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With the advancement in the field of nanotechnology, different approaches for

the synthesis of nanomaterials have been formulated, among which the

bioinspired or biomimetic nanoplatforms have been utilized for different

biomedical applications. In this context, bioinspired or biomimetic

nanoparticles (NPs) have been synthesized in which the inspiration for

synthesis is taken from nature or its components. Innovations in

bioengineering tools and bio-conjugation chemistry have enabled scientists

to develop novel types of such nanoplatforms. They have several advantages

over normal synthesis protocols. In this review, we 1) summarized nanomaterial

types and their advancements in bioinspired nanotechnology therapies; 2)

discussed the major types, novel preparation methods, and synthesis

progress of NPs in current biomedical fields; 3) gave a brief account of the

need for synthesizing NPs via a bioinspired route rather than their common

route; 4) highlighted the updated information on the biomimetic synthesis of

different types of NPs; and 5) provided future perspectives in the synthesis of

novel NPs for their potential applications in biomedical sciences.
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Introduction

In recent years, the demand for the use of nanotechnology in

treating diseases such as cancer has been increasing, owing to the

vast striking properties of nanomaterials that allow scientists to

modify them to suit their needs. The size of therapeutically used

nanoparticles (NPs) is lower than 100 nm with a specific surface

area to volume ratio, which makes them a remarkable carrier for

drugs as the positively charged particle is more compatible and

attracted to negatively charged membranes of cells, which

contributes to its higher cellular uptake. Nanomaterials tend to

enhance the permeation and retention (EPR) effect, leading to good

contact with cells and their compartments. Size and surface

properties can be easily adjusted in these nanomaterials due to

which different types of structures can be drawn, such as particles,

fibers, and rods (Kim et al., 2010). NPs deliver drugs either passively

or actively. In this respect, various nanomaterials have been

employed to synthesize different types of NPs to apply them in

the field of nanomedicine. However, due to stringent preparation

methods and the use of harsh chemicals, the applicability of NPs is

sometimes questionable, which leads to bioinspired methods

coming into this picture. The most common members of

bioinspired nanoparticles include solid lipid nanoparticles,

dendrimers, aptamers, protein NPs, and viral NPs

(Sivarajakumar et al., 2018) (Madamsetty et al., 2019). NPs have

greatly improved the therapeutic action of many drugs and

diagnostic value of various diseases due to its small size, large

surface area–to-volume ratio, enhanced drug loading, easy

synthetic routes, increased drug release timings, easy penetration

abilities, and finally easy retention in the affected tissues.

Many diseases are caused by irregularities in the body at the

molecular level or on a nanoscale, such as misfolding of

important proteins, mutations in single nucleotide bases, and

eventually infections induced by some pathogens (Kim et al.,

2010). NPs have been given more attention due to the fact that

they have the same size scale as biological molecules or

components (Chan, 2017). Due to their tunable properties

such as shape, size, morphology, surface charge, and surface

elements, NPs can be used as therapeutic agents in the field of

nanomedicine (Kim et al., 2010). Having some inspiration from

biological aspects and the field of materials technology,

bioinspired nanomaterials and their components, such as

bioinspired nanoparticles and bioinspired nanovesicles, have

received much more attention for two decades (Gaharwar

et al., 2014). These materials, after mimicking nature, changed

into novel generations of materials such as bacterial-inspired,

mammalian cell–inspired, and virus-inspired nanosystems.

Common nanosystems formed include lipid-based systems,

vesicle-based nanosystems (exosomes), polysaccharide-based

systems, and metallic nanosystems. The terms “biomimetic”

and “bioinspired” are used interchangeably, with the same

meaning but very little difference. The former states directly

mimic techniques or processes that are present in nature, while

the latter can be direct or indirect, with a wider range of uses and

more flexibility. Figure 1 summarizes the synthetic sources and

important applications of biomimetic nanomaterials.

Currently, different types of cells such as red blood cells,

white blood cells, cancer cells, and platelets are extruded from the

plasma membrane and coated with different types of NPs by

different types of technologies, such as liposomes, metallic NPs,

dendrimers, quantum dots, and polymeric NPs, to form

biomimetic NPs. These have been used to evoke immune

responses involved in cancer immunotherapy. Figure 2

illustrates different plasma membrane coatings on different

NPs for cancer immunotherapy.

