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Elastic objects across a wide range of scales deform under local changes of their

intrinsic properties, yet the shapes are glocal, set by a complicated balance

between local properties and global geometric constraints. Here, we explore

this interplay during the inversion process of the green alga Volvox, whose

embryos must turn themselves inside out to complete their development.

This process has recently been shown to be well described by the deformations

of an elastic shell under local variations of its intrinsic curvatures and stretches,

although the detailed mechanics of the process have remained unclear.

Through a combination of asymptotic analysis and numerical studies of the

bifurcation behaviour, we illustrate how appropriate local deformations can

overcome global constraints to initiate inversion.
1. Introduction
The shape of many a deformable object arises through the competition of multiple

constraints on the object: this competition may be between different global con-

straints, such as in Helfrich’s analysis [1] of the shape of a red blood cell (where

intrinsic curvature effects coexist with constrained membrane area and enclosed

volume). It may also be the competition between local and global constraints.

Such deformations, which we shall term glocal, arise for example in origami

patterns [2] (where local folds must be compatible with the global geometry).

They are of considerable interest in the design of programmable materials [3] at

macro- and microscales, where one asks: can a sequence of local deformations

overcome global constraints and direct the global deformations of an object?

This is a problem that, at the close of their development, the embryos of the

green alga Volvox [4] are faced with in the ponds of this world. Volvox
(figure 1a) is a multicellular green alga belonging to a lineage (the Volvocales)

that has been recognized since the time of Weismann [5] as a model organism

for the evolution of multicellularity, and which more recently has emerged as

the same for biological fluid dynamics [6]. The Volvocales span from unicellu-

lar Chlamydomonas, through organisms such as Gonium, consisting of 8 or 16

Chlamydomonas-like cells in a quasi-planar arrangement, to spheroidal species

(Pandorina and Pleodorina) with scores or hundreds of cells at the surface of a trans-

parent extracellular matrix (ECM). The largest members of the Volvocales are the

species of Volvox, which display germ–soma differentiation, having sterile

somatic cells at the surface of the ECM and a small number of germ cells in the

interior which develop to become the daughter colonies.

Following a period of substantial growth, the germ cells of Volvox undergo

repeated rounds of cell division, at the end of which each embryo (figure 1b,e) con-

sists of a few thousand cells arrayed to form a thin spherical sheet [4]. These cells

are connected to each other by the remnants of incomplete cell division, thin

membrane tubes called cytoplasmic bridges [7,8]. The ends of the cells whence ema-

nate the flagella, however, point into the sphere at this stage, and so the ability to

swim is only acquired once the alga turns itself inside out through an opening at

the top of the cell sheet, called the phialopore [9–11].
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Figure 1. Volvox invagination and elastic model. (a) Adult Volvox, with somatic cells and one embryo labelled. (b) Volvox embryo at the start of inversion.
(c) Mushroom-shaped invaginated Volvox embryo. (d ) Cell shape changes to wedge shapes and motion of cytoplasmic bridges (CB) bend the cell sheet. Red
line indicates position of cytoplasmic bridges. (e,f ) Cross sections of the stages shown in panels (b,c). Cell shape changes as in (d ) occur in the marked regions.
(g) Geometry of undeformed spherical shell of radius R and thickness h. (h) Geometry of the deformed shell. Scale bars: (a) 50 mm, (e,f ) 20 mm. False colour
images obtained from light-sheet microscopy provided by Stephanie Höhn and Aurelia R. Honerkamp-Smith.
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Of particular interest in the present context is the crucial

first step of this process, the formation of a circular invagina-

tion in so-called type B inversion (figure 1c,f ) followed by the

engulfing of the posterior by the anterior hemisphere [11,12].

(This scenario is distinct from ‘type A’ inversion in which the

initial steps involve four lips which peel back from a cross-

shaped phialopore [11].) The invaginations of cell sheets

found in type B inversion are very generic deformations

during morphogenetic events such as gastrulation and neur-

ulation [13–16], but, in animal model organisms, they often

arise from an intricate interplay of cell division, intercalation,

migration and cell shape changes. For this reason, descrip-

tions thereof have ofttimes invoked cell-based models, as

pioneered by Odell et al. [17], but simpler models of simpler

morphogenetic processes are required to elucidate the under-

lying mechanics of these problems [18]. Inversion in Volvox is,

however, driven by active cell shape changes alone: inversion

starts when cells close to the equator of the shell elongate and

become wedge-shaped [12]. Simultaneously, the cytoplasmic

bridges migrate to the wedge ends of the cells, thus splaying

the cells locally and causing the cell sheet to bend [12]

(figure 1d ). Additional cell shape changes have been impli-

cated in the relative contraction of one hemisphere with

respect to the other in order to facilitate invagination [19].

Examination of thin sections suggests that, as invagination

progresses, more cells in the posterior hemisphere change

their shape, but the cells in the bend region are less markedly

wedge-shaped after invagination [12]. As inversion progresses

further, the bend region continues to expand, allowing the pos-

terior hemisphere to invert fully, eventually expanding into the

anterior hemisphere, too.

At a more physical level, it has been shown recently that

the inversion process is simple enough to be amenable to a
mathematical description [19]: the deformations of the alga

are well reproduced by a simple elastic model in which the

cell shape changes and motion of cytoplasmic bridges

impart local variations of intrinsic curvature and stretches

to an elastic shell [19]. This work raised, however, a host of

more mechanical questions: how do intrinsic stretches and

curvatures conspire with the global geometry of the shell?

What mechanical regimes arise in this elastogeometric

coven? What are the simple geometric balances that underlie

these regimes and how do they relate to the biological pro-

blem? These questions we address in the present work.

