages with a
specific rates.

The total population size:

N¼V þ Sþ CSy þ CAsy þ I þ R: (1)
The model assume that a proportion of the population p has been vaccinated and 1� p is the proportion of the population
that are susceptible before the disease outbreak,at a rate ofu. In Africa, specifically Ghanamost of the new born infants do not
take in the Pneumoccocal Conjugate Vaccine(PVC) due to lack of education, traditional and cultural believes of parents and
individuals. The susceptible population decrease to become symptomatic carrier q and asymptomatic carrier 1� qwith a rate
of 4. The symptomatic carrier decreased to become infected at a rate of b and asymptomatic carrier also decrease to become
infected at a rate of a Symptomatic and Asymptomatic carriers decreases to recovery stage after undergoing treatment with a
rate of s and t respectively. The symptomatic carriers becomes asymptomatic carrier at a rate of q whiles asymptomatic
carriers becomes symptomatic carrier at rate of U due to natural immunity of the individual and each of the compartment
have a natural mortality rate of m. Individual who loses their temporary immunity at a rate of f becomes susceptible.
Vaccinated individuals decreased to become symptomatic or asymptomatic carriers at a rate of h with a proportion of k and
1� k respectively Vaccinated individuals decreased to become susceptible at a rate of d and Infected individuals turn to
recovery state at a rate of g.Vaccinated individuals becomes infected at a rate of r and infected individuals become vaccinated
at a rate of c. Symptomatic and Asymptomatic carriers decreases to become susceptible at a rate of p and x respectively.
Asymptomatic and Symptomatic carries decrease to become infected at a rate a and b respectively. New infection can be due
to effective contact with either the symptomatic carrier or asymptomatic carriers.Recovery individuals turn to susceptible
state at a rate of f.

3. SVCSyCAsyIR Model

A model depicting pneumonia transmission dynamics with a flow from the host organism to the susceptible S(t),vacci-
nated V(t),symptomatic carrier CsyðtÞ, asymptomatic carrier CAsyðtÞ, infected I(t) and recovery R(t) compartment.As a result we
have this SVCSyCAsyIR model (Tables 1 and 2).

Variable definition
Table 1
Variables and variable definition.

Variables Variable Definition

S(t) Susceptible individual at time t
V(t) Vaccinated individual at time t
CsyðtÞ Symptomatic carrier at time t
CAsyðtÞ Asymptomatic carrier at time t
I(t) Infected individual at time t
R(t) Recovered individual at time t



Table 2
Parameters and parameter definition.

Parameters Parameters Definition

P proportion of the population that have been vaccinated before and after the outbreak.
1� p proportion of the population that are susceptible.
u Recruitment rate.
q proportion susceptible decrease to become symptomatic carriers.
1-q proportion of susceptible decrease to become asymptomatic carriers.
4 rate at which susceptible population decrease to symptomatic or asymptomatic carriers.
b the rate at which symptomatic carriers decrease to become infected.
a the rate at which asymptomatic carriers decrease to become infected.
s the rate at which symptomatic carriers decrease to recovered stage after treatment.
Parameters Parameters Definition
t the rate at which asymptomatic carriers decrease to recovery stage after treatment.
q the rate at which symptomatic carriers become asymptomatic carries.
U the rate at which asymptomatic carriers become symptomatic carries.
m the natural mortality rate.
f the rate of loss of temporary immunity to become susceptible.
k the proportion of vaccinated population decrease to become symptomatic carriers.
1-k the proportion of vaccinated population decrease to become asymptomatic carriers.
h rate at which vaccinated population decrease to symptomatic and asymptomatic.
d the rate at which vaccinated population decrease to become susceptible.
g the rate at which infected individuals turn to recovered state.
r the rate at which vaccinated population decrease to become infected.
P the rate at which the symptomatic carriers decrease to become susceptible.
x the rate at which the asymptomatic carriers decrease to become susceptible.
a the rate at which infected decrease to asymptomatic carrier.
[ the rate at which infected decrease to symptomatic.
c the rate at which susceptible become infected.
n the rate at which susceptible become vaccinated.
2 the disease induced death rate.
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4. Equations of the model