In this article, various types of nanomaterials and their

advancements in bioinspired nanotechnology therapy were

critically reviewed. The major types, novel preparation

methods, and synthesis progress of NPs in the current

biomedical field were also discussed. Furthermore, we have

given a brief account of the need for synthesizing NPs via a

bioinspired route rather than their common route. This review

highlighted the updated information on the biomimetic synthesis

of different types of NPs. Table 1. summarized the nanoparticles

formed by bioinspired technology discussed in the review article.

Bioinspired metallic nanoparticles

Bioinspired silver nanoparticles (AgNPs)

Ali et al. (2020) used different fractions of Elaeagnus

umbellate extract (EU) to reduce silver nitrate to silver NPs,

ultimately synthesizing AgNPs. The formed NPs were

morphologically controlled, and their shape/size-dependent

application was evaluated. Furthermore, the shape, size, and

bactericidal activity of these NPs were evaluated, and their

mechanism of action was studied via atomic force microscopy

(AFM) and scanning electron microscopy (SEM). They found

that the NPs were around 40 nm in size and were monodisperse

and non-toxic in nature. In addition, they had a good killing

effect against gram-positive and gram-negative strains of

Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).

There was an electrostatic interaction between the bacterial cell

wall and NPs. The results showed that the cell surface

accumulation of NPs in E. coli was faster and more obvious

than that in S. aureus, which was probably related to the different

composition of cell walls of two different bacterial strains. NPs

penetrated into bacteria and interacted with sulfhydryl groups to

denature proteins, ultimately affecting enzyme activity.

Bioinspired gold nanoparticle

Graphene has become one of the most developed

nanomaterials and has shown great scientific value for future
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applications of nanotechnology (Mao et al., 2013). It may be

considered one of the best biocompatible nanoplatforms due to

its applications in antibacterial (Akhavan and Ghaderi, 2010; Hu

et al., 2010; Ma et al., 2011), antiviral materials (Akhavan et al.,

2012), cancer-targeting (Yang et al., 2010), drug delivery (Zhang

et al., 2010), and photothermal therapy (Yang et al., 2012). A

team of scientists synthesized gold nanoparticles (AuNPs) coated

with reduced graphene oxide. They used Syzygium cumini seed

extract to reduce both chloroauric acid and graphene oxide (GO).

Meticulously, biophysical techniques such as UV-Vis

spectroscopy (UV-Vis), dynamic light scattering (DLS), and

Fourier transform infrared spectroscopy (FTIR) were

employed to characterize its physicochemical properties. The

results showed AuNPs were successfully synthesized and coated

with graphene oxide. The antibacterial and anticancerous

activities were performed on the strain of gram-negative

bacteria, E. coli, and on the strains of gram-positive bacteria,

S. aureus and Bacillus subtilis, and on the human colorectal

cancer cell line (HCT 116) and lung (A549) cancer cell line,

respectively. The cytotoxicity and antibacterial toxicological

assays revealed that the synthesized nanocomposite showed

significant anticancer activity against the A549 cell line and

gram-negative bacterial strain E. coli compared to the rest of

the strains (Kadiyala et al., 2018).

FIGURE 1
Illustrates different plasma membrane coatings on different nanoparticles for cancer immunotherapy. The plasma membranes of different
types of cells like RBC, WBC, and cancer cells were extruded and coated with different types of nanoparticles (liposomes, dendrimers, carbon dots,
polymeric nanoparticles, metallic nanoparticles, etc.) to form biomimetic nanoparticles which evoke immune responses (T cells, B cells, dendritic
cells) to participate in the process of cancer immunotherapy.
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TABLE 1 Summarizes the nanoparticles formed by bioinspired technology discussed in the review article.

Type of
nanoparticle

Name of nanoparticle Synthesis protocol Application References

Silver nanoparticle Bioinspired AgNPs Elaeagnus umbellate extract (EU) for
reducing silver nitrate to silver
nanoparticles.

Good killing effect against gram-positive
and gram-negative strains of
Staphylococcus aureus (S. aureus) and
Escherichia coli (E. coli)

Ali et al., 2020

Gold nanoparticle AuNPs coated with reduced
graphene oxide.

Syzygium cumini seed extract (SCSE) to
simultaneously reduce chloroauric acid
and graphene oxide (GO).

Enhanced antibacterial and anticancerous
activity on Staphylococcus aureus and
Bacillus subtilis and human colorectal
cancer cell line (HCT 116) and lung
(A549) cancer cell line, respectively.

Kadiyala et al.,
2018

Iron oxide nanoparticle SPION-loaded silica
nanocapsules

SPION-loaded silica nanocapsules based
on a bimodal catalytic peptide surfactant
stabilized nanoemulsion template method

Encapsulating iron oxide into silica
nanocapsules simply signifies the drug
delivery ability.