Using the elastic model introduced earlier [19], an asymptotic

analysis at small deformations clarifies the geometric distinc-

tion between deformations resulting from intrinsic bending

and intrinsic stretching, respectively. An in-depth study,

both analytical and numerical, of the bifurcation behaviour

over a broader parameter range than considered earlier [19]

illustrates how a sequence of local deformations can achieve

invagination, and how contraction complements bending in

this picture.
2. Elastic model
Following Höhn et al. [19], we inscribe Volvox inversion into

the very general framework of the axisymmetric defor-

mations of a thin elastic spherical shell of radius R and

thickness h� R under variations of its intrinsic curvature

and stretches. The undeformed, spherical, configuration of

the shell is characterized by arclength s and the distance of

the shell from its axis of revolution, r(s) (figure 1g). To

these correspond arclength S(s) and distance from the axis

of revolution r(s) in the deformed configuration (figure 1h).
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Figure 2. Simple intrinsic deformations. (a) A sphere can be shrunk to smaller
spheres of equal radii by both compatible and incompatible intrinsic defor-
mations. (b) Contraction of a circular region of radius R in a plane elastic
sheet by a factor f. The boundary of this region is contracted to s ¼ FR.
(c) Numerical result for F (þ) agrees with analytical calculation (2.9) (solid line).
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The undeformed and deformed configurations are related by

the meridional and circumferential stretches,

fsðsÞ ¼
dS
ds

and ffðsÞ ¼
rðsÞ
rðsÞ , ð2:1Þ

(These definitions do not require that the undeformed con-

figuration be spherical, and apply for the deformations of

any axisymmetric object.) These define the strains

Es ¼ fs � f0
s , Ef ¼ ff � f0

f, ð2:2Þ

and curvature strains

Ks ¼ fsks � f0
s k

0
s , Kf ¼ ffkf � f0

fk
0
f, ð2:3Þ

where ks and kf denote the meridional and circumferential

curvatures of the deformed shell. The intrinsic stretches and

curvatures introduced by f0
s , f0

f and k0
s , k0

f extend Helfrich’s

work on membranes [1]. The deformed configuration of the

shell minimizes an energy of the Hookean form [20–22]

E ¼ pEh
1� n2

ðpR

0

rðE2
s þ E2

f þ 2nEsEfÞds

þ pEh3

12ð1� n2Þ

ðpR

0

rðK2
s þ K2

f þ 2nKsKfÞds: ð2:4Þ

with material parameters the elastic modulus E and Poisson’s

ratio n. In computations, we take h/R ¼ 0.15 and n ¼ 1/2 appro-

priate for Volvox inversion [19]. Because the elastic modulus

appears as a common prefactor to both contributions to the

energy in (2.4), the equilibrium shapes found by minimizing E
are independent of E. This reflects the fact that E only enters

into the magnitude of the stresses within the shell.

In general, deformations of the shell arise from a complex

interplay of intrinsic stretches and curvatures, and the global

geometry of the shell. To clarify these, we begin by consi-

dering two simple kinds of deformations, in which the

competition is between two effects only. How these effects

conspire in general we shall explore in the main body of

the paper.
2.1. Simple deformations: growing/shrinking and
bending

The simplest intrinsic deformation is one of uniform stretch-

ing or contraction, which does not affect the global, spherical

geometry of the shell. This corresponds to f0
s ¼ f0

f ¼ f and

k0
s ¼ k0

f ¼ 1=fR: With these intrinsic stretches and curvatures,

the original sphere deforms to a sphere of radius R̂:
Then, fs ¼ ff ¼ R̂=R, and so Es ¼ Ef ¼ R̂=R� f : However,

ks ¼ kf ¼ 1=R̂: Thus fsks ¼ ffkf ¼ f0
s k

0
s ¼ f0

fk
0
f ¼ 1=R, and

hence Ks ¼ Kf ¼ 0: The energy density is therefore pro-

portional to ðR̂=R� fÞ2 and is minimized for R̂ ¼ fR, at

which point E ¼ 0 (figure 2a). (Indeed, uniform contraction

is a homothetic transformation: the angles between material

points are unchanged, and so there is no bending involved.

In other words, the shell is blind to its intrinsic curvature

on this spherical solution branch.)

The intrinsic stretches and curvatures need not be compati-

ble in this way, however: suppose that f0
s ¼ f0

f ¼ f , but

k0
s ¼ k0

f ¼ 1=f̂R with f = f̂ : The energy still has spherical

minima of radius R̂ ¼ fR, but now with E = 0 (figure 2a).

This illustrates that, conversely, even if the equilibrium shape

is spherical, the intrinsic curvatures and stretches cannot

straightforwardly be inferred from the resulting shape.
2.2. Simple deformations: shrinking and geometry
To illustrate how the global geometry affects these defor-

mations, we consider contraction of a plane elastic sheet,

with f0
s ¼ f0

f ¼ f , 1 for s , R (figure 2b). This is a version

of the classical Lamé problem [23]: there is no bending of

the sheet involved, and, upon non-dimensionalizing lengths

with R, the sheet minimizesð1

0

s
n

r0ðsÞ � f ðsÞ½ �2þ rðsÞ=s� f ðsÞ½ �2

þ 2n r0ðsÞ � f ðsÞ½ � rðsÞ=s� f ðsÞ½ �
o

ds, ð2:5Þ

where

f ðsÞ ¼ f if s , 1
1 if s . 1:

�
ð2:6Þ

The resulting Euler–Lagrange equation is

d

ds
s

dr
ds

� �
� r

s
¼ ð1þ nÞð1� fÞsdðs� 1Þ: ð2:7Þ

This is a homogeneous equation, and the solution satisfying

the geometric conditions r(0) ¼ 0 and r(s)�s as s! 1 as

well as continuity of r at s ¼ 1 is

rðsÞ ¼
Fs if s , 1

sþ F� 1

s
if s . 1:

(
ð2:8Þ

The constant F ¼ r(1) is determined by the jump condition at

s ¼ 1, or, physically, by requiring the stress to be continuous

across s ¼ 1. This finally yields

F ¼ 1

2
½ð1� nÞ þ ð1þ nÞf �: ð2:9Þ

This simplified problem serves as a test case for numerical

solution of the more general Euler–Lagrange equations

associated with (2.4). These boundary-value problems can

be solved numerically with the solver bvp4c of MATLAB
w

(The MathWorks, Inc.); our numerical set-up of the governing

equations otherwise mimics that of Knoche & Kierfeld [22]. In

this particular example, the linear relationship in (2.9) is

indeed confirmed numerically (figure 2c). Note that, away

from s ¼ 1, the governing equation (2.7) is independent of

the forcing applied; the solution is determined by geometric

boundary conditions.
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Figure 3. Asymptotic analysis of invagination and contraction. (a) Numerical shape resulting from contracting the posterior to a radius rp , R. (b) Numerical
‘hourglass’ shape resulting from pure invagination. (c) Geometry of contraction with posterior radius rp , R, resulting in upward motion of the posterior by a
distance d. (d ) Geometry of pure invagination solution. (e) Asymptotic geometry: in the limit h� R, deformations are localized to an asymptotic inner
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calculations. (h) Inward rotation Db of the midpoint of the invagination with, and without contraction, from asymptotic calculations.
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3. Results
The most drastic cell shape changes at the start of inversion

occur when cells in a narrow region close to the equator

become wedge-shaped (figure 1d ). These are accompanied

by motion of the cytoplasmic bridges to the thin tips of the

cells to splay the cell sheet and drive its inward bending.

For this reason, Höhn et al. [19] started by considering a pie-

cewise constant functional form for the intrinsic curvature in

which this curvature took negative values in a narrow region

close to the equator. It was found, however, that with this

ingredient alone the energy minimizers could not reproduce

the mushroom shapes adopted by the embryos in the early of

stages of inversion (figure 1c,f ), producing instead a shape

cinched in at those points—the so-called purse-string effect.

However, analysis of thin sections had previously revealed

that the cells in the posterior hemisphere become thinner at

the start of inversion [12]. When the resulting contraction of

the posterior hemisphere was incorporated into the model,

it could indeed reproduce, quantitatively, the shapes of

invaginating Volvox embryos.

Höhn et al. have thus identified two different types of active

deformations that contribute to the shapes of inverting Volvox
at the invagination stage: first, a localized region of active

inward bending (corresponding to negative intrinsic curva-

ture), and second, relative contraction of one hemisphere

with respect to the other. We shall focus on these two types

of deformation in what follows and clarify the ensuing elastic

and geometrical balances.

3.1. Asymptotic analysis
The (initially) narrow region of cell shape changes invites an

asymptotic analysis. We therefore start by seeking equili-

brium configurations in the limit of a thin shell, h� R.

In this limit, the shapes (figure 3a,b) corresponding to con-

traction or (pure) invagination (by which we mean, here,

deformations driven by a region of high intrinsic curvature

only) result from the matching of spherical shells of different
radii or disparate relative positions (figure 3c,d ). Deviations

from these outer solutions are localized to an asymptotic

inner layer of non-dimensional width d about u ¼ Q, where

u ¼ s/R is the angle that the normal to the undeformed

shell makes with the vertical, i.e. the azimuthal angle of

the undeformed shell, measured from the posterior pole

(figure 3e). Here, we consider an incipient deformation

where the normal angle b(u) to the deformed shell deviates

but slightly from its value in the spherical configuration,

viz. bðuÞ ¼ uþ bðuÞ, with b� 1.

3.1.1. Geometric considerations
We begin by clarifying the geometric distinction bet-

ween contraction and invagination. The radial and vertical

displacements obey

u0r ¼ fs cosb� cos u ¼ �b sinQþOðdb, b2Þ ð3:1aÞ

and

u0z ¼ fs sinb� sin u ¼ b cosQþOðdb, b2Þ, ð3:1bÞ

where dashes denote differentiation with respect to u, and

where we have assumed the scaling fs ¼ 1þOðdbÞ which fol-

lows from the detailed asymptotic solution. Let d denote the

(non-dimensional) distance by which the posterior moves up.

Matching to the outer solutions requires the net displace-

ments Ur and Uz, obtained by integrating (3.1) across the

inner layer, to obey

UðcÞr ¼ d sinQ, UðcÞz ¼ �d cosQ ð3:2aÞ

and

UðiÞr ¼ 0, UðiÞz ¼ �d, ð3:2bÞ

where the superscripts (c) and (i) refer, respectively, to the sol-

utions corresponding to contraction and (pure) invagination.

In the case of contraction, (3.1) and (3.2a) give the scaling

b(c) � d/d. If there is no contraction, however, (3.1) and (3.2b)

imply that the leading-order solution does not yield any

upward motion of the posterior, which is associated with a
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higher-order solution only. This suggests that the appropriate

scaling is bðiÞ�ðd=dÞ1=2, which we shall verify presently.

Our assumption b� 1 thus translates to d� d: Hence,

in the invagination case, upward motion of the posterior

requires comparatively large inward displacements of order

ðddÞ1=2 � d (figure 3f ). This asymptotic difference of the

deformations corresponding to contraction and invagination

arises purely from geometric effects; it is the origin of the

‘purse-string’ shapes found by Höhn et al. [19] in the absence

of contraction.

kf

0fs
0 , ff

0

1/R
1/rp

rp/R
p Rlmax

sls

1

l

p Rlmax

Figure 4. Set-up for numerical calculations, following Höhn et al. [19].
(a) Geometrical set-up: the intrinsic curvature k0

s of a spherical shell of unde-
formed radius R differs from the undeformed curvature in the arclength range
lmax . s . lmax 2 l, where s is arclength. Posterior contraction is taken
into account by a reduced posterior radius rp , R. These intrinsic curvature
and contraction result in deformations that move up the posterior pole by a
distance d. (b) Corresponding functional form of k0

s ; in the bend region,
k0

s ¼ �k , 0: (c) Form of the intrinsic stretches f 0
s , f 0

f for posterior
contraction. (d ) Functional form of k0

f for posterior contraction.
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3.1.2. Elastogeometric considerations
The detailed asymptotic solution for pure invagination is

somewhat involved. We refer to appendix B for the details

of the calculation, and, here, summarize the results, with

distances non-dimensionalized with R.