dSðtÞ
dt

¼ dVðtÞ þPCSyðtÞ þ xCAsyðtÞ þ 4RðtÞ þ ð1� pÞu� �
mþ ðqþ ð1� qÞlÞfþ clþ n

�
SðtÞ

dVðtÞ
dt

¼ pu� rlVðtÞ þ nSðtÞ � ðdþ mþ klhþ ð1� kÞlhÞVðtÞ

dCSyðtÞ
dt

¼ qfSðtÞ þ UCSyðtÞ þ hklVðtÞ þ [IðtÞ � �
Pþ qþ mþ bþ s

�
CSyðtÞ

dCAsyðtÞ
dt

¼ ð1� qÞfSðtÞ þ qCSyðtÞ þ hlð1� kÞVðtÞ þ aIðtÞ � �
xþ Uþ mþ aþ t

�
CAsyðtÞ

dIðtÞ
dt

¼ rlVðtÞ þ aCAsyðtÞ þ bCSyðtÞ þ clSðtÞ � �
mþ zþ gþ aþ [

�
IðtÞ

dRðtÞ
dt

¼ gIðtÞ þ tCAsyðtÞ þ sCSyðtÞ �
�
mþ 4

�
RðtÞ

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(2)

with force of infection:

l¼ T
�
I þ εsyCSy þ εAsyCAsy

N

�
: (3)

where;
T ¼ mz:m ¼ the rate of contact or the average number of effective contacts.
z ¼ the probability that a contact is effective to cause infection.
εsy ¼ transmission coefficient of symptomatic carrier.
εAsy ¼ transmission coefficient of asymptomatic carrier.
Adding the equations, we have
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dVðtÞ
dt

þ dSðtÞ
dt

þ dCSyðtÞ
dt

þ dCAsyðtÞ
dt

þ dIðtÞ
dt

þ dRðtÞ
dt

¼

pu� rlVðtÞ þ nSðtÞ � ðdþ mþ klhþ ð1� kÞlhÞVðtÞ þ dVðtÞ
þPCSyðtÞ þ xCAsyðtÞ þ Rfþ ð1� pÞu� ½mþ ðqþ ð1� qÞlÞ4þ clþ n�SðtÞ
þql4SðtÞ þ UCAsyðtÞ þ [IðtÞ þ hlkVðtÞ � ½Pþ qþ mþ bþ s�CSyðtÞ
þð1� qÞl4SðtÞ þ qCSyðtÞ þ hlð1� kÞVðtÞ þ aIðtÞ � ½xþ Uþ mþ aþ t�CAsyðtÞ
þrlVðtÞ þ aCAsyðtÞ þ bCSyðtÞ þ clSðtÞ � ½mþ zþ gþ aþ [�IðtÞ
þgIðtÞ þ tCAsyðtÞ þ sCSyðtÞ � ½mþ f�RðtÞ

0
d
�
V þ Sþ CSy þ CAsy þ I þ R

�
dt

¼ u� �
V þ Sþ CSy þ CAsy þ I þ R

�þ zI

dN
dt

¼ u� Nmþ zI:

(4)
5. Properties of the model equations

In this section, we showa description of some basic properties of the system (2), such as feasible solution and the positivity
of solutions. The feasible solution shows the region in which the solutions of the system (2) are biologically meaningful and
the positivity and boundedness of the solutions describes the non-negativity of the solutions of the equations.

5.1. Region of feasibility

The feasible solution set which is positively invariant set of the model is given by,

J¼
��

V þ SþCSy þCAsy þ IþR
�
2R6

þ : V þ SþCSy þCAsy þ IþR¼N�uþ zI
m

	

From the model system (2) It will be shown that the region is positively invariant. Consider the steps below;
From the system (2), the total population of individuals is given by

N¼V þ Sþ CSy þ CAsy þ I þ R:
Therefore adding the system ð2Þ, the results become

dN
dt

¼u� Nmþ zI:
And by solving equation ð4Þleads to:

dN
u� Nmþ zI

¼dt

Z
dN

Z

u� Nmþ zI

¼ dt

�1

m

lnju�Nmþ zIj ¼ t þ c

lnju�Nmþ zIj ¼ � mt þ c
u�Nmþ zI ¼ e�mtþc
u�Nmþ zI ¼ c1e
�mt
�Nm ¼ c1e
�mt � u� zI
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∴NðtÞ¼�c1e�mt þ uþ zIðtÞ
m

:

now at t ¼ 0
Nð0Þ¼�c1e�m0 þ uþ zIð0Þ
m

:

c1 ¼uþ zIð0Þ � Nð0Þm:
now the equation is
NðtÞ¼uþ zIðtÞ � ½uþ zIð0Þ � Nð0Þm�e�mt

m
: (5)

now as t/∞
NðtÞ � uþ zIðtÞ
m

:

Therefore, J is positively invariant.