Wilson et al., 2021

Poly (lactic-co-glycolic
acid) (PLGA)
nanoparticles

Polymeric nanoparticles coated
with programmed cancer cell
membrane (BiNPs)

Stimulated cancer cells for over-
expression of integrin expression on the
outermost surface of cells and then coated
polymeric nanoparticles membranes.

Enhanced circulation time, escape from
immune system, and improved
biocompatibility

Hu et al., 2011

Alginate NPs Bioinspired alginate NPs Microbubble-bursting method Improvement in size and dispersity of
formed NPs

Elsayed et al.,
2015

Nanovesicle PSMA-targeted “Hybrid”
nanoparticles

Hybrid nanoparticles in which they
loaded PSA cleavable prodrug
doxorubicin (DOX-PSA).

Increased specificity, decreased tumor
growth in in vitro and in vivo models
compared to free forms

Ma et al., 2021

Nanovesicle Polymeric nanovesicle (TPZ/
AI-NV)

Used diblock copolymers for the synthesis
of nanovesicle: one was chlorine e6 (Ce6)–
modified PEG-polyserine, another one
was PEG-poly (Ser-S-NI

Precise drug delivery and finally
synergistic therapeutic effect was observed

Qian et al., 2017

Nanovesicle Biomimetic nanovesicle coated by
PD-1 receptors

First, they transfected HEK 293 T cells
with plasmid to express PD-1 on the
surface of cell membrane and secondly
they synthesized nanovesicles by dialysis
method using repeated extrusion process

Nanovesicles accumulate near the tumor
regions and retard the tumor growth
through the filtration of CD8+ T cells.

Zhang et al.,
2018a

Exosomes Melanoma (cancer of skin)-
derived exosomes

Loaded with immunomodulatory CpG
DNA displayed antigens on their surface

Better in eradicating tumor than either
exosomes or DNA alone

Morishita et al.,
2016

Exosomes Withaferin A (WFA)–loaded
exosomes targeted by conjugated
it with folic acid

Bioinspired exosomes derived from
bovine milk

Enhanced antitumor effect (74%) when
compared to non-targeted
exosomes (50%)

Munagala et al.,
2016

Lipoproteins Bioinspired lipoprotein
particle bLP

Loaded both a photothermal agent
(DiOC18 (Hu et al., 2010) (DiR) producing
D-bLP NPs and an anticancer drug,
namely, mertansine forming M-bLP

D-bLP remodeled the tumor stromal
microenvironment (TSM) and M-bLP
killed the tumor cells and inhibited tumor
relapse and metastasis

Tan et al., 2019

Nanovehicle based
particle

Bioinspired tumor-responsive
theranostic nanovehicle (BTV)

A theranostic probe of photochlor
(HPPH), a tumor-activated melittin pro-
peptide (TM), and a ROS-responsive
prodrug gemcitabine (RG) was loaded
into a lipoprotein-based bioinspired
nanovehicle

Drastic elimination of multiple
immunosuppressive cells and enhanced
infiltration of cytotoxic lymphocytes in
tumor

Wang et al., 2021

Chitosan or calcium
phosphate–based
Nanoparticles

VitB12 was conjugated on
chitosan or calcium
phosphate–based NPs

Ionic gelation method Oral absorption of insulin was highly
enhanced

Ke et al., 2015,
Verma et al., 2016

Polycaprolactone
nanoparticles

Polyhydroxybutyrate/poly-3-
caprolactone (PHB/PCL) mats

Process of electrospinning Significant antimicrobial activity toward
both the strains of bacteria (gram-
positive/gram-negative), very good water
holding capacity, hydrophilicity, and
in vitro activity which clearly indicates its
interaction and attachment

Avossa et al., 2021

Quantum dots Fluorescent C-quantum dots By the process known as hydrothermal
approach using Citrus limetta juice.

Enhanced in vitro activity clearly indicates
its anti-adhesion and anti–biofilm
production ability of Candida albicans

Shaikh et al., 2019
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Bioinspired iron oxide nanoparticles

Superparamagnetic iron oxide NPs (SPIONs) have been

extensively used owing to their unique properties. However,

their use in the biomedical field is hampered by the fact that

these NPs are more toxic, less magnetic, and expensive due to

the harsh chemical reagents used for the synthesis of these

NPs. Russell J. Wilson bioengineered SPION-loaded silica

nanocapsules based on a bimodal catalytic peptide

surfactant stabilized nanoemulsion template. SPIONs were

preloaded into the oil phase of nanoemulsions, and the surface

property of the peptide and its electrostatic repulsion resulted

in the stability of nanoemulsions. Catalytic peptides lead to

biosilification and promote the formation of silica shell

nanocapsules containing iron oxide. In conclusion, the

encapsulating of iron oxide into silica nanocapsules simply

signifies the drug delivery capabilities of these formed

nanoplatforms (Wilson et al., 2021).