The pure invagination configuration is forced by intrinsic

curvature that differs from the curvature of the undeformed

sphere in a region of width l about u ¼ Q, where k0
s ¼ �k:

Scaling reveals that d � ðh=RÞ1=2: Writing L ¼ l=d and

k ¼ d1=2d�3=2K, a long calculation leads to

K2 ¼ 8
ffiffiffi
2
p

sinQ

1þ e�L=
ffiffi
2
p
½ð
ffiffiffi
2
p

L� 1Þ sinðL=
ffiffiffi
2
p
Þ � cosðL=

ffiffiffi
2
p
Þ�
: ð3:3Þ

This function exhibits a global minimum at L � 2:44

(figure 3g). This is a first indication that narrow invaginations

are more efficient than those resulting from wider regions of

high intrinsic curvature, a statement that we shall make more

precise later.

Symmetry implies that there is no inward rotation of

the midpoint of the invagination at this order. Rather,

inward folding is a second-order effect, and the second-

order problem implies that the rotation of the midpoint of

the invagination is

DbðiÞ ¼ BðiÞðLÞ cosQ
� � d

d
, ð3:4Þ

where BðiÞðLÞ is determined by the detailed solution of

said second-order problem. The geometric factor in (3.4) is,

however, the main point: this factor resulting from the

global geometry of the shell hampers the inward rotation of

the midpoint of the invagination. (This is as expected:

by symmetry, invagination at the equator, where cos Q ¼ 0,

yields no rotation.)

An analogous, though considerably more straight-

forward calculation, can be carried out for contraction:

non-dimensionally, upward posterior motion by d requires

f0
s ¼ f0

f ¼ 1� d for u , Q, and leads to

DbðcÞ ¼ 1

2
ffiffiffi
2
p d

d
: ð3:5Þ

At this order, the above solutions for pure invagination and

contraction can be superposed. For contraction, there is thus

no geometric obstacle to inward folding (figure 3h). Hence,

contraction is not only a means of creating the disparity in

the radii of the anterior and posterior hemispheres required

to fit the partly inverted latter into the former, but also

drives the inward folding of the invagination, by breaking

its symmetry. In Volvox inversion, this symmetry breaking

is at the origin of the formation of the second passive bend

region highlighted by Höhn et al. [19] to stress the non-local

character of these deformations.
3.2. Bifurcation behaviour
The asymptotic analysis has shown that the coupling of

elasticity and geometry constrains small invagination-like

deformations both locally and globally, but that contraction

can help overcome these global constraints. These ideas

carry over to larger deformations of the shell, which must

however be studied numerically. For this purpose, we

extend the set-up of Höhn et al. [19], motivated by direct

observation of thin sections of fixed embryos: the intrinsic

curvature k0
s differs from that of undeformed sphere in the

range lmax . s . lmax 2 l of arclength along the shell

(figure 4a). In this region of length l, k0
s ¼ �k, where k . 0

(figure 4b). This imposed intrinsic curvature results in

upward motion of the posterior pole by a distance d.

Our first observation is that, at fixed lmax, more than one

solution may arise for the same input parameters (k, l).

Further understanding is gained by considering, at fixed

lmax and for different values of l, the relation between k
and d. The typical behaviour of these branches is plotted in

figure 5. (The shapes eventually self-intersect; accordingly,

these branches end, but we expect them to be joined up

smoothly to configurations with opposite sides of the shell

in contact. The study of such contact configurations typically

requires some simplifying assumptions to be made [22], but

we do not pursue this further, here.)

At the distinguished value l ¼ l*, a critical branch arises

(figure 5). It separates two types of branches: first, those with

l , l*, on which k varies mononotonically with d, and

second, those with l . l*, where the relation between d and

k is more complicated. At large values of l, these branches

may have a rather involved topology involving loops. At

values of l just above l*, however, there is a range of values

of k for which there exist three configurations (figure 5). We

note that the two outer configurations have @k=@d . 0,

whereas the middle one has @k=@d , 0: The latter behaviour

prefigures instability, which we shall discuss in more detail

below. There are thus two points on these branches where k,
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viewed locally as a function of d, reaches an extremum. The

curve joining up these extrema for different values of l we

shall, borrowing thermodynamic nomenclature [24], term

the ‘spinodal curve’. This curve, in turn, has a maximum at

a point on the critical branch, which we shall call the ‘criti-

cal point’ and which is characterized by l* and the critical

curvature, k*.

To make contact with the asymptotic calculations, we

note that, for branches with l� l�, the proportionality

k/ d1=2 (at constant l) is indeed recovered. The asymptotic

result, formally valid in the range d2 � d� d � l, does

not however capture the bifurcation behaviour.

3.2.1. Effective energy
It is natural to ask whether this bifurcation can be understood

in terms of an effective energy of some kind, balancing differ-

ent elastogeometric effects. Here, we discuss the physical origin

of the effects contributing to this effective energy. The details of

the geometric approximations we leave to appendix C.

In the undeformed configuration and in a plane contain-

ing the axis of revolution of the shell, the active bend region is

a circular arc of length l and radius R, intercepting a chord of

length ‘ ¼ 2R sinðl=2RÞ: This chord makes an angle b with

the radial outward direction (figure 6a). In the deformed con-

figuration, this region has deformed to an arc of length l̂ and

radius R̂, intercepting a chord of length ‘̂ that makes an angle

b̂ with the radial outward direction.

Stretching is energetically more costly than bending; at

leading order, the meridional and circumferential strains

must therefore vanish, thus

l ¼ l̂ and ‘ cosb ¼ ‘̂ cos b̂: ð3:6Þ

This allows the deformations of the shell to be described in

terms of a single parameter.