5.2. Positivity and boundedness of solutions

We have proved that the state variables are non-negative and the solutions remain positive for all time t � 0.Here the
parameters in the model are assumed to be positive. We also prove that the feasible solutions are bounded in a region:

J¼
��

V þ SþCSy þCAsy þ IþR
�
2R6

þ : V þ SþCSy þCAsy þ IþR¼N�uþ zI
m

	

Lemma 5.2.1. Let the initial values of the parameters be fV � 0; S� 0;CSy � 0;CAsy � 0I� 0;R� 0g2J,then the solution set
fVðtÞ; SðtÞ;CSyðtÞ;CAsyðtÞ; IðtÞ;RðtÞgis positive for all t � 0

Proof First, we consider the second equation of system(2)

dVðtÞ
dt

¼puþ nSðtÞ � ðdþmþ lhþ rlÞVðtÞ

we have
dVðtÞ
dt

� � ðdþmþ lhþ rlÞVðtÞ

dVðtÞ

VðtÞ � � ðdþmþ lhþ lrÞdt

integrating both sides
Z
dVðtÞ
VðtÞ �

Z
�ðdþmþ lhþ lrÞdt

lnjVðtÞj � � ðdþmþ lhþ lrÞt þ c
VðtÞ � e�ðdþmþlhþlrÞtþc
And at t ¼ 0

VðtÞ � Vð0Þe�ðdþmþlhþlrÞt

VðtÞ�Vð0Þe�ðdþmþlhþlrÞt � 0
hence
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VðtÞ � 0
Next, we consider the first equation of system (2)

dSðtÞ
dt

¼ dVðtÞþPCSyðtÞþ xcþRfþð1� pÞu� ½mþðqþð1� qÞÞl4þclþ n�SðtÞ

we have
dSðtÞ
dt

� � ½mþ l4þ clþ n�SðtÞ

dSðtÞ
SðtÞ � � ½mþ l4þ clþ n�dt

integrating both sides
Z
dSðtÞ
SðtÞ �

Z
�½mþ l4þ clþ n�dt

lnjSðtÞj � �ðmþ l4þ clþ nÞt þ c

SðtÞ � e�ðmþl4þclþnÞtþc
And at t ¼ 0,

SðtÞ � Sð0Þe�ðmþðqþð1�qÞÞ4þcþnÞt

SðtÞ � Sð0Þe�ðmþðqþð1�qÞÞ4þcþnÞt � 0

hence
SðtÞ � 0
We can proceed in a similar way to prove the positivity of CSyðtÞ, CAsyðtÞIðtÞ,RðtÞ and NðtÞ Hence, all the variables are
positive.

Lemma 5.2.2. The solutions for the Systems are contained and remain in the region J for all time t � 0.
6. Model analysis

In this section the model is qualitatively analyzed by determining the model equilibrium point,and carry out their cor-
responding stability analysis and interpreting the results.

6.1. Disease free equilibrium (DFE)

The disease free equilibrium of the system(2) is obtained by setting;

dVðtÞ
dt

¼ dSðtÞ
dt

¼dCSyðtÞ
dt

¼dCAsyðtÞ
dt

¼ dIðtÞ
dt

¼ dRðtÞ
dt

¼0
pu� lrVðtÞ þ nSðtÞ � ðdþ mþ klhþ ð1� kÞlhÞVðtÞ ¼ 0
dVðtÞ þPCSyðtÞ þ xCAsyðtÞ þ R4þ ð1� pÞu� �

mþ ðqþ ð1� qÞÞlfþ clþ n
�
SðtÞ ¼ 0

qlfSðtÞ þ UCAsyðtÞ þ [IðtÞ þ hlkVðtÞ � �
Pþ qþ mþ bþ s

�
CSyðtÞ ¼ 0

ð1� qÞlfSðtÞ þ qCSyðtÞ þ hlð1� kÞVðtÞ þ aIðtÞ � �
xþ Uþ mþ aþ t

�
CAsyðtÞ ¼ 0

rlVðtÞ þ aCAsyðtÞ þ bCSyðtÞ þ clSðtÞ � �
mþ zþ gþ aþ [

�
IðtÞ ¼ 0

gIðtÞ þ tCAsyðtÞ þ sCSyðtÞ �
�
mþ 4

�
RðtÞ ¼ 0 ¼ 0

9>>>>>>=
>>>>>>;
now from system (6) we have

V� ¼ puþ nS�

ðdþ mþ klhþ ð1� kÞlhþ rlÞ (7)
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S� ¼ dV� þPC�
Sy þ xC�

Asy þ R�fþ ð1� pÞu
½mþ ðqþ ð1� qÞÞl4þ clþ n� (8)

� ql4S� þ UC�
Asy þ [I� þ hlkV� 9
CSy ¼ ½Pþ qþ mþ bþ s�

C�
Asy ¼ ð1� qÞl4S� þ qC�

Sy þ hlð1� kÞV� þ aI�

½xþ Uþ mþ aþ t�

I� ¼ rlV� þ aC�
Asy þ bC�

Sy þ clS�

½mþ zþ gþ aþ [�

R� ¼ gIðtÞ þ tCAsyðtÞ þ sCSyðtÞ
½mþ f�

>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(9)
from equation (9) C�
Sy ¼ C�

Asy ¼ I� ¼ R� ¼ 0

V� ¼
puþ n

dV�þPC�
SyþxC�

AsyþR�fþð1�pÞu
½mþl4þclþn�

ðdþ mþ lhþ rlÞ

puþ n ð1�pÞuþdV�
V� ¼ ½mþl4þclþn�
ðdþ mþ lhþ rlÞ

� pu½mþ l4þ clþ n� þ nð1� pÞuþ ndV�

V ¼ ðdþ mþ lhþ rlÞðmþ l4þ clþ nÞ
letting

H1 ¼ðdþmþ lhþ rlÞ

H2 ¼ðmþ l4þclþ nÞ
We have

V� ¼ puH2 þ nð1� pÞuþ ndV�

H1H2

V� ¼ puH2 þ nð1� pÞu
H1H2 � nd

∴V� ¼ puðmþ l4þ clþ nÞ þ nð1� pÞu
ðdþ mþ lhþ rlÞðmþ l4þ clþ nÞ � nd

for C�
Sy ¼ C�

Asy ¼ I� ¼ R� ¼ 0 and solving for S�

S� ¼ dV� þPC�
Sy þ xC�

Asy þ R�fþ ð1� pÞu
½mþ l4þ lcþ n�

S� ¼
d puH2þnð1�pÞu

H1H2�nd
þPC�

Sy þ xC�
Asy þ R�fþ ð1� pÞu

½mþ l4þ clþ n�

S� ¼
d puH2þnð1�pÞu

H1H2�nd
þ ð1� pÞu

½mþ l4þ lcþ n�

S� ¼
d puH2þnð1�pÞu

H1H2�nd
þ ð1� pÞu

H2
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S� ¼ dðpuH2 þ nð1� pÞuÞ þ ð1� pÞuðH1H2 � ndÞ
H2ðH1H2 � ndÞ

Now the equilibrium point Q� ¼Q�


V�; S�; C�

Sy;C
�
Asy; I

�;R�
�

¼ Q�
�
puH2 þ nð1� pÞu

H1H2 � nd
;
dðpuH2 þ nð1� pÞuÞ þ ð1� pÞuðH1H2 � ndÞ

H2ðH1H2 � ndÞ ;0;0;0;0
�

where.
H3 ¼ ½P þ q þ m þ b þ s�H4 ¼ ½x þ U þ m þ a þ t�H5 ¼ ½m þ z þ g þ a þ [�H6 ¼ ½m þ f�

6.2. The basic reproduction number R0

Epidemiologists have always been interested in finding the basic reproduction number of an emerging disease because its
threshold parameter can tell whether a disease will die out or persist in a population. Denoted by R0, this parameter is
arguably themost important quantity in infectious disease epidemiology (WuMSc et al., 2012, Bonita et al., 2006). It is defined
as the average number of new cases (infections) produced by a single infective when introduced into an entirely susceptible
population. It is one of the first quantities estimated for emerging infectious diseases in outbreak situations.It is a key
epidemiological quantity, because it determines the size and duration of epidemics and is an important factor in determining
targets for vaccination coverage.The basic reproduction number is sought after principally because (Stephen et al., 2015, pp.
396e408; WuMSc et al., 2012). If R0 <1, then throughout the infectious period, each infective will produce less than one new
infective on the average. This in turn implies that the disease will die out as the DFE is stable.If R0 >1, then throughout the
infectious period, each infectivewill producemore than one new infective on the average. This in turn implies that the disease
will persist as the DFE is unstable. In other words, there will be an outbreak. If R0 can be determined, then the transmission
parameters which will force R0 to be or greater than 1 can easily be identified and control measures effectively designed. We
shall find the basic reproduction number of the system using the next generation method. To calculate the basic reproduction
number by using a next-generation matrix, the whole population is divided into n compartments in which there are m< n
infected compartments (Diekmann, Heesterbeek, & Roberts, 2009, Herbert and Hethcote, 2000). In our model among six
compartments we have three infected compartments. Let xi; i ¼ 1;2;3;…;m be the numbers of infected individuals in the ith

infected compartment at time t.
FiðxÞ be the rate of appearance of new infections in compartment. ViðxÞ be the difference between rates of transfer of

individuals between ith compartments. Vþ
i ðxÞ be the rate of transfer of individuals into ith compartment by all other

means.V�
i ðxÞ be the rate of transfer of individuals out of ith compartment (Diekmann et al., 2009; Stephen et al., 2015, pp.