Bioinspired green synthesis of metallic
nanoparticles

Inspired by nature, there is a growing opportunity for

bioinspired synthesis of metallic nanoparticles due to its ease

and low cost of biosynthesis, and they can be easily modified by

many proteins, lipids, carbohydrates, and antibodies to enhance

their biological effects (Gurunathan, 2019). This is attributed to

the toxic effects and high energy inputs provided by the use of

harsh chemicals and stabilizers in the synthesis and processes of

these metallic NPs. From the point of view of industrial

preparation, it is necessary to ensure that the NPs are well

dispersed and their size is controlled. Various attempts have

been made to utilize many food by-products such as orange peels

(Castro et al., 2013) and banana peels (Ibrahim, 2015). In

addition to their use in synthesis as reducing agents, they can

be easily recovered into some useful products through these

processes. Inspired by these facts, a group of workers synthesized

silver (Ag), gold (Au), and platinum (Pt), using an aqueous

extract of the rind of the fruit Garcinia mangostana, used against

inflammation, cholera, and diarrhea (Pedraza-Chaverri et al.,

2008), to check for their antimicrobial activity with or without

their attachment to several classes of antibiotics. The results

showed that AgNPs had a better antimicrobial effect than AuNPs

and PtNPs against gram-negative strains of bacteria, and all

groups of NPs showed synergistic activity with different classes of

antibiotics, indicating a certain correlation between antibiotics

and NPs. Additionally, Bacillus spp., previously found to be

resistant to streptomycin, was now susceptible to the

combination of AuNPs and antibiotics. Collectively, metallic

NPs increased the susceptibility of bacterial strains to

antibiotics (Nishanthi et al., 2019).

Polymeric bioinspired nanoparticles

Poly (lactic-co-glycolic acid)
nanoparticles

Organ-specific drug targeting remains a challenging task

in the fields of drug delivery and nanomedicine. A team of

scientists has synthesized programmable bioinspired NPs

(P-BiNPs) that can deliver cargo to homotypic cancer cells

while targeting bone localization in animal models. First of all,

they stimulated cancer cells to over-express integrin on the

outermost surface of cells. They then coated the polymeric

NPs with these programmed cancer cell membranes, which

were absorbed by prostate cancer cells to improve the

therapeutic ability of drugs, enhance their imaging quality,

and ultimately reduce side effects. Coating these NPs in

biologically inspired nanomaterials enhanced their

circulation time, escaped from the immune system, and

improved biocompatibility (Hu et al., 2011).

Alginate nanoparticles

In the field of nanotechnology, natural and synthetic NPs

have been extensively synthesized and characterized for drug

delivery. It comprises poly (D,L-lactide), poly (D,L-

glycolide), poly (lactic acid), poly (lactide-co-glycolide)

acid, alginate, chitosan, gelatin, and collagen (Soppimath

et al., 2001). Alginate NPs are an important class of

polymeric drug delivery carriers that enhance

bioavailability and finally the efficacy of many drugs

(Kulkarni Vishakha et al., 2012). Alginate, a natural sugar

polysaccharide, is mucoadhesive in nature due to the cationic

nature of the polymer so that it can adhere to the plasma

membrane (Malafaya et al., 2007).

Synthesis schemes have been developed from time to time

to obtain proper alginate NPs. However, these conventional

methods lack proper regulation, require dispersion and size

of NPs, and finally require the use of harsh organic solvents

that might be toxic to the in vivo environment. Bubble

bursting is a natural phenomenon occurring in the marine

medium virtue, which forms nano-sized and micro-sized

particles (Fitzgerald, 1991). It is mainly caused by wave

breaking via, namely, bubble film disintegration and

jetting (Spiel, 1998). Hence, alginate NPs have been

synthesized using the microbubble-bursting method with a

size range of 80–200 nm. A device, which is T junction

microfluidic, was used by the researcher group to form

microbubbles with varying sizes in the best possible

controlled manner. The size produced was directly related

to the viscosity of the alginate solution used in this process

(Elsayed et al., 2015).
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Bioinspired nanovesicle

Nanovesicles

Nanovesicles based on lipids have been widely used as important

drug delivery carriers in the field of nanomedicine due to their good

biocompatibility and sample preparation protocols. In nanovesicles,

the outer layer is covered with two lipids and the inner part is

composed of an aqueous cavity. The first and foremost characterized

lipid nanovesicle was liposomes, and they have been used as drug

delivery carriers to deliver genes and drugs (Grimaldi et al., 2016).