Three effects contribute to the effective energy F : (i) the

curvature 1=R̂ of the bend region, which may differ from its

preferred curvature 1/R0, (ii) the additional hoop strain gen-

erated by the inward folding of the bend region and (iii) the

formation of a second passive bend region owing to the
inward folding of the first bend region. The functional

forms of these contributions are derived in appendix C and

shown in figure 6b.

Let d �
ffiffiffiffiffiffi
hR
p

denote the bending lengthscale of the shell.

In the limit ‘� R, the scalings of the three terms contribut-

ing to the energy are found to be

F 1 � Eh
R

d4

‘
, F 2 � Eh

R
‘3 and F 3 � Eh

R
d3: ð3:7Þ

Accordingly, all three terms contribute to the energy when

‘ � d: In this regime, but a single minimum exists in the

energy landscape at large or small values of the intrinsic cur-

vature, whereas two minima exist for intermediate values

(figure 6c). If ‘� d, the second term is negligible, and the

intermediate regime ceases to exist (figure 6d ), as expected

from the functional form of this term (figure 6b).

Conversely, this shows that this behaviour cannot be

reproduced if any one of these three contributions is omitted

from the analysis. If ‘� d, the third term is negligible, and

the second minimum is predicted to exist even at low

values of the intrinsic curvature. This disagrees with the be-

haviour found numerically, and so the approximations

break down in this limit, as expected given the more exotic

topologies that arise at large l in figure 5.

The bifurcation behaviour can also be rationalized in terms

of the (asymptotic) existence of geometrically ‘preferred’

modes that solve the equations expressing the leading asymp-

totic balance at large rotations in the absence of forcing

(through intrinsic curvature or otherwise). We discuss this

point further in appendix B.
3.2.2. Stability statements
The stability of the configurations in figure 5 can be assessed

by means of general results of bifurcation theory [25], used

recently to discuss the stability of the buckled equilibrium

shapes of a pressurized elastic spherical shell [22,26]. If we

let 5 ¼ �@E=@k denote the conjugate variable to k, the key

result of Maddocks [25] is that stability, at fixed l, of extremi-

zers of the energy E can be assessed from the folds in the

ðk, 5Þ bifurcation diagram. In particular, stability can only

change at folds in the bifurcation diagram. Expanding the

bending part of the energy functional (2.4) for f0
s ¼ f0

f ¼ 1

and k0
f ¼ 0, we find

5 ¼ �G
ðlmax

lmax�l
rð fsks þ n ffkf þ kÞds, ð3:8Þ

with G ¼ pEh3=6ð1� n2Þ: (The last term in the integrand is

independent of the solution, and may therefore be ignored

in what follows.)

The two folds that arise in the (k,d ) diagram for l . l*

(figure 5) are compatible a priori with four fold topologies

in the ðk, 5Þ diagram (figure 7a). However, because a single

solution exists for small k (at fixed l), the lowest branch

must be stable. Further, because the branches do not self-

intersect in the (k, d ) diagram, they cannot self-intersect in

the ðk, 5Þ diagram either. The results of Maddocks [25]

imply that only the first topology in figure 7a is compatible

with this, and so the fold is S-shaped and traversed upwards

in the ðk, 5Þ diagram. (Numerically, one confirms that the

branches are indeed S-shaped.) It follows in particular that

the middle branch, with @d=@k , 0 is unstable, and the

right branch is stable (for it is the sole unstable eigenvalue
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that stabilizes at the fold [25]). Thus, the stability of the

branches in this simple bifurcation diagram could also be

inferred from the (k, d ) diagram (though, in general problems,

as discussed in reference [25], different bifurcation diagrams

may suggest contradictory stability results). However, the

Maxwell construction of equal areas [24] can be applied to

the ðk, 5Þ diagram (figure 7b) to identify metastable solutions

beyond the unstable branch. A more physical take on these

stability considerations is the following: under reflection,

the (d, k) diagram maps to the diagram of isotherms of a clas-

sical van der Waals gas, for which the middle branch is well

known to be unstable [24]. Under this analogy, E corresponds

to the Gibbs free energy of the gas.

This analysis cannot immediately be extended to the more

exotic topologies that arise for l close to lmax (figure 5). We

note however that part of these branches must be unstable,

too: as above, a single solution exists for small d, and so the

corresponding branch must be stable. The first fold must be
traversed upwards, and the first branch with @d=@k , 0 is

thus unstable, as above.

An analogous analysis can be carried out for deformations

that vary l while keeping k fixed: for k . k*, the (d, l) diagram

is monotonic, but this ceases to be the case for k , k*. As above,

the stability can be inferred from the (l, d) diagram, and the

middle branch with @d=@l , 0 is unstable, too.

The picture that emerges from this discussion is the follow-

ing: solutions in a region of parameter space underneath the

critical point bounded by the spinodal curve are unstable; a

band of solutions on either side of this region and below the

critical point are metastable (figure 7c), both to perturbations

varying k and to perturbations varying l. Now, as invagina-

tion progresses, more cells undergo shape changes [12]

(corresponding to l increasing), although the cells are less

markedly wedge-shaped at the end of invagination [12],

indicating that k reaches a maximal value during invagina-

tion. The data from thin sections [12] suggest that the bend
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region does not expand into the anterior hemisphere until later

stages of inversion; this corresponds to lmax � pR=2 being

fixed during invagination. The corresponding paths in par-

ameter space may lead to very different behaviour: if

invagination is to be stable, it must move around the critical

point; if it passes through the region of in- and metastability

underneath, the shell undergoes a subcritical snapping tran-

sition between the ‘shallow’ and ‘deep’ invagination states on

either side of the metastable region. (This makes this kind of

instability different from the classical, supercritical buckling

instability of a compressed rod or a ‘popper’ toy [27], and

more akin to the snap closure of a Venus flytrap [28].) How-

ever, no such snapthrough shows up during invagination in

the dynamic data of Höhn et al. [19] (the sudden acceleration

reported there only occurs after invagination has completed).