396e408).

dxi
dt

¼ FiðxÞ � ViðxÞ
where

ViðxÞ¼
�
V�
i ðxÞ�Vþ

i ðxÞ
�

now we have

dxi
dt

¼ FðxÞ � VðxÞ
where

FðxÞ¼

2
664
F1ðxÞ
F2ðxÞ
…

FmðxÞ

3
775;VðxÞ ¼

2
664
V1ðxÞ
V2ðxÞ
…

VmðxÞ

3
775
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dCSyðtÞ
dt

¼ ql4SðtÞ þ UCAsyðtÞ þ [IðtÞ þ lhkVðtÞ � ½Pþ qþ mþ bþ s�CSyðtÞ

dCAsyðtÞ
dt

¼ ð1� qÞl4SðtÞ þ qCSyðtÞ þ lhð1� kÞVðtÞ þ aIðtÞ � ½xþ Uþ mþ aþ t�CAsyðtÞ

dIðtÞ
dt

¼ lrVðtÞ þ aCAsyðtÞ þ bCSyðtÞ þ lcSðtÞ � ½mþ zþ gþ aþ [�IðtÞ

9>>>>>>>>=
>>>>>>>>;

(10)
we can say from our explanation above that x1 ¼ CSyðtÞ,x2 ¼ CAsyðtÞ and x3 ¼ IðtÞnow with N ¼ V þ Sþ CSy þ CAsy þ Iþ R.
This system has three infected states, CSyðtÞ, CAsyðtÞ and IðtÞ; and three uninfected states,V,S and R. Although there are six
states in the model, it is five-dimensional as the total population size is constant.At the infection-free steady state
CSyðtÞ ¼ CAsyðtÞ ¼ IðtÞ ¼ RðtÞ ¼ VðtÞ ¼ 0,hence S¼N,now we define FiðxÞand ViðxÞ as

FiðxÞ¼
2
4 ql4SðtÞ þ lhkVðtÞ
ð1� qÞl4SðtÞ þ lhð1� kÞVðtÞ

lcSðtÞ þ lrVðtÞ

3
5; ViðxÞ¼

2
4�H3CSyðtÞ þ UCAsyðtÞ þ [IðtÞ

qCSyðtÞ � H4CAsyðtÞ þ aIðtÞ
bCSyðtÞ þ aCAsyðtÞ � H5IðtÞ

3
5

Let x0 be the disease-free equilibrium. The values of the Jacobian matrices F(x) and V(x) are:
We differentiate FiðxÞ with respect to CSyðtÞ, CAsyðtÞ and IðtÞ and get

F ¼ vFiðx0Þ
dxj

2
vF1 vF1 vF1

3

F ¼

6666666664

vCSyðtÞ vCASyðtÞ vIðtÞ
vF2

vCSyðtÞ
vF2

vCASyðtÞ
vF2
vIðtÞ

vF3
vCSyðtÞ

vF3
vCASyðtÞ

vF3
vIðtÞ

7777777775
2

ðq4ÞS0 þ hkV0 ðq4ÞS0 þ hkV0 ðq4ÞS0 þ hkV0
3

F ¼

66666666664

Tεsy
S0

TεAsy
S0

T
S0

Tεsy
ðð1� qÞ4ÞS0 þ hð1� kÞV0

S0
TεAsy

ðð1� qÞ4ÞS0 þ hð1� kÞV0

S0
T
ðð1� qÞ4ÞS0 þ hð1� kÞV0

S0

Tεsy
cS0 þ rV0

S0
TεAsy

cS0 þ rV0

S0
T
cS0 þ rV0

S0

77777777775
We differentiate ViðxÞ with respect to CSyðtÞ, CAsyðtÞ and IðtÞ

V ¼ vViðx0Þ
dxj

V ¼

0
BBBBBBBBB@

vV1

vCSyðtÞ
vV1

vCASyðtÞ
vV1

vIðtÞ
vV2

vCSyðtÞ
vV2

vCASyðtÞ
vV2

vIðtÞ
vV3

vCSyðtÞ
vV3

vCASyðtÞ
vV3

vIðtÞ

1
CCCCCCCCCA

V ¼
0
@�H3 U [

q �H4 a
b a �H5

1
A

and
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V�1 ¼

0
BBBBBBB@

H4H5 � aa
Z

H5Uþ a[

Z
H4[þ aU

Z
H5qþ ab

Z
H3H5 � b[

Z
H3aþ q[

Z
qaþ H4b

Z
H3aþ bU

Z
H3H4 � Uq

Z

1
CCCCCCCA

where:
Z ¼ ðH5Uq � H5H3H4 þ H3aa þUab þ H4b[ þ a[qÞH7 ¼ ½ð1 � qÞ4Tεsy þ hð1 � kÞTεAsy� � H4H8 ¼ ½q4Tεsy þ hkTεAsy� � H3
The matrix FV�1 is known as the next-generation matrix and the largest eigenvalue or spectral radius of FV�1 is the

effective reproduction number of the model (Diekmann et al., 2009; WuMSc et al., 2012).