Bioinspired nanovesicles include biomimetics and cell-derived

nanovesicles, which form a new class of drug delivery carriers

(Goh et al., 2017; Zhao et al., 2020). The construction of these

vesicles involves extrusion of intact cells and then synthesis of

nanoparticles with a coating of cell-derived membranes and

fusing exosomes with lipid-derived particles (Ma et al., 2021).

This ensures a high loading capability and mimics many natural

particles so that it may not evoke any type of immune response.

Finally, they are also highly biocompatible, finding application in

drug delivery, immunotherapy, tumor targeting, and gene delivery

(Ilahibaks et al., 2019; Park et al., 2019).

Ma et al. (2021) simultaneously targeted two specific

components of prostate cancer (PC). In PC, prostate-specific

membrane antigen (PSMA) and prostate-specific antigen (PSA)

are found to be highly upregulated in advanced stages of PC, and

there was no evidence that they are both targeted. Hence, they

designed PSMA-targeted “Hybrid” NPs and loaded them with

the PSA cleavable prodrug, doxorubicin (DOX-PSA). The

specificity of in vitro and in vivo models increased and tumor

growth decreased compared to free forms and untargeted PSA

hybridization, indicating an enhanced efficacy of the formed

nanovesicle loaded with the prodrugs.

Inspired by anaerobic bacteria and their metabolism under

hypoxia, Qian et al. (2017) synthesized the nanovesicle system.

Under hypoxia, external light irradiation delivered the material to

the tumor microenvironment, resulting in a reaction. They used

diblock copolymers for the synthesis of nanovesicles: one was chlorine

e6 (Ce6)–modified PEG-polyserine, and the otherwas PEG-poly (Ser-

S-NI). When the light irradiates the photosensitizer Ce6, oxygen is

converted to singlet oxygen, which is further consumed by oxidizing

the thioether on PEGpoly (Ser-S-NI) to a hydrophilic oxidized state,

resulting in an anoxic atmosphere. This low oxygen concentration

atmosphere could bring out the bioreduction of NI pendants into

hydrophilic units and eventually the disassociation of the nanovesicles.

Additionally, by encapsulating the hypoxia-activated prodrug

tirapazamine into the cavity of nanovesicles, automated, precise

drug delivery and finally synergistic therapeutic effect between the

two main processes, namely, photodynamic therapy and

chemotherapy could thus be achieved.

Nanovesicles derived from cell membranes can be directly used for

biomimetic nanomedicines. Taking advantage of genetic engineering

technology and nanotechnology, Zhang and co-workers recently

developed a biomimetic nanovesicle that represents the PD-1

receptor on its surface for cancer immunotherapy. First, HEK

293 T cells were transfected with a plasmid to express PD-1 on the

surface of the cell membrane, and then nanovesicles were synthesized

by the dialysismethod using a repeated extrusion process. The blockade

of PD-1 or PD-L1 is an emerging trend in cancer immunotherapy as it

suppresses the host antitumor immune response. Data from their

experiments revealed that vesicles carrying PD-L1 bind to PD-L1

receptors on cancer cell membranes. In addition, in vivo studies

have shown that these nanovesicles accumulate near tumor regions

and retard tumor growth throughfiltration ofCD8+T cells. This system

was boosted by the use of drugs such as 1-methyl-tryptophan, which

was proved to be an effective inhibitor of the immunosuppressive

enzyme indoleamine 2, 3-dioxygenase (IDO) (Pardoll, 2012). By

encapsulating it in the core of a nanovesicle, they have increased the

efficacy of formed particles by blocking two important pathways

(Zhang et al., 2018a).

Extracellular vesicles

Extracellular vesicles are heterogeneous entities released by cells

and play a key role in cell-to-cell communications. Exosomes are the

smallest of all kinds of extracellular vesicles, with a size ranging from

50 to 150 nm (Stremersch et al., 2016). They are used as drug

delivery agents as they can be moved from one location to another

and in some cases, as a diagnostic marker. However, it is sometimes

difficult to use it as a sole drug delivery agent due to challenges faced

by many scientists, such as low loading capacity and obtaining a

lower amount of exosomes in normal conditions. Hence, bioinspired

exosomes come into play as an alternative to naturally derived

exosomes, and it proved to be an effective therapy against many

issues, as mentioned previously (Lu and Huang, 2020).