The present mechanical analysis and these dynamic data thus

limit the parameter paths to those that eschew the unstable

region underneath the critical point, and reconciles the observed

cell shape changes to the stable dynamics: initially, a narrow

band of cells undergoes cell shape changes, thereby acquiring

a high intrinsic curvature. This region of cells then widens,

moving around the critical point, whereupon the preferred

curvature relaxes and posterior inversion can complete.

3.2.3. Contraction and criticality
For different values of lmax, the critical point traces out a trajec-

tory in parameter space, characterized by k* and l* (figure 8).

As lmax increases, k* increases, whereas l* decreases. Thus,

the closer to the equator, the more difficult invagination is,

not only because there is less room to fit the posterior into

the anterior, but also because a stable invagination requires

narrower, and narrower invaginations of higher and higher

intrinsic curvature.

We are left to explore how contraction affects the position

of the critical point, and hence the invagination. We introduce

a reduced posterior radius rp , R as in reference [19]

(figure 4a), and modify the intrinsic curvatures and stretches

accordingly (figure 4b–d). Numerically, we observe that, at

constant lmax, increasing contraction (i.e. reducing rp) decreases

the critical curvature k*, and increases l* (figure 8). Hence, con-

traction aids invagination not only geometrically, but also

mechanically: first, it allows invagination close to the equator
(which would otherwise be prevented by different parts of

the shell touching), and second, it makes stable invagination

easier, by reducing k*. Thus, again, contraction appears as a

mechanical means to overcome global geometric constraints.
4. Conclusion
In this paper, we have explored perhaps the simplest intrinsic

deformations of a spherical shell: elastic and geometric effects

conspire to constrain deformations resulting from a localized

region of intrinsic bending. Contraction, a somewhat more

global deformation, alleviates these constraints and thereby

facilitates the stable transition from one configuration of the

shell to another. This rich mechanical behaviour makes a

mathematically interesting problem in its own right, yet this

analysis has implications for Volvox inversion and wider

material design problems.

Experimental studies of Volvox inversion [12,19] had

revealed the existence of posterior contraction, and indeed,

the simple elastic model that underlies this paper can only

reproduce in vivo shapes once posterior contraction is included

[19]. Of course, contraction is an obvious means of creating a

disparity in the anterior and posterior radii required ultimately

to fit one hemisphere into the other, but the present analysis

reveals that, beyond this geometric effect, there is another,

more mechanical side to the coin: if contraction is present,

lower intrinsic curvatures, i.e. less drastic cell shape changes,

are required to stably invert the posterior hemisphere. This

ascribes a previously unrecognized additional role to these sec-

ondary cell shape changes (i.e. those occurring away from the

main bend region): just as the shape of the deformed shell

arises from a glocal competition between elastic and geometric

effects, a combination of local and more global intrinsic proper-

ties allows inversion to proceed stably. Thus, as we have

pointed out previously, this mechanical analysis constrains

the parameter paths that agree with the dynamical obser-

vations of Höhn et al. [19] and thereby rationalizes the

timecourse of the observed cell shape changes. This lends

further support to the inference of Höhn et al. [19], that it is a

spatio-temporally well-regulated sequence of cell shape

changes that drives inversion. Thus, the remarkable process

of Volvox inversion is mechanically more subtle than it may

initially appear to be.

Intrinsic deformations that allow transitions of an elastic

object from one configuration to another are of inherent interest

in the material design context, and divide into two classes: first,

snapping transitions for fast transitions between states, studied

in reference [3], and second, stable sequences of intrinsic defor-

mations. The glocal behaviour of the latter is illustrated by the

present analysis: in particular, additional transformations

such as contraction can increase the number of stable par-

ameter paths between configurations of the elastic object. In

this material design context, non-axisymmetric deformations

such as polygonal folds or wrinkles [29] could also become

important, and may warrant a more detailed analysis.
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Appendix A. Governing equations
In this appendix, we sketch the derivation of the Euler–

Lagrange equations of the energy functional (2.4), following

Knoche & Kierfeld [22]. The variation takes the form

dE
2p
¼
ðpR

0

rðNsdEs þNfdEfÞdsþ
ðpR

0

rðMsdKs

þMfdKfÞds, ðA 1Þ

where we have introduced the stresses and moments

Ns ¼ CðEs þ nEfÞ, Nf ¼ CðnEs þ EfÞ ðA 2aÞ

and

Ms ¼ DðKs þ nKfÞ, Mf ¼ DðnKs þ KfÞ, ðA 2bÞ

with C ¼ Eh=ð1� n2Þ and D ¼ Ch2=12: (These stresses and

moments are expressed here relative to the undeformed

configuration.)

The deformed shape of the shell is characterized by the radial

and vertical coordinates r(s) and z(s), as well as the angle b(s)
that the normal to the deformed shell makes with the vertical

direction. These geometric quantities obey the equations [22]

dr
ds
¼ fs cosb,

dz
ds
¼ fs sinb and

db

ds
¼ fsks: ðA 3Þ

We note that one of these is redundant. The variations dEs, dEf,

dKs, dKf are purely geometrical, and one shows that [22]

dEs ¼ secbdr0 þ fs tanbdb, dEf ¼
dr
r

ðA 4aÞ

and

dKs ¼ db0, dKf ¼
cosb

r
db: ðA 4bÞ

The variation (A 1) thus becomes

dE
2p
¼ [[rNs secbdrþ rMs db]]�

ðpR

0

d

ds
ðrNs secbÞ�Nf

� �
drds

þ
ðpR

0

r fsNs tanbþMf cosb� d

ds
ðrMsÞ

� �
dbds,

ðA 5Þ

upon integration by parts, whence

r fsNs tanbþMf cosb� d

ds
ðrMsÞ ¼ 0 ðA 6aÞ

and

d

ds
ðrNs secbÞ �Nf ¼ 0: ðA 6bÞ

These equations, together with two of the geometric relations

(A 3), describe the shape of the deformed shell. For numeri-

cal purposes, it is convenient to remove the singularity at

b ¼ p/2 by introducing the transverse shear tension [20,22],

Q ¼ �Ns tanb, expressed here relative to the undeformed con-

figuration. Force balance arguments [20,22] show that Q obeys

d

ds
ðrQÞ þ r fsksNs þ r ffkfNf ¼ 0: ðA 7Þ
The solution Q ¼ �Ns tanb is selected by the boundary