FV�1 ¼
�
vFiðx0Þ
dxj

��
vViðx0Þ
dxj

��1
Let.
B1 ¼ Tεsy

ðq4ÞS0þhkV0

S0 B2 ¼ TεAsy
ðq4ÞS0þhkV0

S0 B3 ¼ T ðq4ÞS0þhkV0

S0 G1 ¼ Tεsy
ðð1�qÞ4ÞS0þhð1�kÞV0

S0 G2 ¼ TεAsy
ðð1�qÞ4ÞS0þhð1�kÞV0

S0 G3 ¼
T ðð1�qÞ4ÞS0þhð1�kÞV0

S0 J1 ¼ Tεsy
cS0þrV0

S0 J2 ¼ TεAsy
cS0þrV0

S0 J3 ¼ T cS0þrV0

S0 Q1 ¼ H4H5�aa
Z Q2 ¼ H5Uþa[

Z Q3 ¼ H4[þaU
Z M1 ¼ H5qþab

Z M2 ¼
H3H5�b[

Z M3 ¼ H3aþq[
Z F1 ¼ qaþH4b

Z F2 ¼ H3aþbU
Z F3 ¼ H3H4�Uq

Z

FV�1 ¼
0
@ ðB1Q1 þ B2M1 þ B3F1Þ ðB1Q2 þ B2M2 þ B3F2Þ ðB1Q3 þ B2M3 þ B3F3Þ

ðG1Q1 þ G2M1 þ G3F1Þ ðG1Q2 þ G2M2 þ G3F2Þ ðG1Q3 þ G2M3 þ G3F3Þ
ðJ1Q1 þ J2M1 þ J3F1Þ ðJ1Q2 þ J2M2 þ J3F2Þ ðJ1Q3 þ J2M3 þ J3F3Þ

1
A

The eigenvalues,W of the equation can be computed from the characteristic equation:

�� FV�1 �WI
�� ¼ 0

FV�1 ¼
0
@ ðB1Q1 þ B2M1 þ B3F1Þ �W ðB1Q2 þ B2M2 þ B3F2Þ ðB1Q3 þ B2M3 þ B3F3Þ

ðG1Q1 þ G2M1 þ G3F1Þ ðG1Q2 þ G2M2 þ G3F2Þ �W ðG1Q3 þ G2M3 þ G3F3Þ
ðJ1Q1 þ J2M1 þ J3F1Þ ðJ1Q2 þ J2M2 þ J3F2Þ ðJ1Q3 þ J2M3 þ J3F3Þ �W

1
A

W1 ¼0

and

W2 ¼
H2
7



h1h4H6 þ h2h5H6 þ h2h3h6H6 þ h1h3H

2
6

�
� h4



h1H6H7h6 þ h2H7h5h6 þ h1h4h5h6H7 þ h2h

2
6h3

�

ð½rT þ cT� � H5ÞðH6ðH7Þ � h6h4Þ


H6ðH7Þ2 � h6h4

�

where.
h1 ¼ rTεsy þ cTεAsy þ bh2 ¼ rTεsy þ cTεAsy þ ah3 ¼ q4T þ hkT þ [h4 ¼ q4Tεsy þ hkTεAsy þUh5 ¼ ð1 � qÞ4T þ hð1 � kÞT þ

ah6 ¼ ð1 � qÞ4Tεsy þ hð1 � kÞTεAsy þ q

The eigenvalue of the model is in the form.

R0 ¼
H2
7



h1h4H6 þ h2h5H6 þ h2h3h6H6 þ h1h3H

2
6

�
� h4



h1H6H7h6 þ h2H7h5h6 þ h1h4h5h6H7 þ h2h

2
6h3

�

ð½rT þ cT� � H5ÞðH6ðH7Þ � h6h4Þ


H6ðH7Þ2 � h6h4

�

7. The endemic equilibrium

The endemic equilibrium is denoted by Ee and defined as a steady-state solutions for the model. This can occur when there
is a persistence of the disease. It can be obtained by equating the system of Equation to zero. Then we obtained

V� ¼ puþ nS�

ðlrþ dþ mþ lhÞ
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S� ¼ dV� þPC�
sy þ xC�

Asy þ R�fþ ð1� pÞu
½mþ l4þ clþ n�

� ql4S� þ UC�
Asy þ [I� þ lhkV�
CSy ¼ ½Pþ qþ mþ bþ s�

� ð1� qÞl4S� þ qC�
Sy þ lhð1� kÞV� þ aI�
CAsy ¼ ½xþ Uþ mþ aþ t�

rlV� þ aC�
Asy þ bC�

Sy þ lcS�

I� ¼ ½mþ zþ gþ aþ [�

gI� þ tC�
Asy þ sC�

Sy
R� ¼ ½mþ f�
Hence Ee ¼ fV�; S�;C�
Sy;C

�
Asy; I

�;R�g is the endemic equilibrium of system(2).