Exosomes

It has been reported that exosomes from different types of cells,

such as those derived from immune cells andmesenchymal stem cells

(MSCs) in particular conditions, possess different therapeutic

responses (Buschow et al., 2010; Sun et al., 2018). In this regard,

exosomes derived from B cells present a major histocompatibility

complex on their heads, so the induction of T-cell responses (Clayton

et al., 2003) indicates that exosomes could be used as an

immunomodulatory agent, which was proved by dendritic cell

(DC)–derived exosomes added with tumor antigens, evoking

immune responses and inhibiting the survival of established

tumors (Zitvogel et al., 1998). Taking these effects as an

immunomodulatory and immunotherapy agent, exosomes are

used to load cargo, in addition to displaying antigens on their

surface. For example, melanoma (cancer of the skin)-derived

exosomes from murine models loaded with immunomodulatory

CpG DNA displayed antigens on their surface which proved to be
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better in eradicating tumors than either exosomes or DNA alone

(Morishita et al., 2016).

Bovine milk is used for the synthesis of cost-effectiveness and

for the large-scale production of exosomes in a bioinspired

manner. When withaferin A (WFA) was administered three

times per week, enhanced antitumor activity was found in

xenograft mice bearing A549 lung cancer. When exosomes

were modified with the ligand folic acid (FA), the antitumor

effect was enhanced (74%) when compared to non-targeted

exosomes (50%) (Munagala et al., 2016). Other groups also

successfully loaded different drugs, such as anthocyanidins

and paclitaxel, for oral administration of milk-derived

exosomes (Agrawal et al., 2017; Munagala et al., 2017).

Miscellaneous

Bioinspired lipoproteins

In a cancer environment, several nanosystems are not effective in

providing a therapeutic response due to the inability of many

nanosystems to access cancer cells (Minchinton and Tannock,

FIGURE 2
Illustrates different plasma membrane coating on different nanoparticles for cancer immunotherapy.
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2006; Dewhirst and Secomb, 2017). NPs passively accumulate near

the tumor microenvironment, but only a few (around 5%) NPs

actually reach the tumor site (Wilhelm et al., 2016; Dai et al., 2018).

Researchers found that a large number of stromal cells, such as

cancer-associated fibroblasts (CAF) and tumor-associated

macrophages (TAM), are needed during the development of

cancer (Kitamura et al., 2015; Kalluri, 2016). By forming an

extracellular matrix (ECM), they play a pivotal role in shaping the

morphology and the whole environment of tumor tissue. NPs are

actually hijacked by ECM, preventing them from penetrating into

tumor tissue and eventually lowering their efficacy in cancer

therapeutics (Zhang et al., 2018b; Overchuk and Zheng, 2018).

Lipoproteins, notably, the high-density lipoproteins (HDL) are

endogenous nanoscale particles composed of a variety of proteins

(e.g., apolipoprotein A1, Apo A1) and some lipids (e.g.,

phospholipids and cholesterol esters), making them an ideal

platform for sustained delivery of many therapeutic agents and in

biological imaging of tumor tissues. Tan et al. (2019) synthesized the

bioinspired lipoprotein particle, bLP, which was loaded with a

photothermal agent (DiOC18) (Hu et al., 2010) (DiR) to produce

D-bLP NPs and the anti-cancer drug, namely, mertansine, to form

M-bLP. These two were used one by one to ensure proper

management of the disease. First, they administered D-bLP using

a photothermic pulse in the infrared (IR) range to reshape the tumor

stromal microenvironment (TSM), and then actively enhanced the

second wave of M-bLP to kill the tumor cells and inhibit tumor

relapse and metastasis, as done in two breast cancer models. Figure 3

illustrates D-bLP–mediated photothermal remodeling of tumor

stroma which increases the accessibility of the second wave of

M-bLP nanoparticles near cancer cells.