condition Q(0) ¼ 0. At the poles of the shell, the equations

have singular terms in them, but these singularities are either

removable or the appropriate boundary values are set by sym-

metry arguments [22]. This allows appropriate boundary

conditions and values to be derived.
Appendix B. Asymptotic details
In this appendix, we discuss the details of the asymptotics

summarized in the main body of the paper.

B.1. Asymptotics of small rotations
We start by discussing the detailed solution for pure invagi-

nation. Upon non-dimensionalizing distances with R and

stresses with Eh, the Euler–Lagrange equations of (2.4),

derived in appendix A, can be cast into the form

fsS sin u tanb� 12 cosbð1� nb0 � sinb cosecuÞ

� 12 d

du
ðb0 sin uþ nðsinb� sin uÞÞ ¼ k0ðuÞ

ðB 1aÞ

and

d

du
ðS secb sin uÞ � A� nS ¼ 0, ðB 1bÞ

with the small parameter

12 ¼ 1

12ð1� n2Þ
h2

R2
� 1: ðB 2Þ

In these equations, S is the non-dimensional meridional

stress, and A ¼ ef is the dimensionless hoop strain. The con-

tribution from the intrinsic curvature is

k0ðuÞ ¼ 12 nk0
s ðuÞ cosb� d

du
ðk0

s sin uÞ
� �

: ðB 3Þ

The equations are closed by the geometric relation

d

du
ðA sin uÞ ¼ fs cosb� cos u: ðB 4Þ

Introducing g ¼ ðd=dÞ1=2, scaling gives the leading

balances S � 12g=d2, S=d � A and A=d � g in (B 1, B 4).

Hence, d � 11=2, and we define an inner coordinate j via

u ¼ Qþ dj: We also introduce the expansions

b ¼ Qþ gðb0 þ gb1 þ g2b2 þ � � �Þ, ðB 5aÞ
A ¼ dgða0 þ ga1 þ � � �Þ and ðB 5bÞ
S ¼ d2g cotQðs0 þ gs1 þ � � �Þ: ðB 5cÞ

This further proves the scaling fs ¼ 1þOðdgÞ that we have

assumed in (3.1).

The pure invagination configuration is forced by intrinsic

curvature that differs from the curvature of the undeformed

sphere in a region of width l about u ¼ Q, where k0
s ¼ �k:

Writing L ¼ l=11=2, we thus have, at leading order,

k0
sðjÞ ¼ �

d1=2

13=4
K Hðjþ 1

2LÞ �Hðj� 1
2LÞ

	 

, ðB 6Þ

where k ¼ d1=21�3=4K, and where H denotes the Heaviside

function. Thus

k0ðjÞ ¼ 13=4d1=2K0ðjÞ sinQ, ðB 7Þ

where K0ðjÞ ¼ K½dðjþ 1
2LÞ � dðj� 1

2LÞ�: We note that

g3 � gd provided that d� 1 (which we shall assume to be
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the case); thus, we may set u ¼ Q to the order at which we are

working. Expanding (B 1, B 4), we then find

s0 � b000 ¼ K0ðjÞ, s00 � a0 ¼ 0, a00 ¼ �b0, ðB 8Þ

at lowest order, where dashes now denote differentiation

with respect to j. At next order,

s1 þ s0b0 secQ cosecQ� b001 ¼ 0 ðB 9aÞ

and

s01 þ
d

dj
ðb0s0Þ sinQ secQ� a1 ¼ 0, ðB 9bÞ

with a01 ¼ �b1 � 1
2b

2
0 cotQ: We are left to determine the match-

ing conditions by expanding (3.1) to find

u0r ¼ �dgb0 sinQ� dg2ðb1 sinQþ 1
2b

2
0 cosQÞ

� dg3ðb2 sinQþ b0b1 cosQ� 1
6b

3
0 sinQÞ

ðB 10aÞ

and

u0z ¼ dgb0 cosQþ dg2ðb1 cosQ� 1
2b

2
0 sinQÞ

þ dg3ðb2 cosQ� b0b1 sinQ� 1
6b

3
0 cosQÞ,

ðB 10bÞ

up to corrections of order Oðdg4, d2gÞ: Applying (3.2b), at

lowest order, we find ð1

�1

b0dj ¼ 0: ðB 11Þ

At next order, (3.2b) is a system of two linear equations for

two integrals, with solutionð1

�1

b2
0dj ¼ 2 sinQ and

ð1

�1

b1dj ¼ � cosQ: ðB 12Þ
In particular, the resulting condition on the leading-order