Lemma 7.0.1. For R0 >1a unique endemic equilibrium point Eeexist and vice versa.

Proof:
For the disease to be endemic, dCAsy

dt >0; dCSy

dt >0; dIdt>0, that is

dCSyðtÞ
dt

¼ ql4SðtÞþUCAsyðtÞþ [IðtÞþ lhkVðtÞ � ½Pþ qþmþbþ s�CSyðtÞ > 0

dCAsyðtÞ

dt

¼ð1� qÞl4SðtÞþ qCSyðtÞþ lhð1� kÞVðtÞþ aIðtÞ � ½xþUþmþaþ t�CAsyðtÞ > 0

dIðtÞ

dt

¼ rlVðtÞþaCAsyðtÞþbCSyðtÞþ lcSðtÞ � ½mþ zþgþ aþ [�IðtÞ > 0

now From the inequality of system (10)
½mþ zþgþ aþ [�IðtÞ < lrVðtÞþaCAsyðtÞþ bCSyðtÞ þ clSðtÞ

rT IþεsyCSyþεAsyCAsy VðtÞ þ aC ðtÞ þ bC ðtÞ þ cT IþεsyCSyþεAsyCAsy SðtÞ

I< N Asy Sy N

½mþ zþ gþ aþ [�
From the fact SðtÞ
N � 1;and VðtÞ

N � 1

I<

�
rTεsy þ cTεsy þ b

�
CSy þ

�
rTεAsy þ cTεAsy þ a

�
CAsy

½rT þ cT� � H5

h1CSy þ h2CAsy
I< ½rT þ cT� � H5
From the inequality of system (10)

CSyðtÞ<
q4T IþεsyCSyþεAsyCAsy

N SðtÞ þ hkT IþεsyCSyþεAsyCAsy

N VðtÞ þ UCAsyðtÞ þ [IðtÞ
½Pþ qþ mþ bþ s�
From the fact SðtÞ
N � 1;and VðtÞ

N � 1

CSyðtÞ<
ðq4T þ hkT þ [ÞIðtÞ þ �

q4Tεsy þ hkTεAsy þ U
�
CAsy�

q4Tεsy þ hkTεAsy
�� H3

h3IðtÞ þ h4CAsy
CSyðtÞ< H7
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CSyðtÞ<
h3ðH6ðH7ÞÞIðtÞ þ h4ððH7Þh5ÞIðtÞ

H6ðH7Þ2 � h6h4
From the inequality of system (10)

CAsy <
ð1� qÞ4T IþεsyCSyþεAsyCAsy

N SðtÞ þ hð1� kÞT IþεsyCSyþεAsyCAsy

N VðtÞ þ qCSyðtÞ þ aIðtÞ
½xþ Uþ mþ aþ t�
From the fact SðtÞ
N � 1;and VðtÞ

N � 1

CAsy <
ðð1� qÞ4T þ hð1� kÞT þ aÞIðtÞ þ �ð1� qÞ4Tεsy þ hð1� kÞTεAsy þ q

�
CSy�ð1� qÞ4TεAsy þ hð1� kÞTεAsy

�� H4

h5IðtÞ þ h6CSy
CAsy < �ð1� qÞ4TεAsy þ hð1� kÞTεAsy
�� H4

ðð½H7Þh5 þ h6h3ÞIðtÞ
CAsy < H6ðH7Þ � h6h4
By substituting CSy and CAsy into I we have.

I<
h1

ðh3H6ðH7Þþh4ðH7Þh5ÞIðtÞ
H6ðH7Þ2�h6h4

þ h2
ðð½H7Þh5þh6h3ÞIðtÞ

H6ðH7Þ�h6h4

½rT þ cT� � H5

I<
h1ðh3H6ðH7Þ þ h4ðH7Þh5ÞðH6ðH7Þ � h6h4ÞIðtÞ þ h2ððH7Þh5 þ h6h3Þ



H6ðH7Þ2 � h6h4

�
IðtÞ

ð½rT þ cT � � H5ÞðH6ðH7Þ � h6h4Þ


H6ðH7Þ2 � h6h4

�

1<
H2
7



h1h4H6 þ h2h5H6 þ h2h3h6H6 þ h1h3H

2
6

�
� h4



h1H6H7h6 þ h2H7h5h6 þ h1h4h5h6H7 þ h2h

2
6h3

�

ð½rT þ cT � � H5ÞðH6ðH7Þ � h6h4Þ


H6ðH7Þ2 � h6h4

�

0 1<R0

Thus a unique endemic equilibrium exist when. R0 >1:

8. Numerical simulation

We observe the dynamics of pneumonia model over time and analyzing the results of our model by performing numerical
simulations using Matlab software.The parameters used in our simulation are based on data from Brong Ahafo Regional
Health Directorate on children under six years of age and some values assigned to other parameters have been derived from
epidemiological literature.The table below shows the parameters with their respective values peculiar to Brong Ahafo Region
(Table 3).