Bioinspired theranostic tumor permeated
nanovehicle

In addition to the challenges facing cancer treatment, there are

several obstacles to effective therapy in the oncology field. This is

probably due to the presence of certain types of immunosuppressive

cells, namely, myeloid-derived suppressor cells (MDSCs), M2-like

tumor-associated macrophages (TAMs), regulatory T cells (Tregs),

and immature/tolerogenic dendritic cells (DCs), in the context of the

tumor cell region that is considered immunosuppressive (Alizadeh

FIGURE 3
Illustrates D-bLP-mediates photothermal remodelling of tumor stroma which increases the accessibility of second wave of nanoparticles
M-bLP near cancer cells.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Wu et al. 10.3389/fbioe.2022.952523

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.952523


and Larmonier, 2014; Shaked, 2019; Togashi et al., 2019). Cancer

cells have also evolved a natural tendency to suppress the immune

response of immunosuppressive cells that function as CD8+ T cells

and natural killer (NK) cells in tumors through multiple

mechanisms, thereby hampering the antitumor immunity

(Binnewies et al., 2018; Shaked, 2019). Undoubtedly, there is a

need to cope with this situation in which immunosuppression is

relieved, enhancing the antitumor response of cancer cells.

Wang et al. (2021) synthesized a bioinspired tumor-

responsive theranostic nanovehicle (BTV) with tumor-

penetrating ability to cope with immunosuppression of cancer

cells for effective anti-cancer therapy. In this nanovehicle, a

theranostic probe of photochlor (HPPH), a tumor-activated

melittin pro-peptide (TM), and an ROS-responsive prodrug

gemcitabine (RG) were loaded into a lipoprotein-based

bioinspired nanovehicle. The functions of different

compounds are as follows: TM enhances tumor penetration

and accumulation capacity and was enzymatically restored to

active melittin at the specific sites, thereby increasing the

activities of pharmacological drugs. RG (prodrug), as an active

immunomodulator, was degraded into active gemcitabine.

HPPH acted as a theranostic probe in BTN for systemic

tumor tracking in vivo and generated singlet oxygen upon

irradiation to enhance the overall antitumor activity of the

formed nanovehicle. Remarkably, this combinational

treatment significantly eliminated multiple

immunosuppressive cells and enhanced the infiltration of

cytotoxic lymphocytes in tumors, which is the essential key

element in relieving tumor immunosuppression and also

strikingly decreasing tumor growth. In a nutshell, this novel

design provides a pathway to deliver a nanoplatform with

striking immunosuppression-relieving capacity that could be

used for effective anti-cancer therapies.

Bioinspired VitB12-coated NPs

Receptor-mediated endocytosis, a process by which VitB12 is

absorbed, has been reported by several groups (Seetharam, 1999).

Hence, this vitamin is utilized for coating NPs to improve their

oral bioavailability. Conjugation of this vitamin on insulin-

encapsulated dextran NPs improved insulin availability

(26.5%) in chemically induced diabetic rats (streptozotocin-

induced) compared with control rats (10.3%) without any

coating (Chalasani et al., 2007a; Chalasani et al., 2007b).

Similar trends were observed when VitB12 was conjugated on

chitosan or calcium phosphate–based NPs; oral insulin

absorption was greatly enhanced (Ke et al., 2015; Verma et al.,

2016), while poor oral availability of some drugs like cyclosporine

A and scutellarin was also improved when NPs were coated with

VitB12 (Francis et al., 2005; Wang et al., 2017).

Bioinspired wound healing dressing mat

Wound treatment is challenging as some diseases, such as

diabetes and cardiovascular diseases, make it more chronic (Qu

et al., 2018). Wound dressing plays a key role in the healing process

by mimicking ECM, adhesion, and eventually migrating to the

wound, aiding in the process of healing and skin regeneration

(Chhabra et al., 2016). Polycaprolactone (PCL) has been widely

used in wound healing due to its good biocompatibility,

biodegradability, and easy availability (Ravichandran et al., 2019).

It can be blended with other polymers to improve its mechanical

properties and tissue regeneration abilities (Sawadkar et al., 2020). In

this regard, biodegradable and eco-friendly polyhydroxybutyrate/

poly-3-caprolactone (PHB/PCL) mats were developed by

electrospinning to imitate the extracellular matrix (ECM) and to

provide structural and biochemical evidence for tissue regeneration.

Inspired by the natural component melanin, which is highly

exploited as a tool against microbial infection, the above-

developed mats were modified by melanin–TiO2 nanostructures.

These coated mats had significant antimicrobial activity toward both

the strains of bacteria (gram-positive/gram-negative). They had good

water holding capacity, hydrophilicity, as well as in vitro activity,

indicating their interaction and attachment (Avossa et al., 2021).