solution has only arisen in the second-order expansion of the

matching conditions. Similarly, at order Oðdg3Þ, we findð1

�1

b0b1dj ¼ 0: ðB 13Þ

The leading-order problem is thus

b00000 þ b0 ¼ Kðd00ðjþ 1
2LÞ � d00ðj� 1

2LÞÞ, ðB 14Þ

with matching conditions (B 11) and the first of (B 12). Sym-

metry ensures that the first of (B 11) is satisfied. After a

considerable amount of algebra, the first of (B 12) reduces

to a relation between K and L,

K2 ¼ 8
ffiffiffi
2
p

sinQ

1þ e�L=
ffiffi
2
p
ð
ffiffiffi
2
p

L� 1Þ sinðL=
ffiffiffi
2
p
Þ � cosðL=

ffiffiffi
2
p
Þ

� � :
ðB 15Þ

Symmetry also implies that there is no inward rotation of

the midpoint of the invagination at this order. Rather, inward

folding is a second-order effect, for which we need to

consider the second-order problem,

b00001 þ b1 ¼
d2

dj2
ðb0s0Þ � 1

2b
2
0

( )
cotQ, ðB 16Þ

with matching conditions (B 13) and the second of (B 12). The

rotation of the midpoint of the invagination is thus

DbðiÞ ¼ ðBðiÞðLÞ cosQÞ d
11=2

, ðB 17Þ

where B(i)(L) is determined by the solution of (B 16). The

detailed solution reveals that
BðiÞðLÞ ¼
2
ffiffiffi
2
p

e�L=2
ffiffi
2
p

4eL=2
ffiffi
2
p

sinðL=
ffiffiffi
2
p
Þ � eL=

ffiffi
2
p

sinðL=2
ffiffiffi
2
p
Þ � 3 sinð3L=2

ffiffiffi
2
p
Þ þ ðeL=

ffiffi
2
p
� 1Þ cosðL=2

ffiffiffi
2
p
Þ

h i
5 eL=

ffiffi
2
p
þ ð

ffiffiffi
2
p

L� 1Þ sinðL=
ffiffiffi
2
p
Þ � cosðL=

ffiffiffi
2
p
Þ

h i , ðB 18Þ
The calculation for contraction is similar, but lacks the

complication of terms jumping order as above. It is worth

noting, however, that the solutions for pure invagination

and contraction have the same symmetry at order Oðg2Þ,
and so, in particular, (B 13) is satisfied for both solutions.

Hence, the solutions for pure invagination and contraction

can indeed be superposed at this order, as claimed in the

main text.
B.2. Asymptotics of large rotations
In the above analysis, we restricted ourselves to small

deviations of the normal angle from the spherical configura-

tion, so that the problem remained analytically tractable.

While the leading scaling balances remain the same for large

rotations, the resulting nonlinear ‘deep-shell equations’

cannot be rescaled, so that the dependence on Q drops

out [21]. Some further insight can, however, be gained in

the shallow-shell limit Q�1: in terms of the inner coordinate

j, we write

bðjÞ ¼ QBðjÞ and SðjÞ ¼ 1SðjÞ: ðB 19Þ
In the absence of forcing by intrinsic curvatures or stretches,

the leading-order balance is

2S00 ¼ 1� B2 and B00 ¼ SB, ðB 20Þ

where dashes denote, as before, differentiation with respect to j.

This balance also arises in the study of a spherical shell

pushed by a plane [21]: at large enough indentations, the

shell dimples and the plane remains in contact with it only

in a circular transition region joining up the undeformed

shell to the isometric dimple. With the matching conditions

B!+1 as j!+1, (B 20) describe the leading-order

shape of this transition region [21]. Remarkably, this defor-

mation is independent of the contact force, which only

arises at the next order in the expansion [21].

The appropriate boundary conditions for the invagina-

tion case are B! 1 as j!+1, and non-constant solutions

of (B 20) can indeed be found numerically (some solutions

are shown in figure 9). In these modes, the deformations are,

in a sense, large compared with the moments resulting from

the intrinsic curvature imposed, making them geometrically

‘preferred’. Their existence lies at the heart of the bifurcation

behaviour discussed in the main text.
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Appendix C. Geometric details
In this appendix, we discuss the details of the geometrical

approximations that lead to the effective energy discussed

in the main body of the paper.

We restrict to the case ‘� R, in which limit we may

approximate ‘ ¼ l: It is most convenient to express the geo-

metric quantities in terms of the angle 2x ¼ l̂=R̂ intercepted

by the deformed bend region (figure 10a). By definition,

‘̂

l̂
¼ sinx

x
, ðC 1Þ

and so the leading-order strain balances (3.6), which match the

undeformed regions on either side of the active bend region to

that region, reduce to

cos b̂ ¼ x

sinx
cosb, ðC 2Þ

in this approximation, and the deformed configuration is

described in terms of the single parameter x (or, equivalently

and implicitly, b̂ ).

We now turn to the three physical effects mentioned

in the main paper. The curvature in the bend region is

1=R̂ ¼ 2x=‘ in our approximation, and so the contribution

from the preferred curvature of the bend region takes

the form

F 1

Eh
/ h2ð‘R sinbÞ 2x

‘
� 1

R0

� �2

, ðC 3Þ

where the first factor in parentheses corresponds to the

area of the undeformed bend region, and where we have

discarded numerical prefactors.

The next contribution to the effective energy is somewhat

more subtle: as the active region bends inwards, its midpoint
moves inwards by a distance D (figure 10a). Geometry

implies that

D ¼ R̂ð1� cos xÞ sin b̂ ¼ ‘ 1� cos x

2x
sin b̂ : ðC 4Þ

The resulting extra hoop strain D=R sinb constitutes the

second contribution to the effective energy

F 2

Eh
/ ð‘R sinbÞ ‘

R
1� cos x

x

sin b̂

sinb

 !2

, ðC 5Þ

where, as before, we have neglected numerical prefactors.

The final contribution arises from the second bend region

that forms as the active region bends inwards, because the

tangents to the rotated active region and the undeformed

shell do not match up any longer (figure 10b). The difference

in tangent angles is

q ¼ p� ðb� b̂ þ xÞ: ðC 6Þ

The size of the resulting bend region is set by the bending

lengthscale d �
ffiffiffiffiffiffi
hR
p

of the shell, and is thus, in particular,

independent of ‘. Determining the precise form of the result-

ing contribution to the energy would require solving the

detailed equations describing this bend region. Here, we

postulate a simple quadratic form

F 3

Eh
/

d3

R
ðb̂ � x� bÞ2, ðC 7Þ

where the scale of the prefactor is motivated by the energetics

of a Pogorelov dimple [21]. A different power law for the final

factor above would not change results qualitatively.
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