It is observed from Fig. 2 above that the susceptible population decrease as a result of mass vaccination and education to
period of half a year.It is again observed that the susceptible population increases as a result of societal perception about the
vaccines and lack of awareness and education of this population.

It is observed from Fig. 3 above that the vaccinated population increases as time increases due to the mass immunization
coverage in the region.

It is observed from Fig. 4 that the symptomatic population increases with respect to time. within a space of 6 months the
symptomatic population showed a steady increase in population and within a time range of 1 year there was a slightly curved
increase in the population and later there was a steady increase in the symptomatic population within a space of 3 years.All
this increases came as a result of the waning ability of the individuals in the population and the efficacy rate of the vaccine.

It is observed from Fig. 5 that the asymptomatic carrier population showed a sharp curved increase in population within
4years and then increases steadily as time increases. This rapid increase of the asymptomatic individuals is as a result of the
strong immune system and efficacy of the vaccine.



Table 3
Parameter estimates for a pneumonia model.

parameters value source

p 0.867 Estimated
u 389772 Estimated
q 0.234 Estimated
4 0.05 Jacob.O, 2012 (Jacob Otieno et al., 2012)
b 0.001e0.00196 per day Jacob.O, 2012 (Jacob Otieno et al., 2012)
a 0.001e0.00196 per day Jacob.O, 2012 (Jacob Otieno et al., 2012)
s 0.0115 Jacob.O, 2012 (Jacob Otieno et al., 2012)
t 0.0076 Estimated
q 0.014 Estimated
U 0.15 Estimated
m 0.01 Getachew Teshome Tilahun,2017 (Tilahun et al., 2017)
k 0.2 Estimated
h 0.002 Emile.J, 2012 (Ndelwa et al., 2015)
d 0.0025 Emile.J, 2012 (Ndelwa et al., 2015)
g 0.8 Estimated
r 0.002 Estimated
P 0.002 Estimated
x 0.057 Getachew Teshome Tilahun,2017 (Tilahun et al., 2017)
a 0.11 Estimated
[ 0.073 Estimated
c 0.095 Jacob.O, 2012 (Jacob Otieno et al., 2012)
n 0.008 Getachew Teshome Tilahun,2017 (Tilahun et al., 2017)
2 0.0026 Estimated
f 0.02 Estimated

Fig. 1. Flow chart of the SVCSyCAsyIR model.

D. Otoo et al. / Infectious Disease Modelling 5 (2020) 42e60 55
From Fig. 6 the infected population decreases rapidly with respect to time.This decrease came as a result of the mass
vaccination of the population and individual gaining temporary immunity of the disease.As the contact rate is high with
respect to time[years] the infected population will begin to increase again.

From Fig. 7 the recovery population increases sharply within 3 years and later showed a steady increase with respect to
time.This is as a result of the mass vaccination of the individual and the symptomatic carrier, asymptomatic carrier and the
infected population gaining temporary immunity to join the recovered population.

The graph in Fig. 8 shows the various epidemiological classes seen as a function of time. It comprises the graphs Figs. 2,
Figure 3, Fig. 4,Fig. 5,Figs. 6 and 7



Fig. 2. Susceptible population as a function of time.

Fig. 3. Vaccinated population as a function of time.
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9. Conclusion

The model has shown the importance of pneumonia vaccination in reducing the transmission dynamics of the disease
within the population in Brong Ahafo region.The model depicted strongly that the spread of the disease is largely due to the
effective contact rate of the infected population as well as symptomatic and asymptomatic carriers of individuals within the
entire population.It is also realized that the efficacy of the vaccination is not 100% effective so individuals within the



Fig. 4. Symptomatic carrier as a function of time.

Fig. 5. Asymptomatic carrier as a function of time.

D. Otoo et al. / Infectious Disease Modelling 5 (2020) 42e60 57



Fig. 6. Infected population as a function of time.

Fig. 7. Recovered population as a function of time.
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Fig. 8. Epidemiological classes as a function of time.
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population can become susceptible with respect to time.Hence intensive public education should be given to parents and
individual to complete all the three doses of the vaccine to avert any possible outbreak of pneumonia in the region.
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