Bioinspired carbon dots

As a powerful carrier, quantum dots have been widely used in

the biomedicine field due to their optical properties based on their

size. The preparation methods are quite difficult, take a lot of time,

and have low reproducibility; among these, the hydrothermal

approach is one of the green chemistry approaches for

producing fluorescent carbon quantum dots (C-dots) (Kasibabu

et al., 2015) on a large scale by using waste material and natural

resources (like fruit juice of orange, ginger, and sugarcane) as

carbon starting materials. Additionally, watermelon peel, milk,

lignin, sugarcane juice, coffee grounds, chicken eggs, food waste,

banana, hair, ginger, onion waste, honey, bread, candle soot,

chitosan, and gelatine have been utilized as carbon sources

(Zhou et al., 2012; Li et al., 2014; Liu et al., 2014; Mehta et al.,

2014; Wang and Zhou, 2014; Bandi et al., 2016). Considering these

specialties of natural resources, Asiya F. Shaikh synthesized rapid,

highly fluorescent C-dots using a hydrothermal approach, using

Citrus limetta juice, commonly known as Mausambi in the Indian

subcontinent. It contains a high amount of sugar as carbohydrate,

which is the starting source of carbon for C-dot production. In

vitro activity studies have shown that they have anti-adhesion and

anti–biofilm production ability of Candida albicans grown on

polystyrene surfaces. In a nutshell, this novel approach provides a

new way to synthesize C-dots using natural sources of carbon

(Shaikh et al., 2019).
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Viral nanoparticle

Nowadays, viruses are being employed in the synthesis of

bioinspired/biomimetic nanoplatforms due to their unique

properties. Viral nanomaterials can be synthesized using virus

nanoparticles (VNPs) and virus-like particles (VLPs). The latter

is being utilized for the synthesis of inorganic NPs and the

delivery of drugs and bio-imaging agents (Allen et al., 2005;

Liepold et al., 2007). A virus consists of a protein coat called the

capsid, which is considered a smart material because of its

monodispersity, symmetry, and polyvalency. Among the

various types of viruses, the helical virus is a prefabricated

scaffold with a unique structure and a high surface area–to-

volume ratio that enables it to form various types of

nanostructures (Narayanan and Han, 2017a). Plant virus

capsids provide the best platform for the synthesis of novel

nanomaterials that combine inorganic or organic moieties in a

very specific and controllable way. In addition, the capsid

proteins of spherical plant viruses are assembled into well-

defined 3D structures called icosahedral three-dimensional

architectures with structural symmetry. They can be employed

for a wide range of biomedical applications with simple

manipulations (Narayanan and Han, 2017b). Taking

inspiration from this, TMV, a helical virus that causes tobacco

mosaic virus disease in tobacco plants, is used to synthesize

bioinspired nanomaterials. Due to its elongated hollow tube-like

structure (4 nm in diameter), it can be easily turned into

nanorods. The central hollow space is utilized for the

synthesis of cobalt and nickel nanowires (3 nm in diameter).

Tsukamoto and co-workers developed a novel formula to

produce bimetallic Co-Pt and Fe-Pt alloy nanowires in the

hollow channel of the TMV. The process of nucleation and

the growth of Co-Pt and Fe-Pt nanowires were successfully

examined and characterized in detail (Tsukamoto et al., 2007).

Conclusion and future prospects

The present work describes the biosynthesis of NPs using

approaches derived from natural sources or inspired by nature.

Bioinspired NPs avoid several disadvantages of conventionally

used protocols, including the use of harsh chemicals in their

preparations. These NPs are less toxic, easy to prepare, and cost-

effective. Novel types of bioinspired nanoplatforms have

potential applications in the field of nanomedicine. Currently,

they have various applications in the biomedicine field, such as

cancer therapy, antimicrobial, immunotherapy, biosensing, and

diagnosis. In the case of membrane coating, the membranes of

cancer cells are coated with NPs so that the natural defense

system is activated to produce cancer immunotherapies much

like nano-vaccines. They may also benefit from increased blood

circulation time, reticuloendothelial system escaping, and tumor-

specific active targeting.

With the advancement of material science and

nanotechnology, proper care should be taken to avoid any

uncontrolled reactions leading to the formation of

polydisperse and larger NPs, thus affecting their therapeutic

effectiveness. Novel methods should be devised for the proper

synthesis of bioinspired nanomaterials so as to formulate novel

NPs with higher loading efficiency and better efficacy. In the

future, antibodies, proteins, and peptides can be inserted into the

plasma membrane of NPs to achieve targeted and improved

therapeutic effects. Research should focus on translating the

synthesis of NPs into clinical applications and mass

production at a lower cost.
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